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Abstract

Introduction: Advances in natural language processing (NLP), speech recognition, and

machine learning (ML) allow the exploration of linguistic and acoustic changes previ-

ously difficult to measure. We developed processes for deriving lexical-semantic and

acoustic measures as Alzheimer’s disease (AD) digital voice biomarkers.

Methods: We collected connected speech, neuropsychological, neuroimaging, and

cerebrospinal fluid (CSF) AD biomarker data from 92 cognitively unimpaired (40 Aβ+)
and 114 impaired (63 Aβ+) participants. Acoustic and lexical-semantic features were

derived from audio recordings usingML approaches.

Results: Lexical-semantic (area under the curve [AUC] = 0.80) and acoustic (AUC =

0.77) scores demonstrated higher diagnostic performance for detecting MCI com-

pared to Boston Naming Test (AUC = 0.66). Only lexical-semantic scores detected

amyloid-β status (p = 0.0003). Acoustic scores associated with hippocampal volume

(p = 0.017) while lexical-semantic scores associated with CSF amyloid-β (p =

0.007). Bothmeasures were significantly associated with 2-year disease progression.

Discussion: These preliminary findings suggest that derived digital biomarkers may

identify cognitive impairment in preclinical and prodromalAD, andmaypredict disease

progression.
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Highlights

∙ This study derived lexical-semantic and acoustics features as Alzheimer’s disease

(AD) digital biomarkers.
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∙ These features were derived from audio recordings using machine learning

approaches.

∙ Voice biomarkers detected cognitive impairment and amyloid-β status in early

stages of AD.

∙ Voice biomarkers may predict Alzheimer’s disease progression.

∙ These markers significantly mapped to functional connectivity in AD-susceptible

brain regions.

1 BACKGROUND

Alzheimer’s disease (AD) is characterized by progressive neuropatho-

logical changes thatmay begin decades before cognitive and functional

symptoms appear. Consequently, efforts have focused on innovative

tools or biomarkers for early identification of pre-dementia stages.

The identification of in-vivo AD pathology using traditional cog-

nitive tools has up to a 25% false positive rate when compared

to autopsy confirmation.1 Detailed neuropsychological assessments

improve accuracy butmaybe time-consuming, costly, andmaynot have

the specificity for in-vivo biomarker status.2 In the Imaging Demen-

tia Evidence for Amyloid Scanning study, 25% of those diagnosed with

mild cognitive impairment (MCI) with AD and 15%of ADdementia had

negative amyloid positron emission tomography (PET).3 AD signature

biomarkers, characterized by low amyloid-β-1-42 (Aβ42), and elevated
total tau (t-tau) and phosphorylated (p-tau), enhance diagnostic accu-

racy and specificity, especially in early (preclinical and prodromal)

AD.4

Subtle language features of connected speech may be detectable

years before clinical presentation of cognitive decline. For exam-

ple, in the Nun study, early low idea density and low grammatical

complexity in autobiographies were associated with late-life demen-

tia, post-mortem lower brain weight, greater cerebral atrophy, and

neurofibrillary pathology.5 However, it has been suggested that the

relationship between idea density and AD risk in the Nun study may

have been mediated by Apolipoprotein E allele status.6 Evidence fur-

ther suggests that early cognitive changes are underrecognized in

primary care settings and hence, may deprive patients of knowledge

concerning the need to plan for the future, and of clinician recommen-

dations to engage in promising neuroprotective lifestyle intervention,

and referral to clinical trials.7–10 New brief digital-based screenings

may offer additional support to primary care providers in flagging high

risk individuals for further assessments.

