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The resiliency and adaptive ability of 
microbial life in real time on Earth 

relies heavily upon horizontal gene trans-
fer. Based on that knowledge, how likely 
is earth based microbial life to colonize 
extraterrestrial targets such as Mars? 
To address this question, we consider 
manned and unmanned space explora-
tion, the resident microbiota that is likely 
to inhabit those vehicles, the adaptive 
potential of that microbiota in an extra-
terrestrial setting especially with regards 
to mobile genetic elements, and the 
likelihood that Mars like environments 
could initiate and sustain colonization.

By the 1970s, scientists James Lovelock 
and Lynn Margulis had developed a 
hypothesis known as the Gaia theory.1 It 
proposed that organisms on Earth inter-
act with their inorganic surroundings to 
form a self-regulating, complex system 
that contributes to the maintenance of 
conditions favorable for life on the planet. 
Whether or not you buy into the Gaian 
theory, extant Earth is an extraordinary 
and singular planet inhabiting what 
appears to be, a sterile solar system. (If not 
sterile, certainly life, in form and quantity 
as we know it, inhabits no other neighbor-
ing planets). Our singular status in the 
vacuum of local space raises the question 
whether exchanges can breach the bounds 
of our atmosphere, creating conduits with 
extraterrestrial targets. We’ve known 
about the potential for backward contami-
nation for some time. For instance, space 
debris enters our atmosphere in the form 
of meteorites continually. Researchers in 
the origin of life field have long considered 
the possibility that such events seeded life 
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on our planet in the beginning and indeed 
some have considered they may still be 
doing so.2-7 Failing hard evidence of that, 
we’ve explored meteorites for past extrater-
restrial life in fossilized form.8,9

Forward contamination is a differ-
ent story. Once humankind entered into 
space exploration the specter for extrater-
restrial seeding of Earth based life became 
a real possibility. We have and do expect 
to send manned and unmanned space-
craft both to the moon and Mars. There 
are five active probes on or in orbit around 
Mars including three orbiters and two 
rovers. Of the two, Mars is considered to 
be a more likely candidate either for past 
life or possible seeding of life. Scientists 
have argued for the likelihood that Titan 
and Europa might host life as well but we 
confine ourselves to Mars in our discus-
sion as it is within the foreseeable future 
for concentrated exploration, especially 
regarding manned missions. The question 
has become, how likely is our potential for 
seeding another planet and what are the 
chances it will survive and colonize?10,11

In 2006, a common soil bacterium, 
Bacillus, was found viable and present 
on spacecraft and in spacecraft assembly 
rooms that had been subjected to substan-
tial efforts to clean them.12-14 One of those 
Bacilli has since had its genome sequenced 
and characterized and we have some 
understanding of its adaptive strategy to 
the particular challenge of sterilizing UV 
radiation.15 But it was troubling that our 
cleaning efforts were not sufficient in rid-
ding outward bound craft of microbial 
life and this posed interesting ethical and 
moral questions. The science community 
took a closer look at the strategies and 
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that rolls. Variation on a theme was a pow-
erful engine of diversity given catastrophic 
events.

However, prokaryotes are different. 
Clonal entities with identical genetics and 
relatively small genomes, the default evo-
lutionary strategy of diversity occurring 
piecemeal through mutational happen-
stance was a strategy requiring large pop-
ulations, lots of time, and strict vertical 
inheritance. Early pioneers in the field of 
bioinformatics, such as Margaret Dayhoff, 
discounted the likelihood that whole sec-
tions of genes moved randomly through 
microbial genetic landscapes.29 No one 
anticipated the extensive utilization of a 
native genetic engineering process, hori-
zontal gene transfer. As sequencing tech-
nology of nucleic acids became practical 
and cheap the databases detailing pro-
karyotic genome content indicated that 
there was a great deal more going on in 
microbial genomes than point mutations, 
just as promiscuous and as likely to pro-
duce diversity and adaptive potential as 
eukaryotic sex. The mechanism(s) were 
different30 but horizontal gene transfer 
almost guaranteed adaptive evolution 
in real time.31 Bioinformatics defined a 
whole suite of mobile elements that served 
as environmental vectors for bringing in 
or taking out strips of genetic material 
to neighboring prokaryotic entities,32,33 
be they related or not. The methodology 
of antibiotic resistance is a prime exam-
ple of bacterial adaptation fueled in real 
time.34-36 The fact that previously innocu-
ous gut bacteria could become patho-
genic through genetic islands37-39 further 
focused our thinking on just how fluid 
bacterial genomes could be.40,41

