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ABSTRACT
Mouse models are useful tool for carcinogenic study. They will greatly enrich 

the understanding of pathogenesis and molecular mechanisms for gastric cancer. 
However, only few of mice could develop gastric cancer spontaneously. With the 
development and improvement of gene transfer technology, investigators created a 
variety of transgenic and knockout/knockin mouse models of gastric cancer, such 
as INS-GAS mice and gastrin knockout mice. Combined with helicobacter infection 
and carcinogens treatment, these transgenic/knockout/knockin mice developed 
precancerous or cancerous lesions, which are proper for gene function study or 
experimental therapy. Here we review the progression of genetically engineered 
mouse models on gastric cancer research, and emphasize the effects of chemical 
carcinogens or infectious factors on carcinogenesis of genetically modified mouse. 
We also emphasize the histological examination on mouse stomach. We expect to 
provide researchers with some inspirations on this field.

INTRODUCTION

Gastric cancer is the third leading cause of cancer 
death, and the fifth most common malignancy in the 
world [1]. The underlying pathogenesis of gastric 
cancer still remains unclear. It is important to develop 
an authentic animal model to imitate process of human 
gastric carcinogenesis. Genomic sequencing studies 
demonstrated that the protein-coding genes of both 
mice and humans shown high similarity [2]. Since mice 
disclosed the superiority on short inter-generation interval, 
high reproducibility as well as similar genetic background 
and formula experimental protocols, compared to other 
species, they have attracted considerable attentions as 
useful models to uncover the mechanisms of diseases 
and cancer, and to use for preventive and therapeutic 
interventions [3]. 

However, mice rarely develop gastric cancer 
spontaneously. To get a cancerous phenotype, researchers 
must feed them with helicobacter or chemical 
carcinogens. Along with the development of genomic 
manipulation, peoples could quickly create genetically 
engineered mice. The appearance of gene modified 
mouse models enabled us to explore the association of 
unique genotype with the specialized phenotypes. The 
creation of genetically engineered mice is mainly based 

on gene transfer technologies. In early stage, researchers 
studied the association of disease with mouse genetics by 
means of spontaneous or induced mutation models [4-6]. 
The technology of gene transfer is also called ‘‘reverse 
genetic’’ approach. In this approach, an identified gene 
which involved in human disease is selected as a target of 
gene manipulation in mice [3]. This approach is proper for 
uncovering the relevance of unique cell types or genetic 
pathways in pathogenesis of some diseases. The mouse 
with exogenous genome sequences is called transgenic 
mice, and the mouse with lost or altered endogenous 
gene is called knockout/knockin mouse. If the expression 
of targeted gene is controlled in specific time or organs/
cells, we call it conditional transgenic or knockout/
knockin mice. Generally, transgenic mouse was created 
to investigate the consequences of gene over-expression, 
and the knockout/knockin mouse was used to study the 
impacts of gene low-expression or mutation. 

CONSTRUCTION OF GENETICALLY 
ENGINEERED MICE

Typically, there are two basic approaches to produce 
genetically engineered mice, one is carried out through 
microinjection of DNA into the pronucleus of zygotes, 
the other is based on manipulation at embryonic stem 
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cells. Generation of traditional transgenic mice depends 
on pronuclear microinjection of DNA, while generation 
of traditional knockout mice depends on embryonic 
stem cells and homologous recombination techniques, 
which get a higher success compared to other strategies. 
However, the complete process requires more than a year 
to generate a genetically modified mouse. The technology 
of site-specific nucleases provided a new choice for rapid 
generation of transgenic models, including zinc finger 
nucleases (ZFNs), transcription activator-like effector 
nucleases (TALENs), and clustered regularly interspaced 
short palindromic repeat (CRISPR) systems. Compared 
to ZFNs and TALENs, CRISPR-mediated genome 
engineering is easy and efficient. Scientists could directly 
inject CRISPR systems into zygotes and haploid ES cells 
instead of ES cells to shorten the breeding time. In this 
paper, we introduce the generation of transgenic mice, ES 
cells targeted knockout mice and the latest CRISPR-Cas 
knockout mice briefly.

