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ABSTRACT: Microbial biosensors sense and report exposures to
stimuli, thereby facilitating our understanding of environmental
processes. Successful design and deployment of biosensors hinge
on the persistence of the microbial host of the genetic circuit,
termed the chassis. However, model chassis organisms may persist
poorly in environmental conditions. In contrast, non-model
organisms persist better in environmental conditions but are
limited by other challenges, such as genetic intractability and part
unavailability. Here we identify ecological, metabolic, and genetic
constraints for chassis development and propose a conceptual
framework for the systematic selection of environmental biosensor
chassis. We identify key challenges with using current model
chassis and delineate major points of conflict in choosing the most suitable organisms as chassis for environmental biosensing. This
framework provides a way forward in the selection of biosensor chassis for environmental synthetic biology.
KEYWORDS: chassis, biosensor, environmental, synthetic biology, marine, soil

■ INTRODUCTION
The development of modular, controllable, and highly tunable
genetic circuits in synthetic biology has opened new avenues of
research in the environmental sciences.1 The ability to sense
and report microbial experiences allows for the design of
biosensors�genetic circuits responsive to small molecule
signals housed in a microbial host, or chassis. While the bulk
of our efforts as a community have been dedicated to the
design and optimization of biosensing circuits, far less attention
has been devoted to optimizing the choice of organisms to host
these circuits.2

Environmental biosensing poses unique restrictions on the
choice of a chassis organism. Natural environments are
spatially heterogeneous and temporally variable, and these
variations severely impact the survival of non-native species.3

Unlike bioproduction facilities or clinical laboratories, natural
environments host a robust pre-existing microbiome. Fur-
thermore, most terrestrial and marine environments have low
nutrient concentrations with occasional bursts of organic
matter that stimulate metabolic activity.4 Deploying biosensors
into the environment poses a significant risk due to the
potential for uncontrolled proliferation and gene transfer into
native species. These additional constraints make the choice of
a chassis for environmental biosensing more challenging than
for biosensing within bioproduction or clinical settings.

Much of the collective efforts of the synthetic biology
community have been invested in optimizing genetic circuits in

laboratory-domesticated Escherichia coli, with some tools being
expanded into Pseudomonas putida,5,6 Bacillus subtilis,7 and
Saccharomyces cerevisiae.2,8 In 2016, Adams2 suggested
developing universal toolboxes for a select set of chassis�
P. putida, B. subtilis, Geobacillus, cyanobacteria, and Dein-
ococcus�to widely deploy for diverse applications in synthetic
biology. We believe that advances over the past five years in
rapid identification of genetically tractable members of a
community,9−11 broad-host range plasmids for non-model
organisms,5,12,13 and high-throughput chassis engineering
techniques14,15 position the field to take a more ecologically
relevant, environment-centric approach for chassis selection.

Here, we advocate for selecting chassis that persist in the
environment of interest by considering physical, chemical, and
ecological factors that govern chassis persistence. We provide a
conceptual framework for the systematic selection of biosensor
chassis to host genetic circuits designed for environmental
biosensing. We describe factors�genetic, metabolic, and
ecological�that must be considered for a chassis organism
to be a biosensor in the environment. We discuss how specific
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chassis organisms meet these factors and outline constraints of
current model chassis organisms. Lastly, we describe our vision
for developing a range of chassis for synthetic biology.

■ ENVIRONMENTAL BIOSENSING POSES UNIQUE
DESIGN CONSTRAINTS ON MICROBIAL CHASSIS

Biosensing in the environment poses unique constraints on the
choice of a chassis organism. Biosensor persistence in the
environment depends on the evolutionary stability of the
sensing genetic circuit and the ability of the chassis organism to
survive. Additionally, these requirements must be met in a
specific ecological and metabolic context. Ecological factors in
many environments are still unknown and challenging to
characterize. Metabolic factors can also be unknown in most
cases and often require rigorous characterization ex situ.
Genetic tractability and access to curated genomic databases
are not assured for most species from the environment, thereby
narrowing down options for chassis organisms. These
challenges add significant complexity to choosing a chassis.
We posit here that, in environmental biosensing, choosing the
right chassis organism is just as important as choosing ideal
genetic elements, and a combination of safety, ecological,
metabolic, and genetic factors must guide this choice.
Constraint 1: Do No Harm. Biosensing in the environ-

ment demands stringent requirements for safety. At minimum,
this requirement eliminates the use of known pathogens as
chassis. As a first step, we recommend following USDA
restrictions on microorganisms that have been identified as
plant pathogens and can adversely impact agriculture.16 With
the advancement of synthetic biology for non-model
organisms, it will be essential to periodically revisit the
constraints and impacts of engineered organisms in the
environment.