Horizontal gene transfer explained the 
rapid adaptive response to changing ecol-
ogies. The key was an expansive genetic 
resource. Microbial communities are 
diverse in constituency and thrive in huge 
numbers. Researchers have estimated the 
number of prokaryotes and viruses found 
in various environments, e.g. oceans and 
lakes,42-44 dirt,45 and the human gut.46-49 
For reference, the most current estimates 
for the ocean floor is 2.9 × 1029 cells or ten 
million trillion microbes for every person 
on the planet.44 This provides a perspec-
tive on the desperate need to understand 
microbiology in terms of populations50 if 

the human microbiome (the total resi-
dent microbial population in a particular 
environment) reveal that microbes inhabit 
every nook and cranny of our human self 
to our benefit, if not our survival, certainly 
to our health26 and vigor. We are reposito-
ries for a dynamic, commensal, co-evolv-
ing microbiome.

One might have teleological argu-
ments with the Gaia theory but it cor-
rectly identifies the two key factors one 
has to consider for the kind of survival 
and colonization we see on Earth: the 
evolutionary-produced innovations that 
allow for an adaptive biology and the 
environments that tolerated, contributed, 
initiated, certainly participated in that 
evolution. When considering potential for 
Earth seeding extra-terrestrially, we have 
to tease out how important and neces-
sary, dependent or interdependent those 
two factors are in two separate contexts: 
unmanned missions harboring microbial 
stowaways and manned missions with the 
highly integrated and regulated microbi-
ome packaged in its own Gaian-like trans-
portable vehicle, man. Either way, it’s all 
about the limits of adaptability.

Amazing Biology, How Majestic  
Is Your Evolution

In the eukaryotic world, sexes and mat-
ing clearly established a mechanism that 
insured diversity in the face of extreme 
environmental trial. The near annihila-
tions recorded in rock and fossil spurred 
morphological novelty and unprece-
dented diversity in eukaryotes. While we 
don’t actually know the mechanism that 
allowed this to occur, there is a theme 
of sorts in the solution involving bilater-
alism. HOX genes are the basic genetic 
solution for the mapping problem in 
assigning directionality for cell differen-
tially in metazoans today.27,28 HOX gene 
strategy leads to a quite elegant explana-
tion for the diversity we frequently see in 
fossils. While circumstantial and without 
any basis for the “why” HOX genes might 
have bridged some innovative divide that 
was fixed in metazoans, it’s satisfyingly 
consistent that the genetics as we under-
stand them, bolster the argument. One 
might say that HOX genes were to bilat-
eral entities what wheels were to anything 

policies in place that dealt with planet 
protection.16

Forward Contamination Relies  
on Earthly Life Resiliency:  

So, How Resilient Is It?

We know from the rock record that com-
plex life is amazingly resilient on Earth.17 
Life has never failed to adapt to the new 
environments, despite near annihilations, 
although frequently at the expense of pre-
vious forms and strategies.18 It appears 
that once life got started on this planet it 
thrived, one way or another. This state-
ment reflects in part on that biology with 
bones and complex structure which we 
know can leave a relatively robust history 
in fossils but it also rests upon the assump-
tion that this is true of the earlier period 
in Earth’s history when microbial life 
dominated.19 Because microbial life today 
is integral to all forms of life (consider 
especially their elemental recycling),20 
the fact that they appear to be the earli-
est life extant today, and they harbor the 
very same adaptive machinery at their core 
as the rest of life on our planet, we can 
likely assume that they too have been resil-
ient when exposed to catastrophic events 
as well. However, soft, squishy single 
cells don’t fossilize well. Stromatolites, or 
the more general term microbialites, are 
microbial communities that have pro-
vided us with the most robust microbial 
fossil data so far although even these aren’t 
without detractors for validity.19,21-23 these 
communities of diverse microbes show up 
through various time periods in Earth’s 
history21,22 and in fact are still extant 
today.24 This record points to microbial 
resiliency in broad terms as they are com-
plex communities adapting to an increas-
ingly oxygenated atmosphere.25