Transgenic mice are strains of mice, which express 
exogenous genes or DNA sequences. One of the most 
commonly used methods to create transgenic mice is 
DNA pronucleus microinjection, by which, exogenous 
DNA is injected into one of the fertilized pronucleus eggs. 
Exogenous DNA will be integrated into the genome of 
mouse fertilized eggs and pass on to offsprings stably. 
Fertilized eggs usually come from C57BL/6 mice or 
FVB mice. The former stain is the source of published 
mouse genome sequencing. The latter stain has the 
advantage of easy pronucleus injection due to its big and 
clear pronucleus. By different DNA sequences injection, 
researchers will get transgenic mice with expression of 
human genes, microRNAs, small interfering RNAs or 
BAC/YAC gene sequences. 

Gene target mice are divided into complete 
knockout mice, conditional knockout mice and gene 
knockin mice. Complete knockout mice are mice with 
deletion of target gene in whole tissues and cells of body. 
These mice can be used to study the function of target 
gene in the physiology and pathology of the whole body. 
Since complete knockout mice disclosed higher embryonic 
lethal rate, the utility of complete knockout mice is 
limited. To avoid the problem of embryonic death, another 
kind of knockout mice, conditional or inducible knockout 
mice are developed. These mice are generated using the 
LoxP-Cre system. Two LoxP loci are inserted into one 
or several important exons of targeted gene to produce 
floxed mice. These mice express targeted gene normally 
when its genotype is wild type. After crossing floxed 
mice with Cre mice, the floxed exons will be deleted, and 
resulted in knockout of targeted gene. The exogenous Cre 
expression is depended on control of proper promoter in 
Cre mice. That is, different promoters drive Cre expressed 
in different tissues and cells. For example, Onoyama 
and coworkers generated mice with liver-specific null 
mutations of Fbxw7 by means of two different Cre-loxP 
systems (Mx1-Cre and Alb-Cre) [7]. Cre expression occurs 
in Alb-Cre mice embryos and maintains lifelong, while 
Mx1 gene promoter was activated only after injection of 
poly(I)-poly(C) into mice. Up-to-date, there are several 
kinds of Cre mice expressing CRE recombinase in 
stomach, including Atp4b-Cre (express CRE in parietal 
cells), Capn8-Cre (express CRE in glandular pit cells), 
Pgc-Cre (express CRE in chief cells), K19-Cre (express 
CRE in glandular isthmus cells), Villin-Cre (express CRE 
in glandular progenitor cells). The details of Cre mice 
and floxed mice can be viewed in MGI website (http://
www.informatics.jax.org/). The following flowchart 

Table 1: The targeted genes are conditionally knocked out in stomach as well as other organs on mouse models*
Model name Stomach Other organs References

Foxa3-Cre Glandular stomach cells Liver, pancreas, intestine, ovary, testis, 
heart and adipose tissue [10-14]

Capn8-Cre Gastric pit cells Liver and skin [15]

Pdx1-Cre Endocrine cells of gastric antrum (such as 
gastrin, somatostatin and serotonin) 

Endocrine cells of duodenum and 
pancreatic islet cells [16-18]

Villin-Cre Gastric progenitor cells Progenitor cells of intestine and kidney 
proximal tubules [13, 17-19]

Edn2-iCre Stomach cells Cells of periovulatory ovary and intestine [20]
Tff1-CreERT2 Epithelium of the glandular stomach ND [21]
Atp4b-Cre Parietal cell N [22]

Lgr5-CreERT2 Base cells of glands in gastric pylorus and 
corpus region Base cells of intestine and hair follicle [23]

Tff2-CreERT2 Parietal cell, mucous neck cell and chief cells ND [24]
H(+), K(+)-
ATPase 
β-subunit 
promoter

Parietal cell N [25]

*N, No; ND, Not detectable
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is an example of creation of Shh (Sonic Hedgehog) 
conditional knockout mice in gastric parietal cells (Figure 
1). The method of genotyping detection is summarized in 
(Figure 2) [8]. Based on literature, the mouse models with 
conditionally targeted gene knocked out at stomach are 
listed in Table 1. 

