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Abstract: Background: The efficacy of artificial intelligence (AI)-driven automated medical-history-
taking systems with AI-driven differential-diagnosis lists on physicians’ diagnostic accuracy was
shown. However, considering the negative effects of AI-driven differential-diagnosis lists such as
omission (physicians reject a correct diagnosis suggested by AI) and commission (physicians accept
an incorrect diagnosis suggested by AI) errors, the efficacy of AI-driven automated medical-history-
taking systems without AI-driven differential-diagnosis lists on physicians’ diagnostic accuracy
should be evaluated. Objective: The present study was conducted to evaluate the efficacy of AI-
driven automated medical-history-taking systems with or without AI-driven differential-diagnosis
lists on physicians’ diagnostic accuracy. Methods: This randomized controlled study was conducted
in January 2021 and included 22 physicians working at a university hospital. Participants were
required to read 16 clinical vignettes in which the AI-driven medical history of real patients generated
up to three differential diagnoses per case. Participants were divided into two groups: with and
without an AI-driven differential-diagnosis list. Results: There was no significant difference in
diagnostic accuracy between the two groups (57.4% vs. 56.3%, respectively; p = 0.91). Vignettes
that included a correct diagnosis in the AI-generated list showed the greatest positive effect on
physicians’ diagnostic accuracy (adjusted odds ratio 7.68; 95% CI 4.68–12.58; p < 0.001). In the group
with AI-driven differential-diagnosis lists, 15.9% of diagnoses were omission errors and 14.8% were
commission errors. Conclusions: Physicians’ diagnostic accuracy using AI-driven automated medical
history did not differ between the groups with and without AI-driven differential-diagnosis lists.

Keywords: artificial intelligence; automated medical-history-taking system; commission errors;
diagnostic accuracy; differential-diagnosis list; omission errors

1. Introduction

Diagnostic errors are a significant problem in outpatients [1–4]. Atypical patient
presentations, the failure to consider other diagnoses, cognitive burden, and lack of time to
think were reported to be the most commonly perceived factors contributing to diagnostic
errors in an outpatient setting [5]. The use of artificial intelligence (AI) is expected to reduce
diagnostic errors in outpatients [6,7]. However, online symptom checkers, which generate
AI-driven differential-diagnosis lists alone, failed to show high diagnostic accuracy [8–10].
On the other hand, a previous study demonstrated that providing AI-driven differential-
diagnosis lists with basic patient information such as age, sex, risk factors, past medical
history, and current reason for medical appointment could improve the diagnostic accuracy
of physicians [11]. Furthermore, physicians’ diagnostic accuracy was improved using
AI-driven differential-diagnosis lists combined with physician-driven clinical documen-
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tation [12]. Therefore, the effect of AI-driven differential-diagnosis lists on the diagnostic
accuracy of physicians could be dependent on the medical history of patients.

However, there is a problem, in that the quality of medical-history-taking skills
varies among physicians, which can affect their diagnostic accuracy when using AI-driven
differential-diagnosis lists. As a solution to this problem, AI-driven automated medical-
history-taking (AMHT) systems were developed [13]. These systems can provide a struc-
tured pattern of a particular patient’s presentation in narrative notes, including key symp-
toms and signs associated with their temporal and semantic inter-relations [13]. The quality
of clinical documentation generated by an AI-driven AMHT system was reported to be
as high as those of expert physicians [14]. AI-driven AMHT systems that also generate
differential-diagnosis lists (so-called next-generation diagnosis-support systems [13]), were
recently implemented in clinical practice [15,16]. A previous study reported that AI-driven
AMHT systems with AI-driven differential-diagnosis lists could improve less-experienced
physicians’ diagnostic accuracy in an ambulatory setting [16]. Therefore, high-quality
AI-driven AMHT systems that generate a differential-diagnosis list may be an option for
improving physicians’ diagnostic accuracy.