The constraint of safety does not stop at the first step in
chassis selection�after determining the ideal chassis for the
environment of interest, safety must be revisited.1 In particular,
evolutionarily stable strategies for biocontainment must be
adopted to ensure the safe deployment of any biosensor chassis
in the environment. The NIH provides an escape frequency of
1 in 108 cells as a guideline to determine the success of
biocontainment strategies.17 Some successful biocontainment
strategies developed include toxin−antitoxin systems,18 auxo-
trophy,19 inducible killswitches,20−22 phage lytic systems,23

sequence entanglement,24 and xenobiology.25−31 For environ-
mental biosensor chassis, a multipronged approach combining
different biocontainment strategies is essential to ensure
stringent control on engineered organisms in the environ-
ment.32,33

Constraint 2: The Chassis Must Be Ecologically
Persistent. To sense in the environment, the chassis organism
must persist when exposed to biotic and abiotic stresses in the
niche of interest without altering its ecological niche in
deleterious ways. Organisms live in complex, multidimensional
social hierarchies that regulate their survival and function.34,35

As a consequence of this complexity, robust characterization of
the organism’s ecological niche is essential for its adoption as a
chassis. For example, validating existing syntrophies of a
potential chassis organism in complex communities is essential
to establish culture protocols and ensure stable strain
maintenance.36−38 We summarize some methods of character-
izing the ecological context of an organism below.

Interspecies microbial interactions are highly diverse and can
be stimulated by the organisms themselves, other organisms in

their surroundings, or their environment.39,40 These inter-
actions are complex and hierarchical, making them challenging
to emulate experimentally. However, the development of
simulation toolboxes to represent the microbial interactome in
silico has supported the prediction of interspecies interac-
tions.40−43 Advances in next-generation sequencing coupled
with genome-scale metabolic models and constraint-based
reconstruction and analysis present platforms for mining novel
microbe−microbe interactions and predicting emergent
interspecies interactions.44−46 Insights from these models,
while still predictive, can inform the ecological context of a
potential chassis organism.

Ultimately, characterizing potential chassis organisms in
their native ecological context will require experimental
emulation of complex microbiomes and their environmental
controls, which is a considerable challenge. Recreating the
physical matrix of the organism is challenging due to the
spatiotemporal heterogeneity and chemical complexity of
natural environments.1,47 Furthermore, recreating the biotic
matrix is a considerable challenge as the biotic diversity of the
environment of interest is unrepresentable ex situ due to
limitations in sampling and culturing.48,49 However, character-
izing the ecological persistence of an organism may not be as
insurmountable a challenge as replicating its native context.
Benchtop incubation studies with a sample of the environment
of interest offer a solution to characterizing the ecological
persistence of a potential chassis in situ. Such incubation
studies could include regular sampling and amplicon
sequencing, or nondestructive reporters such as inducible
volatiles and gas vesicles that act as indicators for chassis
survival.1,50 Such incubation experiments offer the closest
analog to the environment of interest without reducing
environmental complexity.
Constraint 3: The Chassis Must Be Metabolically

Persistent. When choosing a chassis to answer an environ-
mental question, we need to determine if the primary
metabolism of the microbe is favorable in the environment
of interest. For example, obligate aerobes may not persist in
soils or sediments with oxygen gradients. Investigations into
the primary metabolism of an organism can be performed
using genome-scale metabolic modeling (GEMs). GEMs offer
a method to interrogate an organism’s metabolic potential and
predict cellular growth on diverse substrates.45,51,52 Addition-
ally, if the microbe is predicted to host multiple functionally
similar metabolic pathways, it is imperative to determine the
physical conditions under which the microbe chooses one
pathway over another. For example, purple nonsulfur bacteria
from the marine column can be both autotrophs and
heterotrophs and can switch between their metabolisms on
the basis of their culture conditions.53,54 Understanding this
metabolic compartmentalization is imperative to formulating
culture media under different conditions.