CRISPR-Cas is a new technology that has emerged 
recently, and obtained widespread attention. In CRISPR-
Cas system, a sequence-specific guide RNA is used to 
guide nuclease to create a nick on targeted location. A 
new sequence is inserted by homologous recombination. 
CRPSPR-Cas system consists of clustered regularly 
interspaced palindromic repeats (CRISPR) and the 
CRISPR-associated proteins (Cas), which have the 
structure of nucleic acid enzyme activity. The CRISPR-
Cas was divided into several subtypes. Each CRISPR-Cas 
has its unique features in biochemistry and molecular 
genetics. CRISPR-Cas9 is widely used in generation of 
genetically engineered mouse [9].

PATHOGENIC STUDY OF TRANSGENIC/
KNOCKOUT/KNOCKIN MICE

INS-GAS mice

Gastrin is a crucial hormone produced by antrum 
G cells of gastric mucosa, and responsible for gastric 
acid secretion and oxyntic cells differentiation. Insulin-
gastrin (INS-GAS, FVB/N background) transgenic mice 
were originally created to examine the possible role of 
gastrin in regulating islet differentiation. The INS-GAS 
transgenic mouse contains two exons of the human 
gastrin gene, which encode progastrin precursor under 
control of insulin promoter [26]. INS-GAS mice have 
also been used to investigate the effect of gastrin on 
gastric cancer development [27]. INS-GAS mice showed 
increased maximal gastric acid secretion and increased 
parietal cell number in early stage, but gradually changed 

Figure 1: The flowchart of creating conditional knockout mice with specific ablation of Shh in gastric parietal cells. 
A. Crossing high degree chimeric founders with C57BL/ 6J mice. Targeted ES cells are transferred to the blastocoel cavities of 3.5 day 
blastocyst embryos, and then, the embryos are transferred to surrogate mothers to complete gestation. The offspring are chimeric mice with 
two sets of genome. The chimeric degree is judged by coat color. Since the ES cells are come from black mice, while blastocyst embryos are 
from white mice, so, the greater the share of black, the higher degree of chimeric. B. Deletion of selected gene Neo. The FLP can recognize 
FRT sequence and remove the fragment between two FRT. Crossing the ES cell-derived founder with FLP mice to obtain F1 heterozygous 
mice (Shhfl/+) without Neo gene. Further crossing F1 heterozygous mouse to generate F2 homozygous (Shhfl/fl) mice, which carry loxP-
Shh-loxP in chromosomes. C. Creation of conditional knockout of Shh in gastric parietal cells. Since CRE recombinase is specifically 
expressed under the control of Atp4b promoter in gastric parietal cells, researchers should cross Shhfl/fl mice with Atp4b-Cre mice, and get 
the conditional knockout mice with exon2 deletion of Shh gene in gastric parietal cells (Shhfl/fl; Atp4b-Cre). In Shh conditional knockout 
mice, Shh is not expressed in gastric parietal cells, but normally expressed in other cells. 



Oncotarget3699www.impactjournals.com/oncotarget

into hypochlorhydria and decreased parietal cell number 
later (five months later). On the age of 20 months, INS-
GAS mice exhibited metaplasia, dysplasia and gastric 
cancer. H felis infection could accelerate (≤8 months) 
these lesions [28]. The tumorigenesis of INS-GAS mice 
revealed differences in strain and gender. The mice with 
FVB/N background is more susceptible to gastric cancer, 
while C57/BL6 background mice is not susceptible to 
gastric cancer, and only develop hyperplasia and low-
grade dysplasia [29]. In addition, male mouse is more 
susceptible to gastric cancer compared to female mouse 
[30]. INS-GAS mouse with helicobacter infection has been 
widely used as a model of intestinal type gastric cancer. 
Scientists use this mouse model to study the change of 
gene expression induced by H pylori infection at the high 
gastrin status and found a group of differential expressed 
genes [31]. Lofgren compared INS-GAS mice raised in 
germ-free (GF) and SPF with intestinal flora conditions 
and found that intestinal flora promoted gastric lesions 
[32]. Lertpiriyapong compared INS-GAS mice raised in 
germ-free, altered Schaedler’s flora and intestinal flora 
conditions, and then infected by H Pylori. They found 
that mice at altered Schaedler’s flora and intestinal flora 
conditions could develop severer gastric lesions. They 
believe that colonization efficiency of commensals 
is important [33]. Whary infect INS-GAS mice with 
Heligmosomoidespolygyrus and H Pylori, and found that 
coinfection of Heligmosomoidespolygyrus with H Pylori 
could decrease H Pylori -induced atrophy and dysplasia 
[34]. 