Life then has been resident on most 
of our planet for most of its 3.5 billion 
years, at least from the microbial stand-
point. And while man might not be able 
to inhabit every nook and cranny of our 
planet without some sort of protective 
intervention, microbial life can. Indeed, 
it appears that we humans were but unex-
plored, opportunist, ecologically rich 
targets for colonization once our ances-
tors arrived on the biological landscape. 
The latest results on investigations into 
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the populations, especially when outside 
genetic resources are not obtainable due 
to geographic isolation. While the unique 
factors of CCB are good at producing 
locally adapted endemic species and a lot 
of diversity while doing so, they require a 
long-term stable environment in which to 
do it in.

Therefore, given what we know about 
the efficiency and the occurrence of the 
adaptive processes for microbial entities 
on Earth, how does this speak to our con-
cern for contamination?

The Lonely Microbe on an Even 
Lonelier Planet

Criseler et al.74 recently conducted an 
experimental regime exposing certain 
microbial populations to conditions that 
simulated the surface of Mars. Mars sur-
face environmental parameters include 
extremes in salinity, temperature, des-
iccation, radiation, a diurnal cycle that 
includes alternate freezing and thawing, 
low water activity, and a thin, anoxic 
atmosphere.75 If water ice in permafrost 
regions should melt or water vapor con-
dense, brines would likely result that are 
nearly saturated in MgSO

4
.76 Using bac-

terial populations from the Great Salt 
Plains, Crisler and colleagues lightly 
inoculated (below 0.05 OD at 600 nm) 
the most halotolerant members to a vari-
ety of experimental regimes. (A back of 
the envelope calculation can estimate that 
the number of cells in a light inoculation 
is about 55 million.77) They demonstrated 
that aerobic, halotolerant bacteria could 
grow in the high concentrations of MgSO

4
 

estimated for Martian soils. However, 
they found that exposure to cyclic dry-
ing and rewetting or freezing and thaw-
ing was a limiting factor for the growth 
of these terrestrial organisms. They could 
not survive.

Let’s estimate that in our efforts to 
clean spacecraft, we leave 20,000 Bacillus 
spores aboard. (Spacecraft clean room 
requirements are much more stringent 
than this: the Goddard clean room has 
a class-10,000 rating, indicating that any 
cubic foot of air has no more than 10,000 
particles floating around in it larger than 
0.5 microns. A bacterium is roughly  
1.0 micron, Bacillus spores are 0.8 

These experiments are certainly evi-
dence that point mutations provide adap-
tive potential in pure culture situations. 
In summary though, we note that for a 
mutation to become fixed in the popu-
lation, it required tens of thousands of 
generations and trillions of cells and the 
nutrient availability in which to conduct 
the experiment.

Once bioinformatics moved out into 
the field the microbiology community 
strived to identify bacterial species, or eco-
types, by what they did in their environ-
ment.62-64 This seemed sensible because 
organismal identity in prokaryotes was 
part historical inheritance and part hori-
zontal. We accepted as fact that diversity 
was rapidly sparked by horizontal gene 
transfer and was at play everywhere. Even 
if the genetic machinery that provided the 
adaptive innovation was borrowed, for 
microbes it was indicative of that organ-
ism’s role in its environment. This was 
important because even though the tenets 
of population biology don’t mesh well 
with entities that don’t have barriers that 
can define species precisely in the classic 
sense, for bacteria it aided in our ability 
to identify community members in a par-
ticular environment.

