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Accumulating evidence from clinical, genetic, and epidemiologic studies suggest that

schizophrenia might be a neuronal development disorder. While oxysterols are important

factors in neurodevelopment, it is unknown whether oxysterols might be involved in

development of schizophrenia. The present study investigated the relationship between

tissue-specifically originated oxysterols and risk of schizophrenia. A total of 216

individuals were recruited in this study, including 76 schizophrenia patients, 39 clinical

high-risk (CHR) subjects, and 101 healthy controls (HC). We investigated the circulating

levels of brain-specific oxysterol 24(S)-hydroxycholesterol (24OHC) and peripheral

oxysterol 27-hydroxycholesterol (27OHC) in all participants and analyzed the potential

links between the oxysterols and specific clinical symptoms in schizophrenic patients and

CHR. Our data showed an elevation of 24OHC in both schizophrenia patients and CHR

than that in HC, while a lower level of 27OHC in the schizophrenia group only. The ratio of

24OHC to 27OHC was only increased in the schizophrenic group compared with CHR

and HC. For the schizophrenic patients, the circulating 24OHC levels are significantly

associated with disease duration, positively correlated with the positive and negative

syndrome total scores, while the 27OHC levels were inversely correlated with the positive

symptom scores. Together, our data demonstrated the disruption of tissue-specifically

originated cholesterol metabolism in schizophrenia and CHR, suggesting the circulating

24OHC or 24OHC/27OHC ratio might not only be a potential indicator for risk for

schizophrenia but also be biomarkers for functional abnormalities in neuropathology

of schizophrenia.

Keywords: schizophrenia, cholesterol metabolism, biomarker, 24(S)- hydroxycholesterol, 27-hydroxycholesterol

INTRODUCTION

Schizophrenia is a chronic mental disorder characterized by delusions, hallucinations, impaired
cognition, behavior, or emotions. While the actual causes of schizophrenia are not fully
understood, recent studies support the neurodevelopmental hypothesis of schizophrenia (1).
Cholesterol is well-known for its roles in brain development, such as proper myelination,
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dendritic differentiation, and synaptic plasticity in central
nervous system (CNS) (2–4). While circulating cholesterol is not
able to cross the blood-brain barrier (BBB) into the brain, brain
synthesize cholesterol locally for cell maintenance, neuronal
transmission, and synapse formation. Studies have shown
that maining cholesterol homeostasis is essential for proper
cellular and systemic functions, while disturbance cholesterol
homeostasis might increase risks for many neurodevelopmental
disorders (5–7). Although schizophrenia is a developmental
disease and alteration of circulating cholesterol levels were
reported in schizophrenic patients (8–12), it is unclear whether
brain and peripheral cholesterol metabolism are disturbanced in
schizophrenia and what their relationship related to this disease.

Oxysterols, the oxidized forms of cholesterol are able to
cross BBB from peripheral to brain and vice versa (13).
24(S)-Hydroxycholesterol (24OHC), for example, is the major
cholesterol metabolite in the brain by brain-specific enzyme
CYP46A1. The plasma level of 24OHC is considered a
surrogate marker for brain cholesterol metabolism since more
than 90% of plasma 24OHC can be attributed to the brain
(14, 15). It has been confirmed that the level of circulating
24OHC derived from the brain (16) is positively correlated
with the 24OHC level in the CSF (17). In contrast to
the brain-specifically originated 24OHC, 27-hydroxycholesterol
(27OHC) as the most abundant oxysterol in the circulating
system is the product of 27-hydroxylase (CYP27A1), mainly
formed from peripheral as extrahepatic and extracerebral
cholesterol (13).