Gastrin knockout mice

Gastrin knockout mice (C57BL/6 strain, GAS-/-

) were originally generated by Koh and Friis separately 
through gene targeting [35, 36]. Mutant mice were viable 
and fertile, but secretion of gastric acid was abolished, 
leading to a marked change in gastric architecture, with 
decreased parietal cell number and enterochromaffin-like 
(ECL) cells, and increased mucous neck cells. There were 
no differences in the proliferation labeling index of the 
stomach between gastrin-deficient mice and wild type 
littermates. Some researchers found that GAS-/-mice of 
129/Sv strain kept in nonbarrier rooms led to bacterial 
overgrowth and elevated numbers of parietal cell, G cell 
and inflammation [37]. At the age of 12 months, these mice 
developed stomach tumors [38]. GAS-/-mice are proper 
for studying biological functions of gastrin-regulated 
gene (Tff1 and Tff2) in maintenance and repair of gastric 
mucosa [39, 40]. INS-GAS transgenic mice and GAS 
knockout mice are often used together in one research 
to study the role of gastrin in gastric carcinogenesis, but 
the results were not always concordant. The different 
results may be due to the different backgrounds of mice 
strain and different location on stomach, for example the 
corpus or antrum. It seemed that gastrin promote cancer 
development in corpus but not antrum [29].

Tff1 knockout mice

 Trefoil factor 1 (TFF1, formerly known as 
pS2) is a tumor suppressor gene that encodes a peptide 
belonging to the trefoil factor family. TFF1 expression is 

Figure 2: Schematic figure of genotyping for evaluating conditional knockout mice (Shhfl/fl; Atp4b-Cre). Evaluation of 
mouse genotyping is based on polymerase chain reaction (PCR). Primers are designed to modified Shh gene and Cre recombinase. The size 
of PCR product of floxed Shh is 251bp, while the wild type is 217bp. Heterozygous genotype show two products of both 251bp and 217bp. 
The size of Cre product is located at 150bp. The samples DNA from mouse 1, 2 and 3 are Cre positive. Mouse 1 represents homozygous 
knockout mouse (KO). Mouse 2 is heterozygous genotype (HET), and mouse 3, 4, 5 and 6 are wild type mice (WT). 
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frequently lost in gastric carcinomas [41]. As early as in 
1996, Lefebvre and colleagues generated Tff1 knockout 
(Tff1-/-) mice to explore biological function of this gene 
[42]. Homozygous mutant mice of Tff1 (Tff1-/-) develop 
antropyloric adenoma, and even multifocal carcinomas, 
consistent with increased inflammatory scores [43]. They 
identified NF-κB to be a network hub that is activated in 
Tff1 knockout mice through mRNA microarray analysis 
on antral samples from Tff1-/- mice and wild type mice. 
Another group reported MNU-driven tumorigenesis on 
Tff1+/- mice. They found increased antral proliferation and 
progenitor cell number at age of 18 weeks, and increased 
malignant tumors in heterozygous mice (Tff1+/-), compared 
to wild type mice. In addition, they found that mRNA 
expression of Tff1 was almost lost in heterozygous mice 
(Tff1+/-) [44]. The Tff1+/- mice are applied for studies on 
gene heterozygocity and transcript regulation. 