For bacterial communities then, one 
needed to appreciate the diversity within 
the community (expressed in this combi-
nation of vertical and horizontal genetic 
ecotype terms), the community as a 
whole, and the broader environment itself: 
what each have to offer in the way of com-
modity and challenge, respectively. For 
each individual in the community, the 
intra- and inter community environment 
had to be utilized to sustain growth and 
reproduction while adapting. Under these 
considerations, microbial population biol-
ogy has made some good progress. The 
work at Cuatro Ciénegas Bolson is an 
example of that progress.65-67 Briefly, the 
CCB combines geographical isolation, 
long-term continuity and strong local 
selection pressures (especially from phos-
phorus limitation) creating high levels of 
endemic microbial biodiversity (in the 
form of locally unique microbiota).65,68-73 
Recognizing that extensive HGT can 
provide a means for evolutionary innova-
tion and adaptation, it can also obliter-
ate local diversification by homogenizing 

we were to get a handle on how obliga-
tory horizontal gene transfer might be to 
the adaptive process.51 In a further com-
plication, prokaryotes and their para-
sitic viruses have the potential for travel 
abroad52-55 making the genetic resource 
global. In a Gaian Earth like ours, as long 
as the possibility to eke out a living in 
any little crevice or water spot exists, the 
potential for finding the adaptive genetic 
resource is possible, if not guaranteed.

In the last two decades several scien-
tific activities have come to bear upon the 
mechanisms that provide adaptation in the 
microbial world and our understanding of 
the evolution of diversity in prokaryotes. 
They bear directly on the chances of sur-
vival of forward contamination.

On February 24, 1988, Richard Lenski 
began an experimental evolution study 
using 12 populations of genetically identi-
cal E. coli which reproduced only asexu-
ally (without bacterial conjugation).56,57 
The idea was to sample each population 
each day and inoculate fresh media with 
the previous day’s population. The experi-
ment is still tracking and the popula-
tions reached the milestone of 50,000 
generations in February 2010. At various 
points, analyses of the evolutionary trajec-
tory have been taken.58-60 Specifically, the 
questions addressed have been to know 
how rates of evolution varied over time, 
how repeatable evolutionary events were 
in identical environments, and how phe-
notypic changes are reflected in the geno-
type. To summarize to date the results of 
this elegant experiment, each population 
is thought to have generated hundreds of 
millions of mutations over the first 20,000 
generations but Lenski estimates that only 
10 to 20 beneficial mutations were fixed 
in each population and less than 100 total 
point mutations (including neutral ones) 
were fixed. Between 31,000 and 31,500 
generations, one population evolved a 
citrate-using variant (a characteristic that 
is often used to distinguish E. coli from 
Salmonella) and there was evidence that 
this ability could re-evolve from ear-
lier time points in this lineage, at a rate 
of occurrence of once per trillion cells. 
Lenski explains this through Stephen J 
Gould’s argument that “historical con-
tingency can have a profound and lasting 
impact” on the course of evolution.61
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our microbiota all at once; a mutualistic 
host-microbial relationship supported 
through the homeostatic properties of the 
human body.26

Given the appreciation for the diversity 
and the population size we carry around 
with us in our microbiome alone, the 
genetic repertoire represented by a sin-
gle human being, let alone a space crew, 
improves our prospects for forward con-
tamination than a few thousand Bacillus 
left on a spacecraft. Perhaps the news is 
even more sobering. Mounting evidence 
indicates that our bodies are hot spots 
with regards to horizontal gene transfer 
and our resident microbiome.95,96 Smillie 
et al.97 estimate a 25-fold more HGT 
between human-associated bacteria than 
among ecologically diverse non-human 
isolates. The host-microbiome consortium 
exhibits a delicate, hyper dynamic, but 
relatively controlled relationship integral 
to the human immune system dependent 
upon the long-term adaptation to its local 
as well as global environment. But outside 
of that Gaian paradise, things change.