Subtle patterns that transcend sentence structure, word count, or

grammatical features may be detected via natural language process-

ing (NLP) using graph theory to derive semantic graphs from audio

recordings of cognitively normal or impaired individuals. Automatic

speech recognition (ASR) acoustically distinguishes MCI in symp-

tomatic stages of AD using prosodic cues related to pitch (e.g., rate of

vocal fold vibration during voiced segments of speech), voicing (e.g.,

percentage of speech produced utilizing vocal folds such as with vowel

sounds as opposed to unvoiced harsher sounds usually associatedwith

consonants), and speaking rate and formant energy (e.g., spectral shape

of energy in voiced sounds).11 Advances in NLP, ASR, and machine

learning (ML) offer an opportunity to explore highly complex linguis-

tic and acoustic changes in connected speech in a non-obtrusive way.

These assessments canbeautomatedandused in clinical artificial intel-

ligence. Although such methods can detect MCI,12–15 the ability to

detect brain biomarker status in AD has not been sufficiently explored.

The latter has become more critical as newer therapies are targeting

those with brain amyloid-β positivity.
Prior linguistic changes in AD and speech production have been

mapped to specific brain regions for example, atrophy in hippocam-

pal, entorhinal, and temporoparietal regions, and speech motor con-

trol networks.16–18 These changes also map onto altered network

connectivity19,20 including the semantic control network (SCN).21

Resting state functional MRI (rs-fMRI) investigations have revealed

alterations of functional connectivity (FC) in the cognitive control

network (CCN) linked to linguistic abilities.22–24 Since digital voice

biomarkersmay reflect both linguistic and speech changes, it is unclear

if these novel biomarkers will map to previously known linguistic or

speech brain networks.

In this study, we describe a brief protocol using connected speech

and related analyses in normal cognition and MCI. We combined ML

with innovative NLP and ASR to derive digital voice biomarkers for AD

including acoustic features as well as ‘meta-semantic’ features which

are based on the lexical semantic characteristics of connected speech

and that capture subtle patterns that transcend sentence structure and

word count and other grammatical indices. We then investigated their

association with neuropsychological measures and cerebrospinal fluid

(CSF) biomarkers andmapped the significant voice biomarker features

to potential underlying brain networks.

2 METHODS

2.1 Participant description

Datawere collected fromparticipants in theBrain StressHypertension

and Aging Research Program (B-SHARP) at Emory University. Partic-

ipants were ≥50 years, cognitively unimpaired (CU) or with MCI, and

identified through a referral fromEmoryGoizueta Alzheimer’s Disease
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RESEARCH INCONTEXT

1. Systematic review: The authors conducted literature

searches using PubMed and reviewed published litera-

ture on digital Alzheimer’s disease (AD) biomarkers.With

recent advances in natural language processing, auto-

matic speech recognition and machine learning, linguistic

and acoustic changes in connected speech may detect

cognitive impairment and brain biomarker status in early

stages of AD, but has yet to be fully explored.

2. Interpretation: Our findings suggest that lexical-

semantic biomarkers have significant value in the

detection of amyloid-β status, and both lexical-semantic

and acoustic biomarkers are sensitive to cognitive

status, have higher diagnostic accuracy compared to

Boston Naming Test, and may be sensitive in tracking AD

progression in its early stages.

3. Future directions: A strong potential exists for advanc-

ing technologies with connected speech measures to

develop digital voice biomarkers of AD. Use of these dig-

ital biomarkers may offer additional diagnostic benefits

in clinical and research settings and warrants further

investigation.

Research Center or through strategic local community partnerships.

Participants underwent study screening and were excluded if they had

a history of stroke in the past 3 years, a clinical diagnosis of dementia of

any type, abnormal serum thyroid stimulating hormoneor vitaminB12,

or had no study informant defined as an individual who maintained

regular contact with the participant ≥1 time per week. Emory Institu-

tional ReviewBoard approved the study protocol, and each participant

provided a written informed consent.

2.2 Cognitive assessments

We collected two separate cognitive batteries for: (i) cognitive catego-

rization (collected at screening) and (ii) cognitive monitoring (collected

at baseline and follow-up). The cognitive categorization battery was

based on modified Petersen MCI criteria25: (a) subjective memory

complaints; (b) Montreal Cognitive Assessment (MoCA) score <26;

(c) Clinical Dementia Rating (CDR) score, memory subscale = 0.5; (d)

Wechsler Memory Scale-Revised delayed Logical Memory subscale,

and (e) Functional Activities Questionnaire (FAQ) score ≤7. Supple-

ment Section 1.1 provides additional details of the cognitive criteria

and scoring protocol.