IL-1β transgenic mice

Polymorphisms of interleukin-1beta (IL-1β) 
involved in enhancing production of IL-1β are associated 
with an increase risk for both hypochlorhydria induced by 
H. pylori and gastric cancer [45]. Tu et al. generated IL-1β 
transgenic mice by using an H/K-ATPase/hIL-β transgenic 
mouse that express human IL-1β specifically in stomach. 
The IL-1β transgenic mice spontaneously develop 
chronic gastritis, metaplasia and high-grade dysplasia/
carcinoma. In the setting of H felis infection, these mice 
show accelerated development of gastric inflammation 
and carcinoma compared to control mice [46]. In human 
beings, IL-1β synergizes with H pylori and increases 
the risk of gastric cancer. Moreover, overexpression of 
IL-1β in transgenic mice could recruit the accumulation 
of myeloid-derived suppressor cells (MDSCs) through 
NF-κB signal pathway. MDSCs are important for 
carcinogenesis in the early stage of gastric carcinogenesis. 
IL-1β transgenic mouse is widely used for testing the 
efficacy of anti- IL-1β therapies in cancer prevention and 
function of MDSCs in tumor microenvironment [47]. IL-
1β knockout mice were also created and treated with H 
pylori. These mice exhibited decreased recruitment of 
macrophages and neutrophils by H pylori infection and 
reduced activation of NF-kB [48].

K-ras transgenic/knockin mice

K-ras gene mutations have been found in about 
~6% or ~18% of diffuse type or intestinal type of gastric 
cancer, respectively [49]. The effect of RAS protein is 
complex with either positive or negative effects on cell 
growth, differentiation and death [50]. Brembeck and 
coworkers created K-ras transgenic mice under control of 
cytokeratin19 (K19) promoter [51]. K19 was expressed in 
an epithelial-specific pattern, restricted to ductal epithelial 

cells in the pancreas, surface colonocytes, small intestinal 
villi and gastric isthmus cells. Despite the findings in 
pancreas, K-ras transgenic mice exhibited concomitant 
parietal cell decrease and mucous neck cell hyperplasia 
(3-6 months age) [52]. The CK19CreERT; LSL-KrasG12D 
mouse is a kind of K-ras mutation (G12D) mouse, 
which showed metaplasia, foveolar hyperplasia, reduced 
presence of parietal cells and a deeper proliferative zone 
in the fundus of stomach at the age of 4-6 months after 
tamoxifen administration [53]. Matkar and colleagues 
found that systemic activation of K-ras leads to rapid 
changes in gastric cellular homeostasis and causes 
hyperplasia of the forestomach and the glandular stomach, 
depletion of parietal cells, accompanied by upregulation 
of inflammatory response factor (COX-2), stem cell 
marker (Dcamkl1, CD44) and activated MAPK pathway. 
Therefore, systemic K-rasG12D activated mice function as 
a tool for studying the early molecular events of gastric 
carcinogenesis [54].

Apc and Wnt1 transgenic mice

Adenomatous polyposis coli (APC) is a key tumor 
suppressor gene that acts as an antagonist of Wnt signaling 
pathway by maintaining cytoplasmic levels of β-catenin 
[55]. About 88% patients with familial adenomatous 
polyposis caused by APC germline mutations develop to 
fundic gland polyps, while fundic glandular polyp may 
transform to adenocarcinoma [56]. However, APC gene 
mutation is frequently found in gastric adenomas, but 
rarely in gastric cancer. For instance, one Apc mutation 
(Apc1638) led to gastric dysplasia and polyposis in 
antrum and pyloric junction [57, 58]. A transgenic 
mouse carrying Apc gene mutations infected by H felis 
developed less gastritis, less epithelial proliferation and 
inflammation, compared to wild type mice. It means 
the immune and inflammatory response of Apc gene 
mutations were not serious [59]. To explore Wnt pathway 
on gastric carcinogenesis, Oshima and coworkers 
constructed K19-Wnt1 transgenic mice, which express 
Wnt1 in gastric mucosa. They crossed K19-Wnt1 mice 
with K19-C2mE transgenic mice to investigate the role 
of Wnt and PGE2 on gastric carcinogenesis [60]. The 
phenotype of K19-C2mE mice is overexpressed COX-2 
and microsomal prostaglandin E synthase-1 (mPGES-1) 
in gastric epithelium, resulted in increased metaplasia, 
hyperplasia and tumors in the glandular stomach with 
heavy macrophage infiltrations [61]. In addition, Akaboshi 
and coworkers used Hmga1-knockin mice crossed with 
K19-Wnt/C2mE mice and proved that Hmga1 is involved 
in gastric carcinogenesis via Wnt/β-catenin pathway [62]. 
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p53 knockout mice