Cumulating evidence indicates the positive role of 24OHC on
dendritic spines, synaptic plasticity, and synaptic vesicle cycling
(18–20). As an allosteric modulator of the NMDA receptors,
24OHC also increases synaptic plasticity in hippocampal slices
(21, 22). Due to the important role of oxysterols during
neurodevelopment and cognition, many studies indicated the
impact of oxysterol disturbance in brain disorders, such as
Alzheimer’s disease (23–25), amyotrophic lateral sclerosis (26),
Parkinson’s disease (27), major depressive disorder (MDD)
(28), and autism spectrum disorder (ASD) (29). Although
accumulating evidence indicates the lipid metabolism, such as
eicosanoid signaling were associated with the pathophysiology
of schizophrenia (30, 31), cholesterol metabolism and oxysterols
in schizophrenia is not well-studied. A recent study reported
no significant difference in plasma 24OHC levels between
schizophrenic patients and healthy controls (32), and one
study used 24OHC-liked compound reversed schizophrenia-
liked behavioral in animal models and suggested a potential
therapeutic effect of 24OHC on schizophrenia (22). As the most
abundant oxysterol in the circulating system, 27OHC levels
increased when hypercholesteremia or oxidative stress (33, 34),
and then as the mediator of the negative effects on cholesterol
metabolism and cognitive function by decreasing the expression
of HMG-CoA reducatase (the rate limit of cholesterol synthesis)
(35). Plasma levels of 27OHC were proved to be associated
with cognitive impairment patients, including mild cognitive
impairment (MCI) and AD (36–38) due to its deleterious impact
to synaptic plasticity (39–41). However, 27OHC has not been
investigated previously in schizophrenia.

Given the different origins of the two oxysterols and
circulating 24OHC and 27OHC could represent brain and
peripheral cholesterol metabolites, we first investigated whether
the two tissue-specific oxysterols were associated with risk for
schizophrenia by comparing the circulating 24OHC and 27OHC
levels as well as cognitive function in schizophrenic patients,
CHR compared with HC. Then, we studied the impact of
oxysterols in specific psychiatric symptoms in schizophrenia
patients and CHR subjects. Our study suggested that tissue-
specifically originated oxysterols might be valuable targets for
early intervention and alternative treatment for schizophrenia.

MATERIALS AND METHODS

Subjects
This study was reviewed and ratified by the Independent
Ethics Committee (IEC) of the Beijing Anding Hospital, Capital
Medical University, China. Each subject provided informed
written consent after the procedure had been fully explained in
the present study.

Diagnosis of schizophrenia was confirmed by administering
the Structured Clinical Interview for DSM-IV (SCID) by
experienced psychiatrists. CHR individuals met diagnostic
criteria for a psychosis-risk syndrome, the Criteria of Psychosis-
Risk States based on the face-to-face interview using Structured
Interview for Psychosis-Risk Syndromes (SIPS) (42). Healthy
controls (HCs) did not meet criteria for any prodromal
syndrome, had any history of psychiatric illness or psychoactive
drug use, or had no first-degree relative with mental disorders.

Participants in each group were excluded if they (1) aged
under 16 or above 60; (2) had other neurological disorder; (3)
had a history of drug or alcohol abuse; (4) were pregnancy
or currently breastfeeding; and (5) were in significant medical
conditions, including severe cardiovascular and hepatic or
renal diseases.

Total of 216 participants, including 76 schizophrenia patients,
39 CHR subjects, and 101 age- and sex-matched HCs, were
enrolled in this study from Beijing Anding Hospital, China
(Table 1). The period from psychotic symptom appeared for
the first time to the enrollment (psychotic symptom duration)
was 23.79 months (SD = 24.05) in schizophrenia patients and
25.50 months (SD = 28.35) in CHR participants. Medication
information was unavailable for six patients and five individuals
in CHR group. For the patients who hadmedication information,
53 patients were not taking antipsychotics at the time of
enrollment, while 17 patients taking antipsychotics, including
risperidone, clozapine, olanzapine, quetiapine, paliperidone,
and amisulpride. For the CHR subjects who had medication
information, 24 subjects were not taking antipsychotics at the
time of enrollment, while 10 subjects taking antipsychotics.

Clinical Assessments
Basic sociodemographic characteristics and clinical data were
collected by a questionnaire specifically designed for this study.
All schizophrenia patients were assessed using the Positive and
Negative Syndrome Scale (PANSS) as a further assessment of
the disease (43). The SIPS which includes 19 items, divided
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TABLE 1 | Demographic variables and clinical characteristics in schizophrenia patients, CHR individuals, and HCs.

