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Abstract: The inhalation of many types of chemicals is a leading cause of allergic respiratory diseases, 
and effective protocols are needed for the detection of environmental chemical–related respiratory 
allergies. In our previous studies, we developed a method for detecting environmental chemical–
related respiratory allergens by using a long-term sensitization–challenge protocol involving BALB/c 
mice. In the current study, we sought to improve our model by characterizing strain-associated 
differences in respiratory allergic reactions to the well-known chemical respiratory allergen 
glutaraldehyde (GA). According to our protocol, BALB/c, NC/Nga, C3H/HeN, C57BL/6N, and CBA/J 
mice were sensitized dermally with GA for 3 weeks and then challenged with intratracheal or inhaled 
GA at 2 weeks after the last sensitization. The day after the final challenge, all mice were euthanized, 
and total serum IgE levels were assayed. In addition, immunocyte counts, cytokine production, and 
chemokine levels in the hilar lymph nodes (LNs) and bronchoalveolar lavage fluids (BALF) were also 
assessed. In conclusion, BALB/c and NC/Nga mice demonstrated markedly increased IgE reactions. 
Inflammatory cell counts in BALF were increased in the treated groups of all strains, especially 
BALB/c, NC/Nga, and CBA/J strains. Cytokine levels in LNs were increased in all treated groups 
except for C3H/HeN and were particularly high in BALB/c and NC/Nga mice. According to our results, 
we suggest that BALB/c and NC/Nga are highly susceptible to respiratory allergic responses and 
therefore are good candidates for use in our model for detecting environmental chemical respiratory 
allergens.
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Introduction

many new chemical substances are produced every 
day, and chemical-induced allergy has emerged as a 
public health problem worldwide [3, 15]. in particular, 
the inhalation of many types of chemicals (allergens and 
irritants) is a leading cause of respiratory diseases 
[8, 19, 25]. Furthermore, the compounds associated with 
fine particulate matter (that is, PM2.5; <2.5 µm aerody-
namic diameter) aggravate respiratory responses to com-
mon allergens [13, 18]. Therefore, there is an urgent need 

to develop an effective method to identify chemical-
induced respiratory allergens [38]. Traditionally, sev-
eral in vitro and in vivo detection methods involving 
various animal species, strains, cell types, and exposure 
pathways have been used to identify chemical-induced 
respiratory allergy [4, 22, 34], but none of these methods 
have proven to be sufficiently sensitive.

Previously, in the first phase of our studies, we devel-
oped a method for detecting environmental chemical–
related respiratory allergens. Specifically we used typi-
cal chemical sensitizers (i.e., 2,4-dinitrochlorobenzene 
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[dNCb], trimellitic anhydride, and toluene diisocyanate) 
in a long-term dermal sensitization protocol followed by 
intratracheal respiratory challenge of mice [11, 12]. 
dNCb is a contact allergen, whereas trimellitic anhy-
dride and toluene diisocyanate are respiratory allergens. 
in our system, the respiratory allergens induced promi-
nent increases in several parameters indicative of in-
duced allergic response, including ige levels, eosino-
philic proliferation, and elevated local (lung airway) 
chemokine (MCP-1, MIP-1β, and eotaxin) and cytokine 
(interleukin [iL]-4, -10, and -13) levels. in contrast, 
DNCB sensitization yielded only non-significant in-
creases in each of these parameters. These results dem-
onstrated that our method can be applied to detect and 
classify allergic reactions caused by chemicals present 
in the environment at weakly immunogenic and low 
doses. however, susceptibilities to environmental chem-
ical allergens may differ between animal species, strains, 
and exposure routes [29, 43].

in the current work, our second phase of studies, we 
sought to improve our detection protocol by focusing 
attention on mouse-strain-associated differences in re-
spiratory allergic reactions. Specifically we evaluated 
the baLb/c, NC/Nga, C3h/heN, C57bL/6N, and Cba/J 
strains of mice, which are often used in allergy models, 
and the chemical respiratory allergen glutaraldehyde 
(GA). GA is widely used in the industrial, scientific, and 
biomedical fields. For example, GA is the best disinfec-
tant available for cold sterilization of medical equipment. 
however, Ga is irritating to the skin and respiratory tract 
and highly volatile at ambient temperature [2, 42]. These 
factors contribute to the prevalence of chronic bronchi-
tis and nasal symptoms in humans [37], and numerous 
cases of occupational asthma resulting from Ga expo-
sure have been reported [33]. in addition, Ga has often 
been used in the development of chemical-induced re-
spiratory allergy models in mice [40].