The previous study, however, also suggested that the use of AI-driven AMHT systems
may result in omission (when physicians reject a correct diagnosis suggested by AI) and
commission (when physicians accept an incorrect diagnosis suggested by AI) errors [16],
which are related to automation biases [17–19]. This means that AI-driven differential-
diagnosis lists can sometimes negatively affect physicians’ diagnostic accuracy when
using AI-driven AMHT systems. It remains unknown whether the positive effects of AI-
driven AMHT systems on physicians’ diagnostic accuracy, observed in the previous study,
were derived from the combination of AI-driven clinical documentation with AI-driven
differential-diagnosis lists or from AI-driven clinical documentation alone. Therefore, the
efficacy of AI-driven AMHT systems without AI-driven differential-diagnosis lists on
physicians’ diagnostic accuracy should also be evaluated.

In order to clarify the critical components of the efficacy of AI-driven AMHT systems
and AI-driven differential-diagnosis lists on the diagnostic accuracy of physicians, this
study compared the diagnostic accuracy of physicians with and without the use of AI-
driven differential-diagnosis lists on the basis of clinical documentation made available by
AI-driven AMHT systems.

2. Materials and Methods
2.1. Study Design

This was a single-center, open-label, parallel, 1:1 ratio, randomized controlled study
conducted at the Dokkyo Medical University in January 2021. The study was approved by
the Research Ethics Committee of Nagano Chuo Hospital (NCH20-11) and the Bioethics
Committee of Dokkyo Medical University (2020-018), and was registered with UMIN-CTR
(trial registration number: UMIN000042881).

2.2. Study Participants

Study participants included physicians (interns, residents, and attending physicians)
who rotated or belonged to the Department of Diagnostic and Generalist Medicine in
Dokkyo Medical University Hospital. All physicians in Japan have an MD degree following
completion of a six-year undergraduate education. Interns are physicians in their first or
second year after graduation. Residents are physicians in training programs for board
certificates, usually in their third to fifth year after graduation. Attending physicians are
physicians who completed training programs for board certificates, usually over the sixth
year after graduation. Written consent was obtained from all participants.

2.3. Materials

The study used 16 written clinical vignettes that only included patient history and vital
signs. All vignettes were generated by an AI-driven AMHT system from real patients [15].
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Clinical vignettes were selected by the authors (YH, SK, and TS) as follows. First, a list of
patients admitted to Nagano Chuo Hospital, a medium-sized community general hospital
with 322 beds, within 24 hours after visiting the outpatient department of internal medicine
with or without an appointment, and having used an AI-driven AMHT system from
17 April 2019 to 16 April 2020, was extracted from the electrical medical charts of the
hospital. Second, cases that had not used an AI-driven AMHT system at the time they
visited the outpatient department were excluded from the list. Third, diagnoses were
confirmed by one author (YH) in each case on the list by reviewing electrical medical
records. Fourth, the list was divided into two groups: cases with the confirmed diagnosis
included in the AI-driven top 10 differential-diagnosis list, and those that did not include
the confirmed diagnosis in the list. Fifth, both groups were further subdivided into four
disease categories: cardiovascular, pulmonary, gastrointestinal, and other. Sixth, two cases
were chosen for each of the eight categories, resulting in 16 clinical vignettes. We used eight
cases that included the confirmed diagnosis in the AI-driven top 10 differential-diagnosis
list and eight cases that did not include the confirmed diagnosis to allow for automation
bias [20]. Two authors (YH and SK) worked together to choose each vignette. The other
author (TS) validated that the correct diagnosis could be assumed in all vignettes. The list
of all clinical vignettes is shown in Table 1. The vignettes were presented in booklets.

Table 1. List of clinical vignettes.

Order Case Description Diagnosis Included in AI-Driven Top 10
List of Differential Diagnosis

1 73-year-old female
Fever and cough Pneumonia No

2 38-year-old male
Thirst and frequent urination Diabetes mellites (Type 2) Yes

(ranked first)

3 90-year-old female
Constipation, pedal edema, and appetite loss Heart failure No

4 84-year-old female
Cough, wheeze, and hemoptysis Asthma Yes

(ranked first)

5 53-year-old male
Lower abdominal pain and fever Diverticulitis No

6 68-year-old male
Cough, diarrhea, and appetite loss Subacute myocardial infarction No

7 44-year-old male
Abdominal pain Pancreatitis (alcoholic) Yes

(ranked eighth)

8 81-year-old female
Appetite loss, arthralgia, and low-grade fever Pyelonephritis No

9 73-year-old female
Epigastric pain Pancreatitis (autoimmune) No

10 20-year-old male
Pain in the heart, arms, and neck Myocarditis Yes

(ranked fifth)

11 30-year-old female
Chest pain Pneumothorax No

12 71-year-old female
Dyspnea and epigastric discomfort Heart failure Yes

(ranked fourth)

13
20-year-old male

Sore throat, swelling of the throat, feeling of
oppression in the throat

Peritonsillar abscess Yes
(ranked first)
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Table 1. Cont.