Along with a potential chassis’ primary metabolic pathways,
we need to know if there are any secondary metabolites
produced that may either cross-react or interfere with the
measurements of our chosen reporter proteins. For example,
the production of a colored compound can interfere with
colorimetric assays or the production of a native autoinducer
can increase the noise in reporting assays. In addition,
characterizing an organism’s behavior under nutrient-deficient
conditions and stress resilience could be central to its adoption
as a biosensor chassis in natural environments.55
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Constraint 4: The Chassis Must Be Genetically
Tractable. To use a microbe as a chassis for genetic circuits,
we need access to its fully sequenced and well-annotated
genome. A well-annotated genome will help determine a
microbe’s most central pathways, its antibiotic resistance genes,
and its defense mechanisms, such as encoded restriction
enzymes.56−64 Using a fully sequenced genome and com-
parative genomics, we can identify putative functions that the
bacterium is associated with and characterize expected
phenotypes that can be useful in designing cellular screening
assays, such as response to an antibiotic or chemical.

Of equal importance is the need for robust DNA delivery
protocols. Robust conjugation and transformation protocols
allow the insertion of engineered genetic circuits into a chassis
organism. Broad-host range genetic plasmid replication origins
are the backbone for circuit engineering in non-model
bacteria.65 Additionally, methods for genomic integration of
synthetic elements are necessary, especially in cases where
reporter copy numbers need to be regulated or plasmid
maintenance is less likely. Recent work has exploited diverse
genetic tools to enable genomic integration in non-model
bacteria�recombinase-based and recombinase-CRISPR-hy-
brids,66−70 CRISPR-based,71,72 retroelement-based,73,74 trans-
posase-based,75,11,76 CRISPR-transposase hybrids,77 integrative
and conjugative elements,10,78 and the novel CRISPR RNA-
guided DNA integration.79−82 These tools greatly support the
engineering of non-model organisms, which results in novel
engineerable chassis for biosensing.

While DNA delivery into non-model bacteria is a broadly
discussed field of research,83−85 we have distinct suggestions
for plasmids that replicate in Gram-positive and Gram-negative
bacteria. After gram verification, plasmid origins can be
selected from Jain and Srivastava.65 These broad-host range
origins of replication are viable options, especially if these
plasmids are stably maintained in an evolutionarily similar
organism. Conjugative plasmid transfer has the maximum
likelihood of success in most organisms that are culturable in

similar conditions as an E. coli donor. Electroporation, heat
transformation, protoplast-mediated transformation, transduc-
tion, and induced natural competence have varied success rates
and are highly organism-dependent.83,85−87

In addition to genetic tractability and engineerability, some
aspects of cellular physiology and lifestyle must be charac-
terized to select a chassis. Differentiated lifestyles, biofilm
formation, spore formation, secretion systems, and membrane-
bound transporters can be important for the choice of an
organism as a chassis. Foley and Shuler88 and Kim et al.89

discuss the importance of a robust cell membrane. Character-
istics such as surface colonization and hydrophobicity may be
essential for biosensing in complex, rapidly fluctuating
environments.90

■ CHALLENGES WITH CURRENT CHASSIS
ORGANISMS

Escherichia coli has been the preferred chassis for synthetic
biology as it offers desirable features that are essential for
microbial chassis�aside from the ease of genetic manipu-
lation, it cannot sporulate, making it easy to decontaminate
from a surface with simple disinfection/sterilization protocols.
Lab strains of E. coli have a doubling time of 20−30 min in
aerobic rich media, which allows for rapid and facile
engineering in lab time scales. E. coli has a simple cell
structure with a fully sequenced chromosome and compre-
hensive metabolic databases that can better inform choices in
circuit and chassis design. All these features make E. coli the
standard proof-of-concept chassis organism.