HC CHR SCZ F P

N 101 39 76

Age (year) 26.45 ± 4.57 24.28 ± 4.78 25.68 ± 6.85 2.185 0.115

Gender (M/F) 62/39 24/15 34/42 5.559 0.062

Education (year) 14.35 ± 3.18 14.39 ± 3.02 13.37 ± 3.27 2.202 0.113

BMI 22.56 ± 2.95 23.11 ± 2.82 22.97 ± 3.34 0.369 0.692

Family history (yes/no) 0/101 11/28 15/57 27.773 <0.001

Illness/psychotic symptom duration (month) – 25.50 ± 28.35 23.79 ± 24.05 0.103 0.740

Antipsychotics (yes/no) – 10/24 17/53 – –

Olanzepine equivalents (mg) – 14.00 ± 7.75 8.54 ± 4.14 – –

Cognition

Information processing speed 44.56 ± 6.88 39.03 ± 6.78 36.93 ± 19.43 4.886 0.015

Attention alertness 45.54 ± 9.09 39.75 ± 11.85 31.43 ± 9.17 26.072 <0.001

Working memory 46.33 ± 6.88 35.02 ± 17.14 37.14 ± 10.43 12.435 <0.001

Vocabulary learning 47.51 ± 9.44 41.77 ± 9.37 38.49 ± 9.87 11.910 <0.001

Visual learning 46.34 ± 10.34 42.67 ± 11.03 38.38 ± 14.48 5.894 0.007

Reasoning and problem solving 43.32 ± 10.52 39.62 ± 10.54 35.87 ± 11.40 6.768 0.004

Social cognition 37.79 ± 10.43 37.03 ± 8.68 34.85 ± 12.46 1.475 0.399

Total MCCB scores 44.40 ± 5.88 40.21 ± 5.62 35.88 ± 6.36 24.826 <0.001

Psychiatric symptoms

SIPs 0.76 ± 2.69 25.41 ± 8.63 – 365.055 <0.001

PANSS positive – – 23.07 ± 5.58 – –

PANSS negative – – 20.41 ± 8.02 – –

PANSS general – – 41.88 ± 6.48 – –

PANSS total – – 85.37 ± 14.17 – –

Oxysterols

24OHC (ng/ml) 24.47 ± 8.76 28.54 ± 12.18 27.89 ± 8.95 3.990 0.020

27OHC (ng/ml) 43.14 ± 18.30 43.96 ± 14.63 32.78 ± 11.92 11.296 <0.001

Data was shown as mean ± SD.

SCZ, schizophrenia; CHR, clinically high risk; HC, healthy control; BMI, body mass index; IQ, intelligence quotient; MCCB, MATRICS consensus cognitive battery; SIPS, structured

interview for prodromal symptoms; CGI, clinical global impressions severity; PANSS, Positive and Negative Syndrome Scale; 24OHC, 24(S)-hydroxycholesterol; 27OHC, 27-

hydroxycholesterol.

into positive, negative, disorganization, and general symptom
subsections, was used for identifying the state of the CHR
individuals (42).

The cognitive function was assessed with MATRICS
Consensus Cognitive Battery (MCCB, Chinese version) (44),
which provides a comprehensive score to act as a cognitive
reference point for schizophrenia individuals. In addition, the
intelligence quotient (IQ) was evaluated by a Chinese version of
the Wechsler Adult Intelligence Scale (45). Although all subjects
completed the clinical assessments, a total of 138 subjects
(50 HCs, 38 CHR individuals, and 50 schizophrenia patients)
completed the cognitive evaluation.

Oxysterol Analysis
The whole blood of subjects was collected into EDTA tubes
after clinical assessment at 8:00 a.m. to 15:00 p.m. Plasma was
harvested after centrifugation at 3,000 rpm for 10min at room
temperature. Plasma levels of oxysterols were measured using
high-performance liquid chromatography-mass spectrometry
(HPLC-MS) as described previously with modifications (46).

Briefly, a total of 50 µl plasma, 100 ng of D5/D7 deuterium
cholesterol, and 200µl acidic buffer solution (50mM ammonium
acetate, 1% formic acid, pH = 3) were mixed with 1ml
methyl tert butyl ether in an eppendorf tube. Supernatant was
gathered after the freezing at −80◦C and then dried at 30◦C.
Fifty microliters of chloroform solution with 12.6 g/L N,N′-
diisopropylcarbodiimide, 12.4 g/L nicotinamide, and 12.2 g/L
4-dimethylaminopyridine was added to derive at 35◦C water
bath for 2 h. The reactants were dried and dissolved in 100 µl
of methanol for HPLC-MS detection. HPLC with an Angilent
G1312B HPLC Pump and an Angilent C18 column (0.35µm
bead size; 4.6 × 250mm) were used for the measurement
of oxysterols.