Order Case Description Diagnosis Included in AI-Driven Top 10
List of Differential Diagnosis

14 49-year-old female
Cough and fever Pneumonia (atypical) Yes

(ranked ninth)

15 53-year-old male
Malaise, frequent urination, and fatigue Hyperosmolar hyperglycemic state No

16 63-year-old male
Hematochezia Ischemic colitis Yes

(ranked first)

2.4. Interventions

Participants were instructed to make a diagnosis in each of the 16 vignettes throughout
the test. The test was conducted at Dokkyo Medical University. Participants were divided
into two groups: the control group, who were allowed only to read vignettes, and the
intervention group, who were allowed to read both vignettes and an AI-driven top 10
differential-diagnosis list. Participants were required to write up to three differential
diagnoses on the answer sheet for each vignette within 2 min by reading the vignettes in
the booklets. Participants could proceed to the next vignette before the 2 min had passed,
but could not return to previous vignettes.

2.5. Data Collection

Data were collected for participants’ age, sex, postgraduate year, experience (intern,
resident, or attending physician), trust in the AI-driven AMHT system and AI-driven
differential-diagnosis list (yes or no), diagnoses in the answer sheet, and time spent on
each vignette.

2.6. Outcomes

Primary outcome was diagnostic accuracy, which was measured by the prevalence of
correct answers in each group. In each vignette, the answer was considered to be correct
when there was a correct diagnosis in the physician’s differential-diagnosis list (up to
three likely diagnoses in order from most to least likely) in each case. An answer was
coded as “correct” if it accurately stated the diagnosis and with an acceptable degree of
specificity [21]. Two authors (RK and TS) independently and blindly classified all diagnoses
provided for each vignette as correct or incorrect. Discordant classifications were resolved
by discussion.

Secondary outcomes were the diagnostic accuracy of the vignettes that included a
correct diagnosis in the AI-driven differential-diagnosis list, the diagnostic accuracy of the
vignettes that did not include a correct diagnosis in the AI-driven differential-diagnosis list,
the prevalence of omission errors (correct diagnosis in the AI-driven differential-diagnosis
list was not written by a physician), and the prevalence of commission errors (all diagnoses
written by a physician were incorrect diagnoses from the AI-driven differential-diagnosis
list) for the intervention group.

2.7. Sample Size

Hypothesized accuracy was 60% in the group without an AI-driven differential-
diagnosis list and 75% in the group with an AI-driven differential-diagnosis list. A total of
304 answers were required to achieve 80% power with a 5% Type 1 error rate. Sample size
was ensured by including 16 cases and recruiting 22 participants.

2.8. Randomization

Participants were enrolled and then assigned to one of the two groups using an
online randomization service [22]. The allocation sequence was generated by the online
randomization service using blocked randomization (block size of four). Group allocation
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was stratified by participant experience (interns, residents, and attending physicians).
Participants and the authors who had allocated the participants (YH and SK) were not
blinded to allocation. Data analysis was conducted using blinded conditions.

2.9. Statistical Methods

The correct answer in each group was compared using the chi-squared test for primary
and secondary outcome measurements. Subgroup analyses for primary and secondary
outcomes were conducted using stratification by sex, experience, and whether or not they
trusted AI. The effects of sex, experience, whether or not they trusted AI, the correct-
ness of the AI, and the AI-driven differential-diagnosis list on the physician’s accurate
diagnosis were calculated as odds ratios using univariable and multivariable logistic-
regression analyses. The effects of sex, experience, and whether or not they trusted AI
on omission and commission errors were also calculated as odds ratios using univariable
and multivariable logistic-regression analyses. All p values in the statistical tests were
two-tailed, and p values < 0.05 were considered statistically significant. All statistical anal-
yses were performed using R version 3.6.3 (The R Foundation for Statistical Computing,
Vienna, Austria).