Mutations of p53 gene constitute one of the most 
frequent molecular events in human cancers. As we know, 
p53 knockout mice are highly susceptible to spontaneous 
tumorigenesis at age of 6 months [63, 64]. Since 
homozygous knockout animals could not be maintained 
long term, most of experiments of p53 knockout mice 
are based on heterozygous knockout mice (p53+/-) rather 
than homozygous knockout mice (p53-/-). The incidence 
of invasive adenocarcinomas in the stomach of p53+/-

mice was significantly higher than that in WT mice 
[65]. Infection of H felis for both WT and p53+/-mice 
was disclosed active chronic inflammation and marked 
mucosal hyperplasia at the age of 6 months [66]. There is 
a synergistic action between infection with H felis and p53 
deficiency in the accumulation of mutations in stomach 
[67]. However, another research revealed that H pylori 
(24w after infection) did not result in significant difference 
on the level of gastric epithelial apoptosis and proliferation 
between p53+/- mice and WT mice [68]. In order to 
explore the synergistic effect of two or more different 
genes, Shimada and coworkers created double conditional 
knockout (DCKO) mice by crossing Atp4b-Cre mice 
with Cdh1fl/fl and p53fl/f lmice, to examine the synergistic 
effect of E-cadherin loss and p53 loss on stomach. The 
DCKO mice exhibited phenotypes of loss of cell polarity 
for parietal cells and proton pump-negative atypical foci, 
ultimately progressed to intramucosal cancer (9 months) 
and invasive cancer (12 months) [69]. Moreover, Park and 
coworkers crossed Pdx-1-Cre mice with Smad4fl/fl p53fl/

flCdh1fl/+ and found that E-cadherin loss and Smad4 loss 
cooperate with p53 loss could promote the development 
of gastric cancer [17, 18].

Klf4 knockout mice

The Kruppel-like factor 4 (KLF4) is a zinc finger 
transcription factor that regulate numerous biological 
processes including proliferation, differentiation, 
development and apoptosis. KLF4 expression is found 
primarily in post mitotic phase and terminal-differentiated 
epithelial cells such as skin, lungs, and gastrointestinal 
tract [70,71]. Loss of KLF4 expression was significantly 
associated with poor survival in gastric cancer [72]. Li 
and coworkers created Klf4 conditional knockout mouse 
models by crossing Villin-cre transgenic mice and Klf4fl/

fl mice [13]. Villin is an actin-bundling protein located 
in the apical brush border of absorptive epithelium of 
intestine, as well as gastric progenitor cell (GPC). Villin 
positive GPCs are quiescent in unstimulated stomach with 
multilineage potential. By inflammation stimulation, these 
cells could undergo symmetric or asymmetric division and 
gradually replace pyloric glands [73]. The antrum mucosa 
cells revealed disturbed Klf4 expression in Klf4 knockout 
mice. At the age of 35 to 50 weeks, these Villin-cre-Klf4 
knockout mice developed preneoplasia in antrum, and 
29% of them progressed to gastric cancer at 80 weeks. 
Chemical reagent MNU could accelerate tumor formation 
at 35 to 50 weeks of age. 

HISTOLOGICAL FEATURES APPEARED 
ON MOUSE STOMACH

In order to evaluate experimental effects, researchers 
need to observe gastric histology on different stages by 
necropsy. The adult mouse′s stomach is located in the 
left cranial part of the abdominal cavity. The forestomach 
forms the left half, the glandular stomach forms the right 
half of the stomach. The wall has three layers: the mucosa 
with submucosa, the muscularis, and the serosa. In the 

Figure 3: The schematic figure of dissecting method for mouse stomach. A. The first incision is cut along the greater curvature 
from esophagus through proximal duodenum .B. After opening the stomach, the stomach is laid flat on a cutting board. C. Two or three 
linear strips are cut from the lesser curvature including squamocolumnar junction, corpus, antrum and pyloru and proximal duodenum.
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Table 2: Genetically engineered mouse models and observed lesions*