Additional cognitive monitoring tests26 included episodic memory

(Hopkins Verbal Learning Test-Revised), executive functioning (Trail

Making Test), confrontation naming (15-item Boston Naming Test,

BNT) and timed phonemic Verbal Fluency Test. The BNT was specifi-

cally of interest for comparison with digital voice biomarkers since this

was ourmain linguistic task.

2.3 Audio recording

Participants underwent audio recordings during their baseline visits.

Adequate near card visual acuity was confirmed and a test record-

ing was performed to assess audio clarity prior to the start of each

recording. We designed a study protocol (see Supplement) to cap-

ture connected speech using a picture description, non-structured

natural speech and speech during the verbal fluency and confronta-

tion naming tasks. The picture description task using the picture,

“The Circus Procession” (Figure 1, public domain from Juvenile col-

lection, 188827), provided an ecological approximation of conversa-

tional abilities (i.e., spoken language production used in a sponta-

neous and continuous manner).28–31 Each task was recorded for 1–2

min on an Apple device (iPod) and audio files stored on a secure

server.

2.4 Acoustic and lexical-semantic analyses

We derived acoustic features using a standardized approach recom-

mended in the GenevaMinimalistic Acoustic Parameter Set (GeMAPS)

for voice research.32 GeMAPS represents a common baseline for eval-

uating efficacy of specific acoustic features in relation to various

speech studies. For this analysis, multiple measures related to speech

motor control possibly affected by neurodegeneration were included.

Our acoustic analysis workflow was conducted on the full audio file

including conversational recordings and cognitive assessments.33 A list

of features is provided in the online supplement (Table S1) and their

derivations are described in Eyben et al.34 In addition, we derived an

equivalent sound level measure which adjusts for the variability in

audio recording settings.

Our NLP approach has been published35 and is described in the

online supplement (Figure S1). JC conducted NLP analysis on 100MCI

and CU participants selected randomly from the sample but matched

on MoCA to examine the ability of the developed digital biomarkers

in distinguishing cognitive status and amyloid-β status in the spe-

cific situations where commonly used screening tasks like MoCA may

overlap and hence, alonemay be insensitive to group differences. Com-

parisons of derived lexical-semantic indices (described in Supplement

Section 1.2.5, Figure S2) were conducted between cognitive and CSF

biomarker status.

2.5 ML approach

Due to differences in the nature of NLP and acoustic data, we

implemented two ML approaches. For the acoustic analysis, we first

conducted a feature selection step to obtain features that provided

the most information differentiating CU versus MCI from the full

sample.36–38 We compared three feature selection approaches using
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F IGURE 1 Picture Description Task using The Circus Procession (public domain from Juvenile collection, 188827).

a classification ML modeling (Table S2). The model with the high-

est accuracy was used to derive a model-based digital acoustic score

for each participant, which was then advanced into the statistical

analyses. For the NLP analysis, a classification prediction ML model

was also employed using logistic regression (LR), neural network (1

and 2 hidden layers),35 and an ensemble model. The approaches

with the highest accuracy/performance were then used to derive

lexical-semantic scores advanced into the statistical analyses. Feature

selection results andMLmodeling accuracy scores are provided in the

online supplement (Supplement Sections 1.2.5 and 1.2.6, Figure S1,

Tables S3-S4).

2.6 AD Biomarker and brain MRI measurements

Following a fast, baseline CSF samples were collected via lumbar

puncture using 24G Sprotte atraumatic spinal needles and ster-

ile polypropylene tubes (Falcon Fisher Scientific UNSPSC Code

41121703), separated into0.5 cc aliquots, storedat -80◦C, and shipped

for analysis by the Biomarker Research Laboratory, University of

Pennsylvania. CSF biomarkers (Aβ42, total tau, and p-tau181) were

measured using theMultiplex xMAP Luminex platform (Luminex Corp,

Austin, Texas, USA) with Innogenetics (INNO-BIA AlzBio3; Ghent,

Belgium) immunoassay reagents.