3. Results
3.1. Participant Flow

From 8 January 2021 to 16 January 2021, 22 physicians (5 interns, 8 residents, and 9
attending physicians) participated in the study (Figure 1).
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Figure 1. Study flowchart.

The median age of the participants was 30 years, 16 (72.7%) were male, and 13
(59.1%) responded that they trusted the AI-generated medical history and differential-
diagnosis lists. Eleven physicians were assigned to the group with an AI-driven differential-
diagnosis list, and the other 11 physicians were assigned to the group without an AI-driven
differential-diagnosis list. The baseline characteristics of the two groups were well-balanced
(Table 2). All participants completed the test, and all data were analyzed for the primary
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outcome. The time required per case did not differ between the two groups: median time
per case was 103 s (82–115 s) in the intervention group and 90 s (72–111 s) in the control
group (p = 0.33). The number of differential diagnoses also did not differ between the two
groups: the median number of differential diagnoses was 2.9 (2.6–2.9) in the intervention
group and 2.8 (2.6–3.0) in the control group (p = 0.93). The kappa coefficient or inter-rater
agreement of correctness of answers between the two independent evaluators was 0.86.

Table 2. Baseline participant characteristics.

With AI-Driven
Differential-Diagnosis List

Without AI-Driven
Differential-Diagnosis List p Value

Age (years), median (25–75th percentile) 30 (28–33) 30 (28–36) 0.95

Sex 0.41 1

male 7/11 (63.6%) 9/11 (81.8%)

female 4/11 (36.4%) 2/11 (18.2%)

Post graduate year, median (25–75th percentile) 3 (2–8) 4 (3–10) 0.49

Experience >0.99 1

intern 3/11 (27.2%) 2/11 (18.2%)

resident 4/11 (36.4%) 4/11 (36.4%)

attending physician 4/11 (36.4%) 5/11 (45.4%)

Trust AI 6/11 (54.5%) 7/11 (63.6%) 0.70 1

1 Fisher exact test. AI, artificial intelligence.

3.2. Primary Outcome

The total number of correct diagnoses was 200 (56.8%; 95% confidence interval (CI),
51.5–62.0%). There was no significant difference in diagnostic accuracy between interven-
tion (101/176, 57.4%) and control (99/176, 56.3%) groups (absolute difference 1.1%; 95% CI,
−9.8% to 12.1%; p = 0.91; Figure 2).
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There was no significant difference in diagnostic accuracy between the two groups in
individual case analysis (Table S1) and in subgroup analysis (Table 3). Intern diagnostic
accuracy was low in both groups.
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Table 3. Diagnostic accuracy in intervention and control groups.

With AI-Driven
Differential-Diagnosis List

Without AI-Driven
Differential-Diagnosis List p Value

Total 101/176 (57.4%) 99/176 (56.3%) 0.91
Sex

Male 63/112 (56.3%) 82/144 (56.9%) >0.99
Female 38/64 (59.4%) 17/32 (53.1%) 0.72

Experience

Intern 23/48 (47.9%) 12/32 (37.5%) 0.49
Resident 40/64 (62.5%) 41/64 (64.1%) >0.99

Attending physician 38/64 (59.4%) 46/80 (57.5%) 0.95

Trust in AI

Yes 51/96 (53.1%) 63/112 (56.3%) 0.76
No 50/80 (62.5%) 36/64 (56.3%) 0.56

3.3. Secondary Outcomes

In total, diagnostic accuracy was significantly higher in the vignettes that included a
correct diagnosis in the AI-driven differential-diagnosis list (139/176, 79.0%) compared
with that in vignettes that did not include a correct diagnosis in the AI-driven differential-
diagnosis list (61/176, 34.7%) (p < 0.001). There were no significant differences in diagnostic
accuracy between intervention and control groups in the vignettes that included a cor-
rect diagnosis in the AI-driven differential-diagnosis list (74/88, 84.1% vs. 64/88, 72.7%;
p = 0.10) (Table S2) and those that did not include a correct diagnosis in the AI-driven
differential-diagnosis list (27/88, 30.7% vs. 34/88, 38.6%; p = 0.34) (Table S3).