Method

Animals
Female inbred C57bL/6N, baLb/c, Cba/J, NC/Nga, 

and C3h/heN mice (age, 7 weeks) were purchased from 
Charles River Japan (atsugi, kanagawa, Japan) and ac-
climated for 6 days before the start of the experiment. 
mice were housed individually under controlled lighting 
(lights on from 7:00 to 19:00 h), temperature (22 ± 3°C), 
humidity (50% ± 20%), and ventilation (at least 10 com-

plete fresh-air changes hourly). Food (Certified Pellet 
diet mF, oriental yeast, Tokyo, Japan) and water were 
available ad libitum. The current study was conducted 
in accordance with the Animal Care and Use Program 
of the institute of environmental Toxicology (ieT ia-
CuC approval No. aC12095).

Female mice were selected as the model for this study 
because the oeCd skin sensitization Guideline for the 
Testing of Chemicals [31] recommend for using female 
mice. Furthermore, in immunotoxicity studies, only one 
gender need be evaluated; in general, females are con-
sidered to yield more consistent outcomes than male 
animals when evaluating humoral immune responses.

Chemicals
Glutaraldehyde (Ga, C5h8o2, 50%) was purchased 

from kanto Chemical Co., inc. (Tokyo, Japan). acetone 
and olive oil were purchased from Wako Pure Chemical 
industries (osaka, Japan). For dermal sensitization, Ga 
was dissolved in acetone: olive oil (4:1) to 0.5% (w/v). 
For inhalation sensitization and challenge, Ga was dis-
solved in phosphate-buffered saline (PBS). For intratra-
cheal challenge, GA was dissolved in PBS.

Local lymph node assay (LLNA)
We conducted an LLNa as a preliminary test to select 

the concentrations of Ga to use in the main studies. The 
assay was performed as described by kimber and 
Weisenberger [20] and in the oeCd Guideline for the 
Testing of Chemicals [31], with minor modifications. 
Cba/J mouse is a recommended species used for the 
Local Lymph Node assay. after a 1-week acclimation 
period, Cba/J mice were allocated randomly to dose 
and control groups (n=3 per group). a 25-µl aliquot of 
test solution or solvent only was applied daily to the 
dorsum of each ear of each mouse for 3 consecutive days 
(days 1 through 3). on day 6, 3h-methyl thymidine (3h-
TdR, 20 µCi/animal; specific radioactivity, 1 mCi/ml; 
PerkinElmer Japan Co., Ltd.., Kanagawa, Japan) was 
injected via the tail vein into all test and control mice; 
at 5 h after injection, the mice were euthanized by ex-
sanguination from the abdominal aorta and posterior 
vena cava under the intraperitoneal injection of pento-
barbital sodium (75 mg/kg), and the auricular LNs on 
both sides of each mouse were removed, weighed, and 
pooled by mouse in PBS (Life Technologies Co., Ltd.., 
USA). Single-cell suspensions of LNs in 5 ml PBS were 
prepared by passage through sterile 70-µm nylon cell 
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strainers (Falcon, Tokyo, Japan). The LN cell suspension 
was washed twice with an excess of PBS, and the cell 
pellet was incubated in 3 ml 5% trichloroacetic acid 
(TCA, Wako Pure Chemical Industries, Ltd.) at 4°C for 
approximately 18 h. each cell pellet was resuspended in 
1 ml TCA and transferred to 9 ml of scintillation fluid 
(PICO-FLUOR PLUS, PerkinElmer Japan Co., Ltd.). 
For each mouse, incorporation of 3h-TdR was measured 
as disintegrations per min (DPM) by using a β-scintillation 
counter (LC-5100, aloka, Tokyo, Japan).

stimulation indexes (sis) and eC3 values were cal-
culated from the 3h-TdR incorporation data. The si was 
calculated by dividing the mean 3h-TdR incorporation 
value for each treatment group by that of the solvent 
control group. The eC3 value is an estimate of the 
amount of test solution required to induce an si of 3 [5]. 

in the standard LLNa, the criterion for a positive re-
sponse is an si of 3 or greater [9, 31].