Brain MRI data were collected using a 3.0 Tesla Trio MRI scan-

ner (Siemens Medical Solutions, Malvern, Pennsylvania, USA). High-

resolution, T1-weighted images, hippocampal volume and other vol-

umetric measurements were collected.39 Left and right hippocampal

volumes were obtained and combined to derive the total hippocampal

volume. Intra-cranial volumewas derived for adjustedmeasurements.4

rs-fMRI data were acquired to assess FC between brain regions.40

See Supplement for details of MRI assessment and pre-processing

(Section 1.3).

2.7 Statistical analyses

We compared demographic, clinical, imaging and CSF biomarkers in

CU and MCI using Student t-test or Chi-square test. We assessed the

discriminatory/diagnostic ability of digital voice biomarkers (acoustic

and lexical-semantic) in detecting cognitive status (two groups) and

CSF biomarker status (two groups) using receiver operating charac-

teristic (ROC) curves and area under the curve (AUC) for the derived

scores.41 For reference, we provide similar analyses for our main lan-

guage task (BNT) as well as the other cognitive tests. We then tested

performances of the voice measures in detecting CSF Aβ42 status in

CU and the MCI separately (four groups in total). We also assessed

associations of derived digital voice biomarkers with other AD indica-

tors including hippocampal volume and CSF tau (both as continuous

variables) and evaluated their associations with disease progression

assessed as the change in CDR Sum of Boxes (CDR-SOB) over the

subsequent 2 years using regression analysis with residual distribu-

tion check for model fit. Statistical analyses were conducted using SAS

v9.4 (Cary, North Carolina, USA) and ML performed using Waikato

Environment for Knowledge Analysis (WEKA; v3.8.4, Hamilton, New

Zealand).42

3 RESULTS

At the time of this analysis, we had screened 300 participants and 91

were excluded (25 refused LP and/or MRI, three had dementia, 12 had
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TABLE 1 Overall comparisons of demographic, neuropsychological, and biomarker characteristics by cognitive status

Characteristics

CU

Mean± SD*
(n= 92)

MCI

Mean± SD*
(n= 114) p-value

Age (years) 63.2± 7.3 64.9± 7.2 0.09

Sex, no. (%) 0.19

Female 60 (65.9%) 65 (57.0%)

Male 31 (34.1%) 49 (43.0%)

Race, no. (%) 0.0013

White 56 (61.5%) 43 (37.7%)

Black or African American 34 (37.4%) 71 (62.3%)

Asian 1 (1.1%) 0 (0.0%)

Education (years) 16.1± 2.5 15.2± 2.9 0.033

Marital status, no. (%) 0.016

Married 45 (49.5%) 43 (37.7%)

Divorced/separated 17 (18.7%) 37 (32.5%)

Widowed 7 (7.7%) 18 (15.8%)

Single/nevermarried 22 (24.2%) 15 (13.2%)

BMI, kg/m2 28.3± 6.4 31.0± 7.9 0.0093

Family history of dementia, no. (%) 54 (60.7%) 42 (37.5%) 0.0011

MoCA total score 26.7± 2.3 21.6± 3.7 <0.0001

Trail A completion time (sec) 34.2± 11.5 42.2± 17.7 0.0002

Trail B completion time (sec) 83.6± 47.4 137.5± 77.5 <0.0001

HVLT-R, delayed recall 9.6± 2.1 6.8± 3.1 <0.0001

BostonNaming Test 14.3± 1.2 13.3± 1.7 0.0005

CDR SOB 0.05± 0.12 0.61± 0.42 <0.0001

CDR-SOB, yearly change 0.05± 0.12 0.61± 0.63 <0.0001

Hippocampal volume (mm3) 7548± 871 7022± 1030 0.0003

CSFAD biomarkers

Aβ42, pg/ml 256± 65 228±74 0.02

%Aβ42 positive 43.4% 55.1% 0.03

Total tau, pg/ml 53± 30 65± 45 0.0007

p-tau, pg/ml 14± 7 16± 9 0.009

Abbreviations: AD, Alzheimer’s disease; Aβ, amyloid beta; BMI, bodymass index; CDRSOB, Clinical Dementia Rating - Sumof Boxes; CSF, cerebrospinal fluid;