The results of univariable and multivariable logistic-regression analyses are shown in
Table 4. AI-driven differential-diagnosis lists were not associated with diagnostic accuracy
(adjusted odds ratio 1.10; 95% CI 0.67–1.80; p = 0.72). Residents (adjusted odds ratio 3.35;
95% CI 1.67–7.01; p = 0.001) and attending physicians (adjusted odds ratio 2.84; 95% CI
1.24–6.50; p = 0.01) were more accurate than interns were. Vignettes that included correct
AI-driven differential diagnosis showed the greatest positive effect on diagnostic accuracy
(adjusted odds ratio 7.68; 95% CI 4.68–12.58; p < 0.001).

Table 4. Logistic-regression analysis of diagnostic accuracy.

Crude Odds Ratio
(95% CI) p Value Adjusted Odds Ratio

(95% CI) p Value

Male 0.97 (0.61–1.56) 0.91 0.66 (0.36–1.23) 0.20
Trust AI 0.82 (0.53–1.26) 0.36 1.12 (0.62–2.01) 0.71

Experience (reference: intern)
Resident 2.22 (1.25–3.92) 0.01 3.35 (1.67–7.01) 0.001

Attending physician 1.80 (1.04–3.13) 0.04 2.84 (1.24–6.50) 0.01
With AI-driven differential-diagnosis list 1.05 (0.69–1.60) 0.83 1.10 (0.67–1.80) 0.72

Vignette including correct AI-driven differential diagnosis 7.08 (4.39–11.42) <0.001 7.68 (4.68–12.58) <0.001

Odds ratios and 95% CIs calculated using univariable and multivariable logistic-regression models.

In the intervention group, the total prevalence of omission and commission errors was
14/88 (15.9%) and 26/176 (14.8%), respectively (Table S4). The prevalence of omission errors
was not associated with sex, experience, or trust in AI. On the other hand, commission
errors were associated with sex, experience, and trust in AI; males made more commission
errors than females did, although this was not statistically significant (18.8% vs. 7.8%;
p = 0.08). Commission errors decreased with experience (interns, 25.0%; residents, 12.5%;
attending physicians, 9.4%; p = 0.06) and were lower in physicians who did not trust AI
compared with those who trusted AI (8.8% vs. 19.8%; p = 0.07). Multiple logistic-regression
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analysis showed that commission errors were significantly associated with physicians’ sex
and experience (Table 5).

Table 5. Logistic-regression analyses of commission errors.

Crude Odds Ratio
(95% CI) p Value Adjusted Odds Ratio

(95% CI) p Value

Male 2.72 (0.97–7.62) 0.06 6.25 (1.84–21.2) 0.003
Trust AI 2.57 (1.02–6.48) 0.04 1.03 (0.31–3.41) 0.96

Experience (reference: interns)
Resident 0.43 (0.16–1.15) 0.09 0.20 (0.06–0.70) 0.01

Attending physician 0.31 (0.11–0.90) 0.03 0.14 (0.03–0.65) 0.01

Odds ratios and 95% CIs calculated using univariable and multivariable logistic-regression models.

4. Discussion

The present study revealed three main findings. First, the differential-diagnosis list
produced by AI-driven AMHT systems did not improve physicians’ diagnostic accuracy
based on reading vignettes generated by AI-driven AMHT systems. Second, the experi-
ence of physicians and whether or not the AI-generated diagnosis was correct were two
independent predictors of correct diagnosis. Third, male sex and less experience were
independent predictors of commission errors.

These results suggest that the diagnostic accuracy of physicians using AI-driven
AMHT systems may depend on the diagnostic accuracy of AI. A previous randomized
study using AI-driven AMHT systems showed that the total diagnostic accuracy of resi-
dents who used AI-driven AMHT systems was only 2% higher than that of the diagnostic
accuracy of AI, and the diagnostic accuracy of residents decreased in cases in which the
diagnostic accuracy of AI was low [16]. Another study also showed no difference in
diagnostic accuracy between symptom-checker diagnosis and physicians solely using
symptom-checker-diagnosis data [12]. In the present study, the total diagnostic accuracy of
AI was set to 50%, and the actual total diagnostic accuracy of physicians was 56.8%. Fur-
thermore, the diagnostic accuracy of physicians was significantly higher in cases in which
the AI generated a correct diagnosis compared with those in which AI did not generate
a correct diagnosis. These findings are consistent with those of previous studies [16,19].
Therefore, improving the diagnostic accuracy of AI is critical to improve the diagnostic
accuracy of physicians using AI-driven AMHT systems.