Statistical Analysis
The data was analyzed with SPSS (version 20.0, SPSS Inc.,
Chicago, Illinois, USA). Descriptive statistics were used
to describe demographic and clinical characteristics of the
participants. The variables were expressed as mean ± standard
deviation (SD). Comparisons of demographic, clinical variables,
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and oxysterol levels among groups were performed using
one-way analysis of variance (ANOVA) followed by post-hoc
Bonferroni multiple comparison test, while gender and family
history were performed using chi-squared test. A multiple
linear regression analysis was used to assess the factors affecting
oxysterol levels in schizophrenia patients, including age, gender,
illness duration, antipsychotics, and family history. Spearman’s
correlation analysis was used to evaluate the relationship
between plasma oxysterol levels and clinical parameters or
age in subjects. Multiple linear regression analysis was used to
assess the relationship between oxysterols and demographic
variables or clinical characteristics in schizophrenia patients.
The receiver operating characteristic (ROC) curve and the
area under the ROC curve (AUC) were used to evaluate the
diagnosis value of oxysterols in schizophrenia. The level of
two-tailed statistical significance was also set to p < 0.05 for
all tests.

RESULTS

Table 1 summarizes the demographic, psychiatric symptoms,
and cognitive assessments of the participants.

Opposite Changes Between Brain and
Peripheral Cholesterol Metabolites in
Participants
Mean plasma 24OHC levels revealed a significant increase in
schizophrenia patients (Table 1; Figure 1A, p = 0.045) and
an increase trend in CHR participants (p = 0.062) relative
to HCs. On the other hand, schizophrenia patients showed
significantly lower plasma 27OHC levels than HCs (Figure 1B,
p < 0.001), however, no such change was found in the
CHR group.

A multiple linear regression analysis was used to assess
the factors affecting oxysterol levels in schizophrenia patients,
including age, gender, illness duration, antipsychotics, and family
history. Significant correlations were found between 24OHC and
age (t = −3.141, p = 0.003) or illness duration (t = 3.023, p =

0.004). However, sex, antipsychotics and family history had no
significant influence on oxysterol levels (all p > 0.05).

Changes in Age-Dependent Oxysterol
Levels in Schizophrenia Patients and CHR
Individuals Compared With HCs
A significant age-dependent decrease in 24OHC levels was
found in the HCs (Figure 2A, p = 0.008); however, similar
correlation disappeared in CHR (p = 0.880) or schizophrenia
patients (p = 0.078). Interestingly, the mean 24OHC levels in
different ages showed obvious change in CHR compared with
HCs, and the largest difference was found in the subjects before
25 years old among groups (Figure 2B). On the other hand,
the plasma 27OHC levels showed significant age-dependent
decrease in schizophrenia patients (Figure 2C, p = 0.039)
or unchanged in CHR individuals (p = 0.175), although
slow age-dependent increase was found in HCs (p = 0.268).
Unlike 24OHC, the difference in 27OHC levels among groups
became more and more significant along with age (Figure 2D).
Similar to 24OHC, 24OHC/27OHC values were significantly
age-dependent decreased in the HCs (Figure 2E, p = 0.001);
however, such correlation disappeared in CHR (p = 0.583) or
schizophrenia patients (p= 0.591).

Associations of Oxysterol Levels and
Cognitive Function in Each Group
Significant positive correlations between plasma 27OHC levels
and MCCB total scores was found in HCs (Table 2, p = 0.025);
however, such correlation disappeared in CHR or schizophrenia
patients. No significant correlation was found between plasma
24OHC levels and cognitive function.

Associations of Oxysterol Levels and
Psychiatric Symptoms in Schizophrenia
Patients
Plasma 24OHC levels increased along with the PANSS total
scores in the schizophrenia patients (Table 2, p = 0.037),
especially negative symptom scores (p= 0.029). On the contrary,
plasma 27OHC levels inversely correlated with positive symptom
scores in schizophrenia patients (p = 0.010), although there was
no significant correlation with PANSS total scores.