Experiments designed to measure the 
effects of microgravity on Bacillus species 
and rates of HGT through conjugation 
have not been conclusive; weightlessness 
could not be shown to increase the rate 
but neither was inhibition observed.98 
More work needs to be done to under-
stand the possible effects of weightless-
ness and HGT on microbial communities. 
We’ve known for some time that astronaut 
immune systems, especially their T-cells 
which are specialized white blood cells 
known to interact with our microbiota84,89 
are dysfunctional in less than Earth grav-
ity situations for extended periods of 
time.99-101 Not unlike the affect that HIV 
has on the human immune system,102,103 
once you lose the ability to proliferate 
T-cells you’ve short circuited the entire 
immune response.

Hurtling toward Mars, with months 
of antigravity destabilizing a coher-
ent, functioning, already quite dynamic 
host-microbiome supraorganism, each 
crew member harboring 5–8 million 
non-human genes, we have substantially 
altered the adaptive capacity that HGT 
conferred on us by Earth’s ecology. The 
genetic resource at our disposal is sub-
stantial. The homeostasis borne of tens of 

integrated community that are dictating 
outcomes with and beyond the human 
genetic repertoire.49,80,81 Depending upon 
the community of microbes inhabiting 
our gut,49 we may or may not develop 
diabetes78,82 Our nutritional status and 
access to essential vitamins are deter-
mined not just by diet but our microbial 
gut repertoire.83,84 If our gut microbial 
diversity is low or changes in constitu-
ency, it can lead to obesity and inflam-
matory bowel disease.49,82,85 Alternatively, 
if the vaginal microbial diversity is high 
it can lead to bacterial vaginosis.86 There 
is a “morbid union” between our cardio-
vascular system, disease, and diet, with 
our gut microbiota playing a much big-
ger role in supplying chemical signals that 
unconsciously impact our food choices.87 
Immune disorders, including dermatitis, 
have been linked to our gut microbiota88 
and indeed colon commensal microbiota 
participate and even educate our immune 
system with regards to autoimmunity.89 
The microbiome that sets up residency 
during infancy and in the first three years 
impacts the rest of life88,90,91 and at the end 
of life if we should end up in a nursing 
home, our gut microbiota not only dic-
tates our quality of life but can actually 
contribute to our fraility.90,92

Several research groups are studying 
the structural and functional configura-
tion for a normal, healthy, geographically 
dispersed, human microbiome population 
over time49,79,81,93 with interesting conclu-
sions. Our individual microbiomes are 
unique to us with distinct microbial spe-
cies dominating the various niches of our 
bodies. They are dynamic in community 
structure over time, both in healthy and 
diseased individuals. From a metabolic 
standpoint, our microbiomes are doing 
much the same thing in each of us just 
with a different microbial constituency. 
Therein lays our microbiomic individu-
ality, our differing and individual adap-
tive potential to ecological challenges. 
Ethnicity, geography, diet and early micro-
bial exposure all play a role in our resident 
biota along with certain driving physical 
factors such as oxygen, moisture, pH, host 
immunological factors, and microbial 
interactions (e.g., mutualism or competi-
tion).94 We are far more than the sum of 
our human parts, we are indeed that and 

microns.) Once on Mars (or really any-
where else that is not Earth-like) they 
must at once continue to reproduce and 
adapt. We imagine that in Earth terms, 
Mars is even more barren of nutrients than 
places likes the CCB therefore the adap-
tive challenge for microbial stowaways 
would be huge; much more challenging 
than bringing citrate across a membrane, 
utilizing an alternate sugar, or conserving 
resources by scavenging components of 
community members. Given the results 
from the Crisler et al. study, we know 
that the community would have to endure 
and survive several challenging ecological 
parameters, not limited to repeated thaw-
ing and freezing in the occasional, near 
saturated brine, and all in an unfamiliar 
atmosphere, one that was not oxidizing. 
If the reliance for adaptive progress relies 
on point mutations, we have some idea 
of how long they must survive if chal-
lenged minimally; years. We have no esti-
mates if the challenges are multiple and 
simultaneous as the Mars surface would 
necessitate. Without a diverse commu-
nity, gene transfer, possibly the primary 
engine of bacterial diversity for real time 
adaptive evolution on Earth would be a 
non sequitur. The genetic repertoire that 
makes Earth microbiology so responsive 
to environmental change is not available 
extra-terrestrially, if the only stowaways 
are a few other, nearly identical clones. 
Add to that geographically isolation and 
fewer resources to sustain any amount of 
evolution and Earth based life on Mars 
will go extinct, if indeed it ever was able 
to colonize.