CU, cognitively unimpaired; HVLT-R, Hopkins Verbal Learning Test-Revised; MCI, mild cognitive impairment; MoCA, Montreal Cognitive Assessment; p-tau,

phosphorylated tau; SD, standard deviation.

*Values aremean± SD or n (%).

other neurological, psychiatric or health issues which precluded their

inclusion, four did not have a study partner, one did not speak English,

and the remainder declined due to a lack of time or loss of interest).

Three additional participants did not have adequate voice recordings.

The final sample included 206 participants (51% African American), of

whom92 (45%)were CU and 114 (55%)met clinical consensus criteria

for MCI. No participant refused audio recordings or reported privacy

concerns related to audio recordings. At baseline, 40 (43%) CU and 63

(55%)MCIparticipantswereAβ-positive. Participantswere reassessed
after 2 years and showed an average change in CDR-SOB of 0.29 (SD=

0.5, range = 0–3). Table 1 describes demographics, psychosocial, neu-

ropsychological, and biomarker characteristics between the CU and

MCI groups.

3.1 Acoustic and lexical-semantic score analysis

Table 2 shows the acoustic and lexical-semantic scores as a function

of cognitive status, CSF biomarker status, and cognitive/biomarker

status. The MCI group had significantly higher acoustic scores com-

pared to the CU group (p < 0.0001). These differences remained

significant after adjusting for age, race, sex, and years of education
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TABLE 2 Derived acoustic and lexical-semantic scores presented as adjusted least squaremean± standard error in the cognitive, Aβ positive,
and combined cognitive and Aβ positive subgroups

Acoustic score

LSM± SE* p-value

Lexical-semantic

score

LSM± SE* p-Value

Cognitive subgroups

Cognitively Unimpaired −0.47 ± 0.08 <0.0001 0.23 ± 0.07 <0.0001

MCI 0.85 ± 0.03 −0.22 ± 0.08

Aβ subgroups

Aβ negative −0.03 ± 0.11 0.813 0.23 ± 0.08 0.0004

Aβ positive 0.09 ± 0.11 −0.19 ± 0.08

Cognitive and Aβ subgroups

CU/Aβ- −0.48 ± 0.23 <0.0001 0.34 ± 0.12 <0.0001

CU/Aβ+ −0.53 ± 0.24 0.17 ± 0.09

MCI/Aβ- 0.73 ± 0.26 0.12 ± 0.10

MCI/Aβ+ 0.63 ± 0.25 −0.51 ± 0.09

Abbreviations: Aβ-, amyloid beta negative; Aβ+, amyloid beta positive; CSF, cerebrospinal fluid; CU, cognitively unimpaired; LSM, Least square mean; MCI,

mild cognitive impairment; SE, standard error.

*Values are reported as adjusted least square means ± standard errors. All means and p-values are adjusted for age, sex, education, and race. p-Values are
model-derived for between group differences.

(p < 0.0001). In contrast, lexical-semantic scores were lower in the

MCI versus CU group (p < 0.0001) and remained significant after

adjusting for covariates (p < 0.0001). In the whole sample, there

was no significant difference in acoustic scores between Aβ-positive
(Aβ+) and negative (Aβ-) participants (p = 0.42). However, in the

MCI subgroup, acoustic scores were significantly higher in partici-

pants who were Aβ+ compared to those who were Aβ- (p < 0.0001).

Lexical-semantic scores were significantly different between Aβ+
versus Aβ- participants (p = 0.0003) in the full sample and MCI sub-

group (p < 0.0001). These results remained significant after covariate

adjustments.