Experimental protocol
The experimental protocol we used in this study is 

depicted in Fig. 1. after a 6-day acclimation period, we 
randomly allocated C57bL/6N, baLb/c, Cba/J, NC/
Nga, and C3h/heN mice (age, 8 weeks) to groups 
(n=5 mice per group) for dosing or no treatment (con-
trol). because our preliminary study revealed that mice 
sensitized or challenged with Ga only showed much the 
same pattern of allergic airway inflammatory responses, 
as did the intact group, data from similar groups in the 
current study are not shown.

For sensitization, 0.5% of Ga was applied dermally 
to both ears (25 µl/ear; 50 µl/animal) of each mouse on 

Fig. 1. experimental protocol and apparatus for inhalation exposure. see materials and methods for a 
detailed description.
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days 1 through 3, 8 through 10, and 15 through 17. Two 
weeks after the last sensitization, each mouse was chal-
lenged with 50 µl of 0.05% Ga intratracheally on day 
31 or with 0.25% Ga by inhalation for 1 h on days 29 
through 31. These doses were based on the eC3 con-
centration determined in our preliminary LLNas. one 
day after the last challenge, all mice (control and treat-
ed) were euthanized by exsanguination from the ab-
dominal aorta and posterior vena cava under the intra-
peritoneal injection of pentobarbital sodium (75 mg/kg). 
blood samples were taken from the inferior vena cava, 
and serum samples were assayed for total ige levels. 
Bronchoalveolar lavage fluid (BALF) was collected by 
cannulating the trachea and lavaging the lungs 3 times 
each with 1 ml PBS supplemented with 1% heat-inac-
tivated fetal calf serum (FCS; Life Technologies Co., 
Ltd.., Tokyo, Japan). The first BALF fraction from each 
animal was centrifuged at 350 × g for 5 min, these su-
pernatants were pooled respectively, and chemokine 
levels were measured. The cell pellets of all three frac-
tions per mouse were resuspended, pooled by mouse, 
and centrifuged at 350 × g for 5 min. The supernatants 
were removed, and the cell pellets were used for dif-
ferential cell counts. hilar lymph nodes (LNs) from each 
mouse were pooled in RPMI 1640 medium (Life Tech-
nologies Co., Ltd., usa). single-cell suspensions were 
prepared from LNs by passage through a sterile 70-µm 
nylon cell strainer in 1 ml RPMI 1640 supplemented 
with 5% FCs. single-cell suspensions were used to 
analyze the ige-positive b-cell counts and cytokine 
production.

Intratracheal injection
Two weeks after the last sensitization, mice were anes-

thetized by intraperitoneal injection of pentobarbital 
sodium (25 mg/kg), and an challenge with a 50-µl aliquot 
of 0.05% Ga in saline solution was injected into intra-
tracheal using a 29-G needle.

Inhalation exposure
For the inhaled challenge, mice were exposed to 

0.25% GA in PBS mist continuously for 1 h daily 
(0.0125 mg/l). The placement of mice in the chamber is 
shown in Fig. 1. mice were restrained individually in 
animal holders (Tokiwa kagakukikai Co., Ltd., Tokyo, 
Japan) attached to a nose-only exposure chamber (total 
volume, 31.2 l; Tokiwa Kagakukikai Co., Ltd.) so that 
only their noses were exposed to the chemical mist. The 

mist was generated by an atomizer (ikeuchi Co., Ltd., 
Tokyo, Japan) using compressed air (es4ad-5, ko-
belco, Tokyo, Japan) and was supplied to the exposure 
chamber through an air filter (F3000-10-Y, CKD Corpo-
ration, Aichi, Japan). Airflow to the chamber was con-
trolled at a rate of 20 l/min by using an area flowmeter 
(NSPO-4, Nippon Flow Cell, Tokyo, Japan). The cham-
ber air was exhausted through an air filter system consist-
ing of a glass wool filter, a mist trap, and an activated 
charcoal filter (Tokiwa Kagakukikai Co., Ltd.) and was 
emitted to the atmosphere by using a blower (TFO-K4P, 
hitachi, Ltd., Tokyo, Japan). The actual concentration, 
mass median aerodynamic diameter (mmad), and geo-
metric standard deviation (Gsd) were monitored by 
gravimetric analysis by using an air sampler (mF-200, 
oct science Co., Ltd., osaka, Japan) and a mist sampler 
(mC-500 sampler, Tokyo dylec Corp.). The mean values 
of mmad and Gsd were kept at approximately 4.0 µm 
and 2.0, respectively, throughout inhalation exposure.