In order to eliminate the influence of confounding factors
on psychiatric symptoms, the multiple linear regression

FIGURE 1 | Plasma oxysterols profile in schizophrenia (SCZ) patients, clinically high risk (CHR) individuals, and healthy controls (HC). The plasma 24OHC levels,

27OHC levels, and 24OHC/27OHC in SCZ patients, CHR, and HC are shown in (A), (B), and (C), respectively. SCZ patients showed higher plasma 24OHC levels and

lower 27OHC levels than HCs.
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FIGURE 2 | Age-related changes of plasma levels of oxysterols in schizophrenia (SCZ) patients, clinically high risk (CHR) individuals, and healthy controls (HC). (A,B)

Absolute values of 24OHC at different ages; (C,D) Absolute values of 27OHC at different ages. (E,F) Ratio of 24OHC and 27OHC at different ages. Significant

age-dependent decreases of 24OHC levels and 24OHC/27OHC values were found in the HCs. Opposite trend of 24OHC levels and 24OHC/27OHC values along

with age were found between HCs and CHR individuals or SCZ patients, and the largest difference occurs before 25 years old. Plasma 27OHC levels showed

significant age-dependent decrease in the SCZ group. Unlike 24OHC, the difference in 27OHC between patients and HCs became more and more significant with the

increase of age.

analysis was used in this study (Table 3). There was a

significant association between plasma 27OHC levels and

positive symptom scores (p = 0.024) in schizophrenia

patients. A significant correlation between 24OHC

levels and PANSS total scores was found (p = 0.041) in
schizophrenia patients.

Diagnosis Capacity of Oxysterols in
Schizophrenia
We subsequently performed a ROC curve analysis to assess
whether plasma oxysterol levels could differentiate the CHR
individuals and schizophrenia patients from HCs (Table 4). The
AUC of plasma 24OHC and 27OHC diagnosis of schizophrenia
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TABLE 2 | Associations between oxysterols and clinical assessments in schizophrenia patients, CHR individuals, and HCs.

HC CHR SCZ

24OHC 27OHC 24OHC 27OHC 24OHC 27OHC

Total MCCB scores 0.210 (0.186) 0.025 (0.327) 0.335 (0.193) 0.399 (−0.169) 0.077 (−0.279) 0.778 (0.045)

PANSS positive – – – – 0.806 (−0.029) 0.010 (−0.299)

PANSS negative – – – – 0.029 (0.255) 0.621 (0.059)

PANSS general – – – – 0.053 (0.228) 0.587 (0.065)

PANSS total – – – – 0.037 (0.244) 0.659 (−0.053)

Data was shown as p-value (correlation coefficient).

SCZ, schizophrenia; CHR, clinically high risk; HC, healthy control; BMI, body mass index; IQ, intelligence quotient; MCCB, MATRICS consensus cognitive battery; SIPS, structured

interview for prodromal symptoms; PANSS, Positive and Negative Syndrome Scale; 24OHC, 24(S)-hydroxycholesterol; 27OHC, 27-hydroxycholesterol.

TABLE 3 | Associations between psychiatric symptoms and oxysterols levels in schizophrenia patients.

PANSS positive PANSS negative PANSS general PANSS total

t P t P t P t P

CHR INDIVIDUALS

Age −1.158 0.260 0.290 0.775 −1.147 0.264 −0.473 0.642

Gender −0.873 0.393 −1.018 0.320 0.725 0.476 −0.331 0.744

Illness duration −0.617 0.544 0.245 0.809 −1.104 0.282 −0.219 0.829

Antipsychotics 0.858 0.401 −0.417 0.681 0.345 0.735 0.054 0.958

Family history −0.985 0.336 0.039 0.970 −0.198 0.845 −0.193 0.849

24OHC 0.740 0.468 0.314 0.757 −0.223 0.826 −0.183 0.857

27OHC −2.014 0.057 −1.369 0.186 −0.426 0.675 −0.845 0.410

SCZ PATIENTS

Age −1.816 0.074 0.080 0.936 −0.757 0.452 −0.961 0.340

Gender 3.046 0.003 −0.262 0.794 1.510 0.136 1.649 0.104

Illness duration −0.665 0.509 0.251 0.803 −0.517 0.607 −0.329 0.743

Antipsychotics −1.536 0.130 0.068 0.946 0.794 0.430 −0.125 0.901

Family history −0.477 0.635 −1.532 0.131 −0.921 0.361 −1.564 0.123

24OHC 0.505 0.615 1.976 0.053 1.407 0.164 2.084 0.041

27OHC −2.310 0.024 0.904 0.370 −0.301 0.764 −1.531 0.131

SCZ, schizophrenia; CHR, clinically high risk; PANSS, Positive and Negative Syndrome Scale; 24OHC, 24(S)-hydroxycholesterol; 27OHC, 27-hydroxycholesterol.

patients from the HCs was 0.618 and 0.681, respectively,
and the combination of 24OHC and 27OHC was 0.767. On
the other hand, the AUC of plasma 24OHC and 27OHC
diagnosis of CHR individuals from the HCs was 0.591 and
0.537, respectively, and the combination of 24OHC and 27OHC
was 0.592.