Model name Time\
Lesion Metaplasia Hyperplasia Dysplasia Carcinoma Invasion Metastasis Cancer 

type References 

Tff1-/- 12 months ND Y Y Y Y N / [78-81]

gp130757F/F 3 months Y Y Y Y Y N Intestinal [21, 74, 82, 
83]

Cdx2 transgenic 12 weeks Y Y N Y N N Intestinal [84-87]

INS-GAS 20 months Y ND Y Y Y N Intestinal [28, 30, 88-
90]

ACT-GAS 20 months ND Y ND Y N N N [90, 91]

Gastrin-/- 12 months Y Y Y Y N N N [38, 92, 93]

Atp4a-/- 12 months Y Y N N N N N [94-96]

NHE2-/- 3 months ND Y N N N N N [97]

NHE4-/- 9 weeks N N N N N N N [98]

Kvlqt1-/- 3 months ND Y N N N N N [99]

H2R-/- 16 weeks N Y N N N N N [100-102]

HDC-/- 12 months Y Y N N N N N [103]

IQGAP1-/- 15 months ND Y Y N N N N [104]

Tgf β1-/- 20 days Y Y N N N N N [105]

Smad4-/- 9 months ND Y Y Y Y N / [18, 106-108]

Runx3-/- 8 months ND Y Y N N N N [109, 110]

Apc +/- 20 weeks ND Y Y Y Y N / [111]

MTH1-/- 18 months ND Y Y Y N N Intestinal [112]
K19-C2mE 
transgenic 45 weeks Y Y Y Y N N / [63, 64, 113]

Tsp-/- 3 weeks Y Y N N N N N [114]

Tgf α transgenic 6 weeks ND Y Y N N N / [115-118]

AhR transgenic 3 months Y Y Y Y Y N Intestinal [119, 120]

Klf4 -/- 35 weeks ND Y Y Y N N / [13, 14]

p27-/- 60 weeks Y Y Y Y N N Intestinal [121]

Car9-/- 4 weeks ND Y N N N N N [122, 123]

CEA SV40 
transgenic 37 days ND ND Y Y Y N Intestinal [124,125]

H+/K+-ATPase 
β subunit SV40 
transgenic

12 months N N Y Y N N / [126, 127]

H+/K+-ATPase 
β subunit-/- 20 months ND ND Y Y Y N / [128]

Shh-/- 18.5 day 
embryo Y Y N N N N / [129]

Occludin-/- 10 months N N Y N N N / [130]

ClC2-/-
Cdh1-/-p53-/-  

9 weeks
6 months

N
Y

N
Y

Y
Y

N
Y

N
Y

N
Y

/
Diffuse

[131]
[17, 69]

*Y, Yes; N, No; ND, Not detectable
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forestomach, the mucosa is lined by stratified squamous 
epithelium covered by cornified tissue layer. It borders 
on that of the glandular stomach by a mucosal fold 
called the limiting ridge. The mucosa of the glandular 
stomach is lined by single columnar epithelium forming 
deep foveolae. The main part of the glandular stomach is 
fundic glands containing surface mucous cells in the pit 
zone, granular eosinophilic parietal cells (oxyntic cells) 
secreting hydrochloric acid and mucin-secreting non-chief 
cells lining the neck, and basophilic chief cells (zymogenic 
cells) producing prepepsin and located at the base [74, 75].