Total IgE
Total ige levels in serum were measured by enzyme-

linked immunosorbent assay (bd opteia mouse ige 
ELISA Set, BD Pharmingen, Tokyo, Japan) according 
to the manufacturer’s protocol.

Flow cytometry of BALF and hilar LN cells
The following antibodies used for flow cytometric 

analysis were purchased from BD Pharmingen: fluores-
cein isothiocyanate (FiTC)-conjugated anti-mouse ige 
(clone R35-72), phycoerythrin (PE)-conjugated hamster 
anti-mouse Cd11c (hL3), FiTC-conjugated anti-mouse 
Gr-1 (Rb6-8C5), and allo-phycocyanin-conjugated anti-
mouse CD45R/B220 (RA3-6B2). To avoid nonspecific 
binding, 1 × 106 cells were incubated with 1 µg mouse 
BD Fc Block (BD Pharmingen) for 5 min at 4°C, fol-
lowed by incubation with monoclonal antibodies for 30 
min at 4°C in the dark. Cells were washed twice with 
5% FCS in PBS, resuspended at 1 × 106 cells per tube 
in 500 µl PBS, and analyzed on a FACSVerse flow cy-
tometer (BD Pharmingen) by using the FACSuite pro-
gram (BD Pharmingen). To analyse antigen expression, 
5000 and 20,000 events were collected from baLF and 
LN samples, respectively.

Chemokine levels in BALF
The levels of the chemokines MIP-1β and RANTES 

were measured by using a cytometric bead array (bd 
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CBA Mouse Flex Set, BD Pharmingen) according to the 
manufacturer’s protocol.

Cytokine production from helper T-cells
Cd4 positive T-cells (Cd4+ T-cells) were isolated 

from hilar LN cells (1 × 107 cells) by using automaCs 
(miltenyi biotec k.k., Tokyo, Japan) and Cd4 micro-
beads (miltenyi biotec k. k) according to the manufac-
turer’s protocol. To stimulate T-cell receptor signalling, 
we cultured Cd4+ T-cells (1 × 106 cells/well) for 24 or 
96 h with dynabeads mouse T-activator Cd3/Cd28 
(25 µg/well) antibodies (Life Technologies Co., Ltd., 
Tokyo, Japan) in 24-well plates at 37°C in a 5% Co2 
atmosphere. The levels of interferon (IFN)-γ and IL-4, 
-13, and -17a in supernatants (cell culture medium) were 
measured by using a cytometric bead array (bd Cba 
Mouse Flex Set, BD Pharmingen) according to the 
manufacturer’s protocol.

Statistical analysis
The statistical significance of differences between the 

control and treatment groups was determined by using 
a student’s t-test. For each test, P values less than 0.05 
were considered significant.

Results

LLNA
To confirm the sensitizing potential of GA, we per-

formed an LLNa in Cba/J mice as a preliminary test 
(Fig. 2). When 0.1, 0.25, or 0.5% of Ga dissolved in 
acetone:olive oil was used, both LN weight and the in-
corporation of 3h-TdR increased dose-dependently, and 
si values were 1.8, 3.0, and 9.8 times those of the vehi-
cle-control group, respectively. according to the stan-
dard criterion for a positive response (SI ≥3; Dearman 
et al. [9]), GA at 0.5% was confirmed to be a sensitizing 
agent.

IgE responses
To assess the ige responses, we measured the total 

ige levels in serum and the number of ige-positive b-
cells in the hilar LNs (Fig. 3).

The inhalation (ih) challenge group of NC/Nga mice 
revealed significantly increased total serum IgE levels 
(5.69 [P<0.01] times) compared with those of the respec-
tive control group. Treatment groups in other mouse 
strains showed modest nonsignificant increases.

The number of ige-positive b-cells of the iT challenge 
groups of all strains and ih challenge groups of C3h/
heN and Cba/J tended to be increased, albeit nonsig-
nificantly. in ih challenge groups of NC/Nga and 
C57bL/6N, ige-positive b-cell counts were increased 
17.54 times (P<0.05) and 8.12 times (P<0.05) compared 
with the respective control group.