DISCUSSION

The present study investigated the potential links between
plasma levels of tissue-specific cholesterol metabolites and risks
of schizophrenia, particularly in schizophrenic patients, CHR
subjects, and HCs. First, we found a significant elevation in
plasma 24OHC levels of schizophrenia patients as well as CHR
compared with HCs (Figure 1), although the level of 24OHC
in CHR group compared with HC did not reach statistical
significance. As the most metabolite of cholesterol in brain,
large efforts have been made in the previous to unravel the

effects of 24OHC on the brain function. CYP46A1–/– mice
showed strong neurological phenotypes in spatial learning
and memory deficits, indicating the essential role of 24OHC
in the neuronal function (47). 24OHC has been shown to
facilitate the induction of long-term potentiation (LTP) via
enhancing NMDA (21, 22, 48) and tyrosine kinase receptor
B (TrkB) signaling (19, 49). Moreover, 24OHC has a positive
regulating effect on dendritic spines, enhances synaptic vesicle
cycling, and increases the expression of synaptic proteins in
synaptosome (18, 20). These results implied that increasing
24OHC levels to facilitate the synaptic transmission might be
a therapeutic way for schizophrenia, due to the impairment of
synaptic function was the main characteristic of schizophrenia
(50). The 24OHC-liked compound reversed schizophrenia-liked
behavioral in animal models provides strong evidence for this
hypothesis (22). On the other hand, previous studies have been
indicated that 24OHC may facilitate inflammation, oxidative
stress, autophagy, and necroptosis, which are also main driving

Frontiers in Psychiatry | www.frontiersin.org 6 August 2021 | Volume 12 | Article 711734

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Sun et al. Tissue-Specifically Originated Oxysterols in Schizophrenia

TABLE 4 | ROC curve analysis of oxysterols in CHR participants and

schizophrenia patients.

AUC Sensitivity Specificity 95% CI

CHR individuals

24OHC 0.591 0.525 0.692 0.488–0.695

27OHC 0.537 0.505 0.667 0.436–0.638

24OHC and 27OHC 0.592 0.525 0.692 0.488–0.696

SCZ patients

24OHC 0.618 0.683 0.526 0.534–0.701

27OHC 0.681 0.485 0.842 0.603–0.759

24OHC and 27OHC 0.767 0.782 0.671 0.697–0.837

SCZ, schizophrenia; CHR, clinically high risk; ROC, receiver operating characteristic; AUC,

area under the ROC curve; CI, confidence interval; 24OHC, 24(S)-hydroxycholesterol;

27OHC, 27-hydroxycholesterol.

forces in schizophrenia (51–53). These data implied that lowering
24OHC levels might be a therapeutic way in schizophrenia
treatment. Inhibition of CYP46A1 has therapeutic relevance
to CNS hyperexcitability supported the therapeutic way of
lowering 24OHC to schizophrenia (54). Hence, the role of
24OHC is still somewhat puzzling, but a recent report shed
a new light that esterification of 24OHC is a prerequisite for
inducing cell death (55). In the present study, our finding
on 24OHC only increased in patients, not enough in CHR,
indicating potential risk for schizophrenia. It was noteworthy
that whether 24OHC is an early marker of schizophrenia still
needs follow-up study of CHR, due to the conversion rate of
CHR to schizophrenia within 2 years was 29.1% in Chinese
sample (56).

To examine the changes of peripheral oxysterol in
schizophrenia, we detected the plasma level of 27OHC in
this study. Our results showed a significant reduction of
27OHC level in schizophrenia patients than HCs (Figure 1),
suggesting a disruption of peripheral cholesterol metabolism
in schizophrenia. As the most abundant oxysterol in the
circulating system, substantial evidence indicates the facilitated
effect of 27OHC on inflammation (57, 58), oxidative stress
(59), immune suppressive (60), gut microbiota dysbiosis, and
intestinal barrier dysfunction (61), all of which were proved
to participate in schizophrenia (62–64). On the other hand,
27OHC is able to pass through the BBB and may thus contribute
to the abnormal brain function. 27OHC not only affects brain
function by negatively regulating cholesterol level but also
directly had neurotoxic effects on neurite outgrowth and
synaptic plasticity (39–41, 65, 66). Due to the strong correlation
between oxysterols and plasma total cholesterol levels (67),
the reduced 27OHC levels in schizophrenia patients in this
study might be caused by the decrease of circulating cholesterol
concentration, or the increase of degradation to bile acid.
In line with our results, lower circulating cholesterol levels
in schizophrenia patients than HCs were found in several
studies (9, 68–70).