Despite these salient features, E. coli has severe restrictions
as a chassis for environmental synthetic biology. Environments
are physicochemically complex with gradients in pressure,
salinity, and pH that can impact chassis persistence. In such
nonideal and uncontrollable conditions, the persistence of lab
strains of E. coli is less likely. Furthermore, tools developed in
E. coli are not easily portable into other potential chassis.91,92

As Adams2 noted, the adoption of different chassis organisms

Figure 1. The journey from native organism to biosensor chassis. We recommend isolating organisms native to the ecosystems and environments
of interest. After eliminating agricultural pathogens, a list of safe organisms will remain that can be narrowed down further based on our framework.
This process results in a list of candidate chassis that, after sufficient biocontainment, can be tested in lab simulations of natural environments and
evaluated for performance and persistence.
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for biosensor circuits is not as trivial as transferring circuits
optimized in E. coli into the potential chassis. Expression and
regulation of genetic circuits is a highly host-specific process,
so much so that even with synthetic regulatory elements, we
observe a difference in expression between different
microbes.91

We do not recommend a minimalistic approach to chassis
selection for biosensing applications in the environment. To
expand the library of chassis organisms, Pseudomonas putida
(soil), Bacillus subtilis (soil), and Geobacillus (hot springs) have
been considered in the second generation of chassis
organisms.2 These organisms are viable chassis candidates
due to existing synthetic biology toolkits, demonstrated genetic
tractability, and reasonable growth and engineering con-
ditions.93,7,94 While these traits are desirable in a potential
chassis organism, each microbe listed above suits a defined
niche of applications and is severely restricted outside this
niche without extensive and laborious genetic engineering.
Thus, we envision additional chassis need to be developed for
environmental biosensing.

■ A FRAMEWORK FOR CHOOSING
ENVIRONMENTAL BIOSENSOR CHASSIS

Since each environment poses distinct constraints on the
chassis, the ideal place to begin is the environmental problem
of interest. Once the environmental context has been
established, we can compile a list of native organisms from
the relevant ecological niche. Next, we must eliminate
pathogenic organisms from this list. Subsequently, using our
constraints as a guide, we can shortlist some organisms that are
amenable to engineering for biosensing. Lastly, shortlisted
organisms can be tested in the laboratory using simulated
environmental conditions. We illustrate our framework in
Figure 1.

We recommend choosing chassis organisms that are habitat
specialists in the environment of interest.89 We make this
recommendation considering the trade-off between challenges
associated with engineering new tools in specialist organisms
compared to challenges in engineering generalist organisms to
survive in specific environmental conditions. Habitat specialists
are well adapted to existing conditions in an environment.
Specialists also fulfill a niche and are effective at competing
with organisms in their niche. Since specialists are highly
selective of their environment and growth substrates, choosing
them may minimize the need for chassis engineering for
survival in the environment of interest. For example, a
bacterium that is known to colonize mineral-rich surfaces (a

habitat specialist) may have specific adaptations to tolerate
mineral toxicity and can be used to address questions on the
mineral surface but may not have a genetic toolbox. However,
we anticipate that a bacterium from bulk soil (a habitat
generalist) with a genetic toolbox would have to be engineered
further to tolerate high mineral concentrations. This process
can be extremely challenging as the mechanisms for mineral
tolerance are complex, typically understudied, and require
extensive testing after multiple genetic modifications to the
generalist organism.

As an example of how to use this framework, we can
consider the case of sensing volatile organic compounds in
response to drying−wetting cycles in the rhizosphere.
Hydrating a dry soil stimulates metabolic activity in the
rhizosphere, which releases volatiles that are highly transient
and challenging to measure.95,96 These volatiles play central
roles in interspecies communication and community structur-
ing, thereby meriting study using nondestructive, unbiased
detection methods.96,97 Additionally, volatile concentrations
are impacted by the soil matrix, meaning that analytically
detected concentrations can be significantly different from
bioavailable concentrations.98 Biosensors offer a viable
alternative to measuring such transient molecules in situ.1,97