(Figure 3) indicates the dissecting method of 
mouse stomach. The first incision is cut along the greater 
curvature from esophagus through proximal duodenum. 
After opening the stomach, the stomach is laid flat on 
a cutting board. Two or three linear strips are cut from 
the lesser curvature including squamocolumnar junction, 
corpus, antrum and pyloru and proximal duodenum. In 
general, stomach tissues are collected and fixed in 4% 
formalin in PBS overnight, and processed for standard 
paraffin histology. Slides are stained by hematoxylin-
eosin reagent or mucin stain and scored for pathology 
on a scale of 0 to 4. Regarding to H pylori-associated 
gastric histology, there are six parameters for histological 
evaluation, such as inflammation, epithelial defect, 
oxyntic atrophy, hyperplasia, pseudopyloric metaplasia, 
and dysplasia or tumor. Sometimes, some parameters 
are not appeared on chemistry-induced lesions. Here, we 
present several crucial histological evaluation parameters: 
corpus and antral inflammation; corpus glandular atrophy; 
mucus metaplasia; dysplasia and carcinoma. Among them, 
mucus metaplasia and dysplasia belong to precancerous 
lesions. The corpus and antral inflammation is defined 
by sub-mucosal and mucosal presence of polymorphous 
nuclear and mononuclear cells, which is scored according 
to the extent of inflammatory cells. Infiltration: 0, no 
inflammatory cells; 1, inflammatory cells infiltration of 
the submucosa with or without infiltration at the very 
base of the mucosa; 2, inflammatory cells infiltration 
of the submucosa and the bottom half of the mucosa; 
3, inflammatory cells infiltration of the submucosa and 
greater than 50% of the mucosa; 4, transmural infiltration 
of inflammatory cells. Corpus glandular atrophy is defined 
as loss of parietal and zymogenic cells. Corpus glandular 
atrophy is scored based on the estimated percentage of 
parietal cell and chief cell loss within the corpus: 0, no 
visible parietal cell and chief cell loss; 1, 25% parietal 
cell loss and 50% chief cell loss; 2, 50% parietal cell loss 
and greater than 75% chief cell loss; 3, 75% parietal cell 
loss and 100% chief cell loss; 4, greater than 75% parietal 
cell loss and no chief cells. Mucus metaplasia is defined 
as the ectopic presence of Alcian blue stained acidic 
mucin associated with the acquisition of an elongated 
antral glandular structure within corpus glands. Mucus 
metaplasia is scored based on the percentage of the 

corpus mucosa showing replacement of oxyntic glands 
with elongated Alcian-blue stained glands reminiscent 
of antral mucosa: 0, no visible mucus metaplasia; 1, 
small foci were present; 2, up to one-third of the corpus 
was affected; 3, two thirds of the corpus were affected; 
4, greater than two thirds of the corpus were affected. 
Dysplasia is defined as disturbed or haphazard glandular 
arrangement, loss of vertical orientation, back-to-back 
associations without intervening stroma, branching and 
infolding glands. At the cellular level, dysplastic features 
include altered nuclear size, hyperpleomorphism, poorly 
defined cell junctions, loss of nuclear polarity, and 
hyperchromatin with increased nuclear-cytoplasmic ratio 
[76]. Dysplasia is scored based on the following criteria: 
0, no visible dysplasia; 1, appearing aberrant crypt foci 
including distortion of normal columnar orientation, 
increased diameter, asymmetrical cell piling, and back-to-
back forms. 2, there is glandular infolding, branching, and 
more advanced cellular atypia such as increased nuclear-
cytoplasmic ratio. 3, cellular distortion with haphazard 
arrangements, the lesion developed to carcinoma in situ. 
4, highly dysplastic glands invade into the submucosa or 
beyond, such as deeper layers, vessels and lymphatics 
[77]. Table 2 summarized the names of genetically 
engineered mouse models and observed lesions. 

SUMMARY

Mice are important experimental model for 
human gastric cancer study. Along with the findings of 
multiple mutations of crucial functional genes by whole 
genome sequencing, the biological functions of multiple 
genes should be verified on cell models as well as on 
genetically engineered mice model. Scientists could 
make conditional knockout mice by Cre mice that express 
CRE protein specifically in stomach. Scientists could 
make transgenic mice via specific promoter, such as 
K19 (epithelial cell specific) and H-K-ATPase (parietal 
cell specific). At present, there are no perfect promoters 
for gastric carcinogenesis study. New technologies such 
as CRISPR-Cas system are under study. Regarding 
to animal experiment, combination of chemical 
carcinogen and biological carcinogen could accelerate 
the tumorigenesis. In near future, more and more mouse 
models will be created. Although development of a new 
mouse model is time-consuming, it is valuable for gene 
function study. However, we must understand that there 
are some differences such as immune system or their 
anatomic organs between mouse model and human being. 
The histological scoring criteria are helpful to improve 
comparison of results between different laboratories. The 
right evaluation will assist scientific investigators and 
medical professionals in understanding and objectively 
scoring disease progression in mouse models. 
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