Activation of the liver X receptors (LXRs) was an essential
pathway to exert their function of oxystrols, including 24OHC

and 27OHC (71). As the ligands of LXRs, oxysterols could induce
cholesterol-related genes expression to regulate the cholesterol
transport and elimination. Compared with other oxysterols,
24OHC was proved to be the most efficient ligand of LXRs
(72). Consideration of the opposite changes of the two kinds of
oxysterols in schizophrenia patients in our study, one possibility
is that elevation of 24OHC levels might induce the excessive
activation of LXRs, while the reduction of 27OHC levels might
not be sufficient to compensate it. It is noteworthy that a
significant elevated ratio of 24OHC and 27OHC was found
in schizophrenia patients in our study, suggesting increased
brain/peripheral cholesterol metabolism may be a risk factor
for schizophrenia. The shift of balance in 24OHC and 27OHC
might cause abnormal cholesterol homeostasis and a series of
consequences, such as oxidative stress and inflammation (71, 73).

As previous studies demonstrated that the level of oxysterol
changes with age, (17, 74), we analyzed the age-dependent
changes in all subjects and found a significant age-dependent
decline of 24OHC in HC (Figure 2), not in CHR and
schizophrenia groups (Figure 2). Our finding which in line
with previous reports (17, 32, 74) suggested an impaired
age-dependent brain-specific cholesterol turnover in CHR and
schizophrenia such as the dynamic ratio of brain (synthesis of
24OHC) and liver (degradation of 24OHC) volumes (74). Similar
to 24OHC, as shown in Figure 2, our study showed a different
age-dependent change of 27OHC levels, such as a decline in
schizophrenia patients and CHR individuals compared with a
slow increase in HCs with aging as previously reported (75–77).
These data suggest the disturbance of both 24OHC and 27OHC
occurring in the prodromal stage of schizophrenia.

Cognitive impairment is one of the major symptoms of
schizophrenia, and it is known that oxysterols might affect the
cognitive function (24, 78–81). In this study, we also found
27OHC showed a significant positive association with cognitive
function in HCs (Table 2). The link between oxysterols and
cognitive function is confirmed in animal studies, such as
both CYP46A1 and CYP27A1 knockout mice showed significant
impairment in learning and memory (47, 78, 82). Extensive
evidence showed that the oxysterols regulated cognitive function
through several pathways, such as TrkB signaling pathway (18),
NMDA receptors (21, 22), and nitric oxide signaling (20) to
improve synaptic growth and plasticity. However, such positive
correlation between oxysterols and cognition was disappeared
in schizophrenia patients (Table 2). The possible reason might
include the impairment of the signaling pathway which
improving synaptic function in schizophrenia (83, 84). Whether
the disturbed brain and peripheral cholesterol metabolites are
the primary or secondary factors in schizophrenia require further
investigations.

As the ratio of 24OHC to 27OHC is only upregulated in
the schizophrenia group compared with the CHR and HC
groups, we then investigated the association between tissue-
specific oxysterols and clinical symptoms in the schizophrenia
patients. First, we found that the elevated circulating level of
24OHC was associated with illness duration in the schizophrenic
patients (Table 2). This finding suggested two possibilities at
least. One is the increase of brain cholesterol metabolic might be
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correlated with disease progresses in schizophrenia, and another
is the deteriorations in peripheral cholesterol homeostasis with
the disease duration might be related to antipsychotic treatment
in schizophrenia patients (12, 85, 86). It is believed that most
cholesterol (70%) in the brain is stored in myelin and when
myelin or brain cell membrane is damaged, more 24OHC will
be formed from cholesterol (87, 88). Indeed, the breakdown of
myelin and white matter have been reported in the schizophrenia
patients with a long duration of illness (89), while others also
found impaired white matter at early stage of schizophrenia (90–
92). These reports support our first hypothesis that the elevated
24OHC may be related to the progressive pathophysiology,
such as abnormalities of myelin in schizophrenia. Interestingly
enough, similar changes of plasma 24OHC levels were also
reported in ASD and MDD which shared the similar myelin
or synaptic function defect as schizophrenia (28, 29, 93–96).
All together prompt a critical role of brain-specific originated
oxysterol in neuropathology of psychiatric disorders.