What about Dirty Man  
and His Space Plans?

Human beings are a collection of roughly 
10 trillion cells, each cell containing about 
23,000 genes. Estimates for the human 
microbiome indicate that humans play 
host to another 100 trillion microbial 
cells, each with their own suite of genes, 
in the neighborhood of 5–8 million non-
human genes.78,79

We have learned very recently that 
while the human body may define the 
environmental landscape, it’s the combi-
nation of human and microbes participat-
ing, equally and fully, in a functional and 
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of such an outcome, we would have to 
rethink one of the basic tenets of life as 
we understand it, the close association of 
life and its environment, an environment 
in the case of Earth that is as dynamic as 
life itself.
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never reaches, remains more a hope than 
a reality.104

True to the Gaia hypothesis, we really 
aren’t life entities evolving without context 
in just any old inorganic environment. We 
rely on gravity, liquid water, plate tecton-
ics, ready energy, and our unique position 
in our solar system to ensure a buffered 
and comparatively genteel environment in 
which to explore the power of evolution.

If the impossible did happen, what 
would it actually mean? Given that we 
understand the unique strategies that 
microbial Earth life use to diversify and 
adapt, it’s almost certain that if some part 
of 20,000 clonal Bacillus survived, they 
would likely have devised a whole other 
strategy than anything that is currently 
employed on Earth. We’d have to decide 
whether or not that event constituted a 
new origin of life, a window into the way 
life could seed and succeed, some kind of 
a historical contingency recovered from 
a time when Mars was full of life, or a 
rewind of that mysterious time in Earth’s 
history when life indeed came from a 
common ancestor pool of non-diversified 
entities.

If it’s dirty man and the refuse from his 
whacked out immune system that seeds 
successfully, at a minimum we’d prob-
ably need to revise our planet protection 
strategies. Maximally, it would be the fin-
est testament to Earth life’s inherent resil-
iency, whether the seeding produced some 
sort of conjugation between resident but 
unknown Mars life or a colonization of 
solely Earth based life.

In 1967, The United Nations Treaty on 
Principles Governing the Activities of States 
in the Exploration and Use of Outers Space, 
Including the Moon and Other Bodies states 
that our exploration should be conducted 
as to avoid harmful contamination. The 
UN consults with the International 
Council of Science on policies to pro-
vide guidelines for planet protection. Not 
knowing whether or not what we car-
ried in our bodies or on our spaceships 
was harmful to Mars would render each 
of these seeding scenarios as unethical in 
practice. They would, however, provide 
unparalleled experimental results. Perhaps 
the most telling result would be not just 
the seeding, but if successful, long-term 
colonization was the result. In the advent 

thousands of years of adaptive evolution 
on the human-microbiome is now much 
different.

Once there with an extended stay of at 
least a year we will be protecting ourselves 
with space suits and habitats that supply 
an artificially buffered and homeostatic 
environment. Meanwhile, our bodies 
teaming with microbes in charge of our 
immune systems, the odds of inoculating 
Mars with a genetic repertoire that could 
adapt to Martian ecology is at least sub-
stantially better than the unmanned sce-
nario previously described. How would 
the seeding proceed? The most likely con-
tamination would be waste disposal, espe-
cially the microbiome residing in our gut. 
We’d need a thoughtful, precise plan for 
sewage disposal. We could save it for the 
trip back home, create a surface sanitary 
dump, destroy it, or bury it. We know that 
Mars is largely inhospitable on its surface 
so the worse choice we could make would 
be to bury it. The best hope we have in 
finding life on Mars is remnants of one 
either alive or in stasis underground. If 
this be the case, burying our waste prod-
ucts expands the possibilities of some kind 
of experiment that far outstrips our cur-
rent knowledge of how diversity and mat-
ing might be achieved with Earth life, let 
alone alien life.
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