The present study revealed that the key factor for diagnostic accuracy when using
AI-driven AMHT systems may not be the AI-driven differential-diagnosis list, but the
quality of the AI-driven medical history. There were no differences in diagnostic accuracy
of physicians between groups with or without the AI-driven differential-diagnosis list, in
total or in the subgroups. A previous study also highlighted the importance of medical
history in physicians’ diagnostic accuracy; the diagnostic accuracy of physicians using
symptom-checker-diagnosis data with clinical notes was higher than both the diagnostic
accuracy of symptom-checker diagnosis and physicians’ diagnosis using symptom-checker-
diagnosis data alone [12]. Therefore, future AI-driven diagnostic-decision support systems
for physicians working in outpatient clinics should be developed on the basis of high-
quality AMHT functions. As current AI-driven AMHT systems are expected to be rapidly
implemented into routine clinical practice, supervised machine learning with feedback
from expert generalists, specialty physicians, other medical professionals, and patients
seems to be the optimal strategy to develop such high-quality AMHT systems.

The value of AI-driven differential-diagnosis lists for less-experienced physicians
is unclear. Several types of diagnostic-decision support systems could improve the di-
agnostic accuracy of less-experienced physicians [19]. A previous study showed that
less-experienced physicians could improve their diagnostic accuracy using AI-driven
AMHT systems with AI-driven differential-diagnosis lists [16]. The present study also
showed that the diagnostic accuracy of interns was slightly higher using the AI-driven
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differential-diagnosis list. However, although the efficacy of the diagnostic-decision sup-
port system is usually greatest for less-experienced physicians [19], as they tend to accept
suggested diagnoses, they also find it difficult to reject incorrect diagnoses [23,24]. In
fact, non-negligible commission errors were observed in less-experienced physicians in a
previous (21%) [16] and the present (25%) study. Therefore, less-experienced physicians
are encouraged to judge whether the case is simple (AI accuracy expected to be high)
or complex (AI accuracy is unclear) to improve their diagnostic accuracy when using
AI-driven differential-diagnosis lists developed from AI-driven AMHT systems.

The present study has several limitations. First, the study was not conducted in a
real clinical-practice setting. However, since AI-driven AMHT systems are expected to be
used by physicians to make initial differential-diagnosis lists prior to seeing patients, the
results of this study are translatable to real clinical practice. Second, the clinical vignettes
were selected from a cohort of patients admitted to the hospital within 24 h of visiting the
outpatient department, and the study focused on common cardiovascular, gastrointestinal,
and pulmonary diseases. Therefore, its results could not be extended to patients with mild
conditions or uncommon diseases. Meanwhile, many diagnostic errors involved missing
common diseases such as pneumonia and congestive heart failure [25]. Therefore, the set of
vignettes used in the present study were reasonable for evaluating the efficacy of diagnosis
support of AI-driven AMHT systems to reduce diagnostic errors in common medical
settings. Third, we predominantly recruited general physicians who usually see patients
similar to those included in the clinical vignettes used in this study. Therefore, special
consideration should be made in applying this study result to other specialty physicians.
Fourth, “trust in the AI-driven AMHT system and AI-driven differential-diagnosis list (yes
or no)” that was used in this study was not validated in previous studies. Since this is a
complex question, the interpretation of the answers can vary across individuals. Therefore,
results related to answers to this question should be interpreted with caution.

5. Conclusions

The diagnostic accuracy of physicians reading AI-driven automated medical history
did not differ according to the presence or absence of an AI-driven differential-diagnosis list.
AI accuracy and the experience of physicians were independent predictors for diagnostic
accuracy, and commission errors were significantly associated with sex and experience.
Improving both AI accuracy and physicians’ ability to astutely judge the validity of AI-
driven differential-diagnosis lists may contribute to a reduction in diagnostic errors.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-460
1/18/4/2086/s1. Table S1: diagnostic accuracy in individual cases; Table S2: diagnostic accuracy
using vignettes that include correct diagnosis in AI-driven differential-diagnosis list; Table S3:
diagnostic accuracy using vignettes that did not include correct diagnosis in AI-driven differential-
diagnosis list; Table S4: omission and commission errors.
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