BALF analysis
To assess allergic airway inflammation in the lung, we 

obtained the eosinophil and neutrophil counts and levels 
of the chemokine such as MIP-1β and RANTES in BALF 
(Figs. 4 and 5).

eosinophil counts were increased (P<0.05) in the IT 
challenge groups of C57bL/6N and in the ih challenge 
group of baLb/c mice (2.49, and 1.72 times, respec-
tively) compared with those of the respective control 
group. and those in NC/Nga iT challenge group tended 
to be increased, although not significantly. In contrast, 
the eosinophil counts of both C3h/heN challenge groups 
were comparable to those of the control groups. Neutro-
phil counts of all strains iT challenge groups were 
tended to be increased; those in BALB/c, NC/Nga, and 
Cba/J mice (91.55, 96.64, and 82.49 times, respec-
tively) were particularly high. Neutrophil counts in the 
ih challenge groups of all strains were similar to those 
of the respective control group.

The levels of MIP-1β have a tendency to increase in 
the iT challenge groups of all strains, especially those 
of C57bL/6N and Cba/J being significantly high 
(P<0.05, 1.59 times and 32.18 times that of the respec-
tive control group). Compared with controls, the levels 
of RaNTes also have a tendency to increase in all iT 
challenge groups, particularly those in the Cba/J strain 
was significantly increased (P<0.05).

Analysis of hilar LNs
We measured the production of several allergy-relat-

ed cytokines (IFN-γ and IL-4, -13, -17A) to assess the 
allergic reaction in the local (hilar) LNs (Fig. 6).

Compared with that in the respective control mice, 
IFN-γ concentration in the hilar LNs tended to be in-
creased in iT and ih challenge groups except for 
C57BL/6N, and was significantly increased in the IT 
challenge groups of baLb/c (2.51 times) and Cba/J 
(11.21 times) mice and the ih challenge group of NC/
Nga mice (3.48 times). The hilar LN levels of iL-4, -13, 
and 17a tended to be increased in iT and ih challenge 



R. NishiNo, ET AL.440

groups except for C3h/heN. in addition, level of iL-17a 
in the NC/Nga ih challenge group was 2.37 times high-
er than that in the control group, and those of iL-4 and 
-17a in C57bL/6N mice of the ih challenge group were 
higher than that of the respective control group (2.95 and 
2.53 times, respectively). in contrast, the control group 
of C3h/heN was notably high levels in allergy-related 
cytokine levels, and these cytokine levels were no in-
creases those treated groups of C3h/heN.

Discussion

in a new method for detecting environmental chemi-
cal–related respiratory allergens, we initially and suc-
cessfully used our novel long-term sensitization–chal-
lenge protocol in baLb/c mice [11, 12], one of the most 
popular species and strains used in allergy models and 

a known high responder of Th2-mediated immunoreac-
tions [27]. in the current study, we evaluated and com-
pared the airway allergic responses of the baLb/c, NC/
Nga, C3h/heN, C57bL/6N, and Cba/J strains of mice 
in our model system using chemical respiratory allergen 
glutaraldehyde (Ga). These strains are all used fre-
quently in studies of inflammation, respiratory allergens, 
and allergy. C57bL/6N strain mice are Th1 high respond-
ers and have been used in several inflammation [36, 39] 
and respiratory allergy [29] models. established as an 
inbred strain in 1995, NC/Nga mice originated from 
Japanese fancy mice [24] and have been useful in mod-
els of human atopic dermatitis and allergic airway in-
flammation [16]. In addition, NC/Nga mice demon-

Fig. 2. (a) Cellular prolification in LLNA (mean ± 1 SD; n=3 per 
group) (b) Lymph node weitht (mg; mean ± 1 SD; n=3 per 
group) in mice with no treatment (0%) and treatment Ga 
(0.1, 0.25, 0.5%).

Fig. 3. (a) Total serum IgE levels (pg/ml; mean ± 1 SD; n=5 per 
group) and (b) IgE-positive B-cell counts (mean ± 1 SD; 
n=5 per group) in mice with no treatment (intact), dermal 
sensitization followed by intratracheal challenge with Ga 
(iT), or dermal sensitization followed by inhaled challenge 
with GA (IH). Values significantly different from that of 
the intact group are indicated by asterisks (*, P<0.05;  
**, P<0.01; t-test).
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strated particularly massive and prolonged allergic 
responses, such as eosinophilic inflammation and IgE 
production, in our previous study [30]. We included 
Cba/J mice in the current study because this strain has 
often been used in LLNas as a method for identifying 
potential skin-sensitizing substances [20, 31]. C3h/heN 

mice are a common strain in diverse fields of research 
including allergy [43]. in the current study, we consid-
ered C3h/heN mice to represent the overall moderate 
responder among the strains we evaluated.