3.2 Diagnostic performance for detecting MCI
and amyloid status

We further compared digital voice biomarker scores to the BNT in

detecting MCI or Aβ status using ROC analyses. Lexical-semantic

scores (AUC = 0.80) and acoustic scores (AUC = 0.77) had compara-

ble or higher diagnostic performance for detecting MCI relative to the

BNT (AUC=0.66). Thiswas also true for verbal fluency (AUC=0.68 for

MCI and 0.52 for Aβ status) and episodicmemory (AUC= 0.75 forMCI

and 0.58 for Aβ status) (Table S5). Lexical-semantic scores also demon-

strated high diagnostic performance for detecting Aβ+ status (AUC =

0.77), and for distinguishing status within the CU/Aβ and MCI/Aβ sub-
groups (AUC = 0.61 and 0.81, respectively). Overall, lexical-semantic

scores outperformed acoustic scores, BNT and MoCA in Aβ detection
(Figure 2, Table S6). In addition, we compared diagnostic performance

by race as potential bias might be present in audio recordings. Our

analysis did not show a difference by race in either lexical seman-

tic or acoustic analyses. These results are provided in Figure S2 in

supplemental materials.

3.3 Association with tau biomarkers, hippocampal
volume, and disease progression

Acoustic scores showed a significant associationwith hippocampal vol-

ume (R2 = 0.03, beta = -60.7, p = 0.017), whereas lexical-semantic

scores did not (R2 = 0.04, beta = -57.6, p = 0.38). None of the digi-

tal voice biomarkers were associated with total tau or p-tau (Table S7).

Both lexical-semantic (beta = -0.18; p = 0.0097) and acoustic scores

(beta=0.26, p=0.009)were associatedwith change inCDR-SOBafter

adjusting for covariates (Figure 3, Table S7).

3.4 Mapping digital voice biomarkers to brain
connectivity

Derived acoustic and lexical-semantic scores were mapped to specific

brain networks involved in cognitive and language control. Specifi-

cally, significant positive correlations were observed between digital

biomarkers in the cognitive control somatomotor (CC-SM) networks;

for instance, connections of superior medial frontal gyrus (SMFG)

and inferior frontal gyrus (IFG) in the CC domain compared to the

paracentral lobule, right postcentral gyrus, superior parietal lobule

regions in the SM domain. Likewise, a number of somatomotor default

mode (SM-DM) connections showed positive correlations with lexical-

semantic scores. In contrast, a number of subcortical default mode

(SC-DM), subcortical cognitive control (SC-CC), and somatomotor
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F IGURE 2 Comparisons of ROC analyses of derived digital voice biomarkers (acoustic and lexical-semantic) and BNT asmeasures of linguistic
performance, by cognitive status (MCI vs. CU, left column) and amyloid status (Aβ positive vs. Aβ negative, right column). Aβ negative, amyloid beta
negative; Aβ positive, amyloid beta positive; BNT, Boston Naming Test; CU, cognitively unimpaired; ROC, Receiver Operating Characteristic; MCI,
mild cognitive impairment.

visual (SM-VIS) links showed significant negative correlations with

lexical-semantic scores. Figure 4 shows the brain connectogram and

domain-wise modularized correlation matrix representing brain con-

nections and highlighting significant correlations between FNC and

the lexical-semantic score. Of note, many regions in the SCN and

CCN were highly activated and correlated with digital biomarker

measures.

4 DISCUSSION

This study found that, not only did digital voice biomarkers differ

by cognitive status, but they were also accurate in detecting AD

biomarker status. These derived voice biomarkers also tracked disease

progression, measured by changes in the 2-year follow-up CDR-SOB

score.
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F IGURE 3 Association of baseline acoustic (panel
A) and lexical-semantic (panel B) scores with the
2-year change of CDR-SOB (higher value indicates
greater disease progression). X-axis is the derived
digital biomarker score. Y-axis is the change in
CDR-SOB over 2 years. Higher baseline acoustic
score and lower lexical-semantic scores were
associated with greater increases in CDR-SOB
reflecting greater disease progression with greater
cognitive or functional impairment at 2-year
follow-up. CDR SOB, Clinical Dementia Rating - Sum
of Boxes.