To thrive in the rhizosphere and measure transient signals, we
need a chassis organism that is native to the rhizosphere. After
eliminating environmental pathogens, we have two distinct
ways to choose native organisms as chassis�either we select a
host-specific plant growth promoting rhizobacterium (PGPR
plu.), such as Acinetobacter baylyi (habitat specialist), or a
relatively broad nonsymbiotic rhizosphere colonizer (habitat
generalist), such as Azospirillum brasilense. In this case, both
these species have sequenced genomes, phenotypic and
metabolic characterization, and promising ecological roles
that can be harvested for biosensing.99,100 Acinetobacter baylyi
ADP-1 has been engineered with synthetic biology tools and
has been a species of interest due to its nutritional diversity and
natural competence.99 Azospirillum brasilense has a demon-
strated ability to retain plasmids of varying origins and is
widely studied.100 Both these organisms are feasible chassis for
rhizosphere volatile sensing.

As shortlisting one or a few chassis suitable for the
environmental problem of interest may not always be feasible,
an alternative approach is to explore non-native organisms that
may survive the stringent conditions of the environment of
interest. For example, soil and marine sediment environments
often experience anaerobic conditions. Since the human
intestinal tract is also anaerobic, we could consider obligate

Figure 2. Prioritizing chassis constraints. It is challenging to resolve all our constraints in the selection of a chassis organism. In such cases,
prioritizing some constraints over others can be a useful way forward. We recommend the above priority axis as a guide to negotiate the various
constraints in the choice of a chassis organism.
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anaerobes from this environment, such as Bacteroides
thetaiotaomicron, as a potential chassis. This would require
additional testing in the laboratory, as we do not know how
Bacteroides thetaiotaomicron will affect ecological processes in
the niche of interest, but it is worth considering as this
organism has well-characterized synthetic genetic elements
available for use.101

Significant knowledge gaps must be addressed before
considering our recommendations. The journey of an organism
from a natural microbial isolate to a widely adopted synthetic
biology chassis requires robust bodies of work in genome
sequencing and annotation, metabolic profiling and systems
biology, and ecological characterization supported by exper-
imental evidence, as discussed extensively by Liu and
Deutschbauer,102 Calero and Nikel,103 and Venturelli et al.3

Rigorous, actively curated genomic and metabolic databases,
such as BioCyc (specifically EcoCyc and BSubCyc),104,105

KEGG,106 and modelSEED,107 combined with standardized,
community-level efforts in engineering multiple bacteria offer a
targeted approach to adopting novel bacterial chassis with
desirable phenotypes and diverse environmental niches.108

However, these knowledge gaps are challenging to address
each time a novel chassis is being considered for adoption. In
such cases, we recommend consulting Figure 2, in which we
parse our constraints into subconstraints and rank them in a
qualitative priority order.

The rapid development of standardized, functionally
characterized, and modular species-specific and broad host
range toolkits will facilitate the adoption of novel chassis in
environmental biosensing. Efforts in developing species-
specific toolkits for Vibrio natriegens, Pseudomonas putida, etc.
can be replicated in non-model novel chassis organisms with
some modifications and prior characterization.5,109 Broad host
range tools help port synthetic biology parts into non-model
organisms without known libraries.11,110 Orthogonal tran-
scription/translation tools can be a method to decouple circuit
function from host regulatory machinery, especially when there
is strong selection against synthetic circuits that compete for
native replication resources.111−113 Tools like UBER have been
developed with robust broad-host range functionality.114,115

However, more coordinated, community-wide efforts to
develop toolkits for genome editing and stable cross-species
expression in non-model bacteria will greatly accelerate
progress in environmental biosensing.

In summary, we have outlined constraints for the systematic
selection of biosensor chassis for environmental synthetic
biology. We have articulated a conceptual framework to make
this selection based on constraints that must be addressed. We
offer some recommendations that can simplify the choice of a
chassis organism and describe our vision for a new generation
of biosensor chassis. With the systematic, standardized, and
rapid development of robust tools for diverse bacteria, we can
amplify the impact of synthetic biology tools in the Earth and
environmental sciences to address novel questions in the face
of a changing planet.
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