We first confirmed the concentration of GA that yield-
ed a positive response (i.e., EC3 value ≥3) in the LLNA. 
This test assesses the potential of chemicals to cause a 
primary T-lymphocyte proliferative response after topi-
cal application of the test chemical to the skin of mice 
[9]. because the LLNa involves dermal application, 
strictly speaking, it is appropriate only for assessing the 
risk of allergic contact dermatitis. However, Vanoirbeek 

Fig. 4. Differential cell counts (mean ± 1 SD; n=5 per group) and 
in baLF of mice with no treatment (intact), dermal sensi-
tization followed by intratracheal challenge with Ga (iT), 
or dermal sensitization followed by inhaled challenge with 
Ga (ih). (a) Representative dot plots showing the gating 
strategy used to identify different cell types in baLF. (b) 
Eosinophil and (c) neutrophil counts. Values significantly 
different from that of the intact group are indicated by 
asterisks (*, P<0.05; **, P<0.01; t-test).

Fig. 5. Differential chemokine levels (pg/ml; mean ± 1 SD; n=5 
per group) in baLF of mice with no treatment (intact), 
dermal sensitization followed by intratracheal challenge 
with Ga (iT), or dermal sensitization followed by inhaled 
challenge with GA (IH). (a) MIP-1βand (b) RANTES con-
centrations. Values significantly different from that of the 
intact group are indicated by asterisks (*, P<0.05;  
**, P<0.01; t-test).
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et al. [41] demonstrated that this test could be used to 
estimate the “generic” sensitizing ability of chemicals. 
For the current study, we therefore adopted a sensitiza-
tion dose of 0.5% Ga which was equivalent to the eC3 
value and a challenge dose of 0.25% Ga which was half 
of the challenge dose. This challenge dose failed to in-
duce a proliferative response after a single dose but ef-
fectively increased the population of LN cells after 
multiple doses.

To achieve our goal of identifying the optimal mouse 
strain(s) to use in our model, we focused on several im-
mune parameters. among them, ige antibody plays an 
important role in the development of respiratory allergy 
and can be used as a marker of several chemical-induced 
allergies [21]. in addition, in the development of the 
allergic response, activated b-cells can act as antigen-
presenting cells for helper T-cells, resulting in hyper-
production of ige [14, 17]. To evaluate the ige reactions 

after sensitization to Ga, we measured total ige in serum 
and the number of ige-positive b-cells in LNs. accord-
ing to our results, serum ige levels and ige-positive 
b-cells tended to be increased in the Ga-treated groups 
as compared with the comtrol group of all strains. Fur-
thermore the particularly strong increases in the serum 
ige concentrations of the ih NC/Nga mice and the mark-
edly elevated ige-positive b-cell counts in the ih chal-
lenge group of the NC/Nga mice suggest their likely high 
susceptibility to respiratory allergy. These upregulations 
in the NC/Nga strains of mice imply that they are par-
ticularly suitable for use in our model system for iden-
tifying and evaluating environmental chemical–related 
respiratory allergens. in contrast, b-cell counts were 
markedy increased in the ih challenge group of the 
C57bL/6N mice, but serum ige concentrations of the 
treated C57bL/5N groups were comparable to the con-
trol group. although Cba/J treated groups were in-

Fig. 6. Cytokine production in hilar LN cells. Designations of treatments are as in Fig. 2. The levels of (a) IFNɤ, (b) IL-4, (c) IL-13, 
and (d) IL-17A are expressed as mean ± SD (pg/ml; n=5 per group).
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creased to serum ige level, b-cell counts were compa-
rable to the control group. it is showed that ige 
prosductivity of b-cell in C57bL/6N was lower than 
other strain, and ige prosductivity of b-cell in Cba/J 
was high. Thus, it is suggested that ige productivity of 
b-cell differ with mice strains.