A recent report by Verfaillie et al. showed that in 63 non-demented

individuals (19with Aβ+ status), there were no significant associations

between amyloid load and performance on conventional neuropsycho-

logical language tests, whereas fewer content words, abstract nouns,

and syntactic complexity were associated (p < 0.01) with amyloid

load.43 All their participants were enrolled in the Subjective Cogni-

tive Impairment Cohort (SciencE),44 a prospective study of individuals

with cognitive complaints but normal cognitive performance. In con-

trast, our CU participants did not have significant cognitive complaints

and as such, the findings indicate that associations between language

features and amyloid status can be detected even before changes in

cognition are subjectively experienced. These findings are especially

important for early detection of at-risk groups less likely to be referred

for evaluations, but may benefit from interventions including clinical

trial enrollment.

Weused advances inNLP and artificial intelligence to detect lexical-

semantic patterns that would otherwise be undetectable or labor

intensive to identify. Semantic degradation occurs early in AD result-

ing in a reduction in the amount of specific content information, while

changes in features such as syntax and grammar occur later in the

disease.45 Our lexical-semantic indices captured semantic, pragmatic,

and discourse aspects of language that transcended traditional NLP
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F IGURE 4 Significant associations were observed
between the derived digital biomarkers (acoustic and
lexical-semantic scores) and functional network
connectivity of the brain. The brain connections
highlighted in panel A demonstrate positive (red) or
negative (blue) covariation with the derived digital
biomarkers, whereas panel B displays the equivalent
connectogram illustration between seven brain
domains and their underlying brain regions.
Interestingly, the significant links were predominantly
focused on higher cognitive brain networks.
Significant positive correlations (p< 0.05) of the
digital biomarkers were found between several CC,
CC-SM; strongest effect and CC-DMbrain
connections, whereas significant negative
correlations (p< 0.05) were found between several
SC-DM, SC-CC, and SC-SM brain connections. AUD,
auditory; CB, cerebellar; CC, cognitive control; DM,
default mode; SC, subcortical; SM, somatomotor; VIS,
visual.

approaches which have used metrics such as text-level counts (tokens

and sentences), grammatical categories (nouns and verbs), or syntac-

tic structures (coordination, clausal modifiers, or complements). These

indices were sensitive to amyloid positivity in both normal controls

and MCI participants, had higher diagnostic performance for detect-

ing amyloid status than measures of confrontation naming, and were

associated with disease progression. It is not surprising that AUC for

individual tasks is low as a highly specific and sensitive categorization

requires lengthy and detailed cognitive interviews and testing.

Neuropsychological measures of semantic processing such as timed

category fluency and naming are frequently administered to assist

in clinically identifying patients who have possible or probable AD.
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However, negligible results have been reported on their utility in

detecting amyloid burden.46 A comprehensive and innovative feature

of our study was the analysis of acoustic speech. Acoustics capture

the essence of the expression and manner of connected speech which

can provide critical contextual information and underlying neurologi-

cal pathologies.While analysis of connected speech has been the focus

of cognitive impairment detection, acoustic analysis has been utilized

less often even though it is a viable and important research area.47 Our

findings indicated that acoustic scores were sensitive to cognitive sta-

tus (CU orMCI), had higher diagnostic accuracy compared to a naming

test, and were associated with changes in CDR-SOB. However, acous-

tic scores differed between MCI participants but not CU controls who

were Aβ+ versus Aβ-, suggesting that acoustics may be more sensitive

to amyloid status in prodromal versus preclinical AD.