To see whether antipsychotic treatment might be involved
in the changes of oxysterol levels in schizophrenia patients, we
analyzed the association between oxysterols and treatments.
We found no significant differences in 27OHC levels in
schizophrenia patients who treated with and without
antipsychotics (Supplementary Figure 1, p = 0.905). Our
data suggest no significant impact of antipsychotics in plasma
27OHC levels. Similarly, we found no evidence of antipsychotics
effected on plasma 24OHC levels in schizophrenia patients
(Supplementary Figure 1, p= 0.995), which was consistent with
previous report [Chiappelli et al., (32)]. These results suggest
that the association between elevated circulating 24OHC levels
with illness duration in the schizophrenic patients is more
likely due to the neuropathological progress of the disease
and preferable feather of oxysterols as potential biomarker
in schizophrenia.

To examine whether oxysterols levels were associated with
psychiatric symptoms, we then investigated the correlation
between circulating 24OHC and 27OHC and positive and
negative symptoms scales (PANSS) scores in the schizophrenic
patients. First, we found that 24OHC levels positively correlated
with total PANSS and negative symptom scores (Tables 2,
3). As accumulating evidence revealed the negative symptoms
were related with disturbance in serotonin and glutamate
transmission (97–99), which can be regulated by 24OHC-
induced disequilibrium of cholesterol homeostasis in the brain
through lipid raft microdomains on the cell membranes
(100, 101), we hypothesize that the correlation of 24OHC
to negative symptoms in schizophrenia might be mediated
through serotonin signaling. In addition, 24OHC as an allosteric
regulator of NMDA receptor can increase the glutamatergic
signaling transmission which also aggravates the excitotoxic
injury in schizophrenia (20–22, 102). On the other hand,
our present study also showed an inverse correlation between
27OHC levels and positive symptom scores in schizophrenia
patients (Tables 2, 3). As positive symptoms were associated
with increased hyperdopaminergic activity in schizophrenia
(103, 104), 27OHC as a selective estrogen receptor modulator
can attenuate dopamine level by reducing the expression of

tyrosine hydroxylase (TH, the rate-limiting enzyme in dopamine
synthesis) via the inhibition of estrogen signaling (105–107).

However, whether oxysterols could be potential biomarkers
for schizophrenia still needs more advanced investigation. For
example, a recent study from Chiappelli et al. based a large
sample (226 schizophrenia patients and 204 controls) found no
significant difference in plasma 24OHC levels between patients
and controls (32). Furthermore, they also found no relation
between plasma 24OHC levels and whole-brain white matter
average fractional anisotropy or cortical thickness (32). While
the report from this study is not consistent with our hypothesis
that the elevation of 24OHC was associated with brain structure,
it is important to notice that the change of plasma 24OHC
levels in the psychiatric disease might have brain regional
specificity. For example, a postmortem study of suicide samples
(mainly from MDD patients) showed elevated 24OHC levels in
the prefrontal cortex (28), while another report indicated no
significant change in 24OHC levels was found in association
cortex (108). The lack of assessment of sub-brain structural
abnormalities in schizophrenia patients left open the question
whether the elevation of 24OHC was associated with regional
brain structure.

Several limitations were found in this study. First, 30%
schizophrenia patients were antipsychotic-treated individuals.
Although we found no effect of antipsychotic treatment on
27OHC levels (Supplementary Figure 1), we could not exclude
the possible confounding effect of medications on cognitive
function and clinical symptoms in our study. Second, the plasma
total cholesterol levels were not detected in this study. Third, the
lack of the follow-up of CHR participants left open the question
if plasma oxysterol levels changed with the progress and outcome
of schizophrenia.

Taken together, our study indicated the elevation of
circulating 24OHC levels and the reduction of 27OHC levels
in schizophrenia patients, and this alteration were related
to the severity of psychiatric symptoms in schizophrenia.
This suggested that plasma oxysterols might be the potential
biomarker in schizophrenia.
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