Respiratory allergy is a chronic inflammatory disease 
of the airways that is characterized by reversible airway 
observation, airway hyperreactivity, and remodeling of 
airways. Infiltration of eosinophils into lung is a funda-
mental trait of the inflammatory response in respiratory 
allergy and may be important in the pathogenesis of this 
disease [23, 26, 28, 32]. in addition, eosinophils can 
release chemokines (MIP-1, RANTES, etc.) as allergy-
related chemical mediators. Neutrophils are also in-
volved in allergic inflammatory reactions [10]. We there-
fore used flow cytometry to analyze the eosinophil and 
neutrophil counts and the levels of allergy-related che-
mokines (MIP-1β and RANTES) in BALF. According 
to our results, these parameters tended to be increased 
in the iT challenged groups of baLb/c, NC/Nga, and 
Cba/J mice and the ih baLb/c mice. These upregula-
tions in the baLF of baLb/c and NC/Nga mice ap-
peared particularly well correlated with their ige reac-
tions.

Like ige and baLF reactions, T-lymphocytes play a 
pivotal role in the development of respiratory allergic 
diseases. The mechanism of chemical-induced respira-
tory allergy is dependent on Th2-type cytokines [1]. 
Cd4+ T-cells infiltrate the lung lumen and express a T-
helper type 2 (Th2) pattern of cytokines [1, 43]. Cyto-
kines secreted by these cells, including IL-4 and −13, 
appear to function in concert with chemokines and 

other mediators to recruit and activate the eosinophils 
of the allergic inflammatory response [19]. In our current 
study, baLb/c, NC/Nga, C57/bL6N, and Cba/J mice 
showed increased LN production of Th2 (iL-4, -13) and 
Th1 (IFN-γ) cytokines compared with control levels. 
Th1 cytokines are associated with allergic contact der-
matitis [20] and contribute to allergic airway inflamma-
tion [7]. Th17 cells recently have been shown to produce 
IL-17A, which is considered to be a pivotal proinflam-
matory molecule in respiratory allergy [35]. in our study, 
all strains except C3h/heN showed increased production 
of iL-17a by LN cells after challenge, and these in-
creases were particularly pronounced in the ih groups 
of NC/Nga and C57bL/6N mice. as described earlier, 
the upregulations that we noted in the LNs of baLb/c 
and NC/Nga may correlate with the ige and baLF reac-
tions observed. in the control group of C3h/heN mice, 
these cytokine levels were notably high as compared 
with those of other strains and were comparable to the 
treated groups of C3h/heN mice. according to the men-
tioned above, C3h/heN mice might be inappropriate for 
use in our model system for identifying and evaluating 
environmental chemical–related respiratory allergens 
because their high responder of cytokine productions.

overall, the results support the notion that allergic 
responses differ among exposure routes and strains of 
inbred mice (Table 1). dermal sensitization and intra-
tracheal challenge groups showed high susceptibility to 
respiratory allergic inflammation. Although not the ac-
tual route for the introduction of respiratory allergens, 
intratracheal administration is one of the topical and 
directly administration of lung and pulmonary inflam-
mation more directly than does inhalation exposure, 

Table 1. allergic responses among inbred mouce strains

baLb/c NC/Nga C3h/heN C57bL/6N Cba/J
ige iT + ++ + + +

ih ++ ++ + + +
ige positive b-cell iT + + - + +

ih - ++ - ++ +
eosinophil iT - + - ++ ++

ih ++ + - + +
neutrophil iT + + ++ ++ ++

ih - - - - -
chemokine iT ++ + - ++ +

ih + + - ++ -
cytokine iT ++ + - + ++

ih + ++ - ++ +

-: comparable to the intact group. +: increase compared with the intact group. ++: signifi-
cantly increase compared with the intact group.
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perhaps even causing excessive inflammation [6]. In 
comparison, ige and cytokine levels, which are known 
to be involved in the development of respiratory allergy, 
were increased after our inhalation challenge, which 
more closely approximates the actual exposure route 
than does intratracheal administration. Therefore we 
suggest that these responses that were induced by inha-
lation exposure according to our protocol correspond to 
real environmental data.

The baLb/c, NC/Nga, C57bL/6N, and Cba/J treat-
ment groups all showed increased allergic airway inflam-
mation. in addition, the baLb/c and NC/Nga mice 
showed fairly uniform increases in all analyses and 
smaller dispersion than did the other strains. although 
C3h/heN mice demonstrated markedly increased total 
ige levels in serum, the levels of cytokine were compa-
rable to those of the control groups. Therefore, we pro-
pose that the baLb/c and NC/Nga mouse strains are 
likely to be particularly useful in developing an effective 
method for identifying and evaluating environmental 
respiratory allergens. our future efforts will focus on 
further refining our model system in these two mouse 
strains.
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