The medial temporal lobe and temporo-parietal region, implicated

in semantic processing, are reportedly susceptible to pathological

change in early AD.46 Many theories have been proposed for lexical-

semantic representation in AD. The most relevant is the theory of

parallel-distributed representation where a homogeneous network of

equivalent neuronal units process every aspect of semantics.48 Con-

nectivity between anterior and posterior left superior temporal gyri

(STG) correlated with lexical-semantic processing. In contrast, connec-

tivity between STG and the middle temporal and inferior frontal gyri

correlated with phonological processing. These connections identified

for both types of processing are vulnerable to ADneuropathology.49,50

The neural representation of acoustic performance has not yet

been clarified, but we find it beneficial to view it as being related to

speech motor control. Here, speech production is based on adequate

connectivity in the language-dominant hemisphere in the left sup-

plementary motor area with dorsal frontal cortex/anterior insula and

superior cerebellum (preparatory loop), while corticobulbar systems

(motor cortex, thalamus, and putamen) participate in motor execu-

tion (executive loop).51,52 These culminate in acoustic signals where

the vocal organs disturb air molecules leading to the sounds we hear

during articulations. Derangement in preparatory or executive loops

may be detected in acoustic analysis and decomposing the compo-

nents of the two loops can reveal neural disruption. In this study, we

address this gap by including glottic waveform, derived from acoustic

waves in detecting depression. Limited evidence suggests that glottal

waveform features are altered in late stage AD.53 Our study findings

support the idea that derived lexical-semantic features using this mod-

eling approach map to areas heavily involved in semantic abilities, and

use of these tools in refining and advancing voice biomarker research

will likely be successful.

4.1 Strengths, limitations, and future directions

This study’s strengths lie in the inclusion of key components such as

AD CSF biomarker status, neuroimaging assessment, consideration of

confounders, and more comprehensive linguistic acoustic approaches

successful in detecting AD biomarker and cognitive status. There are

some limitations which underscore the need for further research.

There was a potential for misclassification of MCI verus CU, especially

with a 50% African American sample. We used the modified ADNI cri-

teria that includes the MoCA for clinically diagnosing persons as CU

or MCI. Previous reports have suggested that cutoff scores of ≤26

on MoCA may be unreliable and a lower cutoff may be indicated.54,55

The MoCA is an imperfect tool, and we did not rely on a single test

to classify participants. We believe that additional neuropsychological

criteria beyond theMoCA strengthened the likelihood of accuracy.

We used the short (15-item) BNT which while sensitive to cog-

nitive impairment, may not have been as sensitive as the 60-item

version. Some features of the picture we used to capture connected

speech may be dated and culturally dependent. Our goal was to select

a detailed scene available in the public domain that had actions, col-

ors, and objects which captured the richness of connected speech.

This scene provided an advantage over the widely used Cookie Theft

Picture56 which is not public-domain, shows few activities and objects,

and portrays stereotyped roles. Future pictures will likely need to

span multiple racial, ethnic, and socioeconomic backgrounds while

future research examines the sensitivity of digital biomarkers to

cognitive functioning anddifferencesbasedon sociocultural anddemo-

graphic mediators. Finally, the inherent ML approaches may lead to

models that are overfitting the data. We attempted at mitigating

these by incorporating analytical approaches, but overfitting is still

possible.

The time spent for voice acquisition was 6–8 min. Comparatively,

a traditional neuropsychological battery for MCI categorization and

longitudinal monitoring would require several hours. We believe this

approach to be time efficient, given its diagnostic performance for

detecting cognitive and amyloid status in under 10 min, and warrants

further development and validation. However, the ease of collecting

voice recording even without the acknowledgement of the individuals

should also be considered and safeguards for privacy and prevention

of bias and discrimination should be implemented as part of this area

development. This is particularly true in underrepresentedminorities.

4.2 Conclusion

Preliminary findings suggest that digital voice biomarkers are not only

able to detect cognitive impairment using brief audio recordings, but

distinguish AD biomarker status and disease progression. These find-

ings reveal the strong potential of advancing technologies combined

with connected speech as digital biomarkers for AD clinical care and

research participation, especially in preclinical and prodromal stages.
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