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ABSTRACT Recurrent selection (RS) has been used in plant breeding to successively improve synthetic and
other multiparental populations. Synthetics are generated from a limited number of parents ðNpÞ; but little is
known about how Np affects genomic selection (GS) in RS, especially the persistency of prediction accuracy
(rg;ĝ ) and genetic gain. Synthetics were simulated by intermating Np= 2-32 parent lines from an ancestral
population with short- or long-range linkage disequilibrium (LDA) and subjected to multiple cycles of GS.
We determined rg;ĝ and genetic gain across 30 cycles for different training set (TS) sizes, marker densities,
and generations of recombination before model training. Contributions to rg;ĝ and genetic gain from
pedigree relationships, as well as from cosegregation and LDA between QTL and markers, were analyzed
via four scenarios differing in (i) the relatedness between TS and selection candidates and (ii) whether
selection was based on markers or pedigree records. Persistency of rg;ĝ was high for small Np; where
predominantly cosegregation contributed to rg;ĝ , but also for large Np; where LDA replaced cosegregation
as the dominant information source. Together with increasing genetic variance, this compensation resulted
in relatively constant long- and short-term genetic gain for increasing Np . 4, given long-range LDA in the
ancestral population. Although our scenarios suggest that information from pedigree relationships contrib-
uted to rg;ĝ for only very few generations in GS, we expect a longer contribution than in pedigree BLUP,
because capturing Mendelian sampling by markers reduces selective pressure on pedigree relationships.
Larger TS size (NTS) and higher marker density improved persistency of rg;ĝ and hence genetic gain, but
additional recombinations could not increase genetic gain.
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RS is an integral tool in plant breeding that targets the systematic
improvement of quantitative traits in broad-based populations by in-
creasing the frequency of favorable alleles, while maintaining genetic
variability (Hallauer and Carena 2012). Source materials in allogamous
crops include open-pollinated and synthetic populations (synthetics,

Hallauer 1992). Synthetics are created by intermating a limited number
of parental components and cross-pollinating the progeny for one or
several generations (Falconer andMackay 1996). A prominent example
is the Iowa Stiff Stalk Synthetic (BSSS), which was developed from
16 inbred lines in the 1930s and has since been subjected to two
long-term RS programs (Hallauer 2008), which have contributed a
large proportion of today’s commercial maize germplasm (Mikel and
Dudley 2006).

GS is a novel statistical method (Meuwissen et al. 2001) with the
capability to accelerate future genetic progress in plant breeding
(Heffner et al. 2010). Several studies indicate a potential superiority
of GS over phenotypic selection (Bernardo 2009; Wong and Bernardo
2009; Jannink 2010; Yabe et al. 2013), marker-assisted selection
(Bernardo and Yu 2007; Wong and Bernardo 2009; Heffner et al.
2010, Yabe et al. 2013), as well as pedigree-based selection (Muir
2007; Wolc et al. 2011a, 2016; Bastiaansen et al. 2012; Van Grevenhof
et al. 2012). Although the usefulness of GS across two selection cycles
has empirically been demonstrated in biparental maize families
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(Massman et al. 2013; Beyene et al. 2015), experimental results on long-
term GS are still missing.

GS has further been proposed as a particularly suitable tool for RS in
synthetics (Windhausen et al. 2012; Gorjanc et al. 2016). In this context,
an established prediction equation could be used repeatedly for multi-
ple cycles of selection without retraining. Combined with the use of off-
season nurseries, this promises to increase genetic gain per unit time
and to reduce costs for phenotyping (Bernardo and Yu 2007). The
success of this strategy largely depends on persistency of the rg;ĝ of
estimated breeding values (EBV) across selection cycles to ensure sat-
isfactory genetic gain when selection candidates are separated by one or
more cycles from themodel training generation. Although formulas for
forecasting rg;ĝ in a single cycle were derived (Daetwyler et al. 2008;
Hayes et al. 2009; Goddard 2009; Goddard et al. 2011), no closed
analytical solutions are available for calculating rg;ĝ ; the additive genetic
variance (s2

A) and the cumulative genetic gain (
P

DG) across several
selection cycles. This is because changes in the LD pattern, allele fre-
quencies, and loss of polymorphisms are unpredictable (Jannink 2010).

While empirical results on persistency of rg;ĝ in actual plant breeding
programs are scarce to date, several simulation studies across multiple
generations investigated rg;ĝ of GS, assuming random mating of the
whole population between generations (Meuwissen et al. 2001; Habier
et al. 2007; Nielsen et al. 2009; Solberg et al. 2009). Others assumed
selection and were therefore able to evaluate potential genetic gain
using GS (Muir 2007; Sonesson and Meuwissen 2009; Jannink 2010;
Bastiaansen et al. 2012; Yabe et al. 2013, 2016; Liu et al. 2015). However,
these studies generally considered fairly large effective population sizes
Ne $ 100; which are unrealistic for synthetics in plant breeding. In
synthetics, the number of parents is usually relatively small and parents
are often related, leading to small Ne of the population. It is yet unclear
how such a small Ne influences the persistency of rg;ĝ in genomic RS.

Initially, LD betweenQTL andmolecular markers (commonly SNPs)
of high density maps was considered as the only source of information
exploited in GS (Meuwissen et al. 2001). In synthetics, LD between QTL
and SNPs is attributable to (i) LDA in the population from which the
parents were taken, and (ii) sample LD, randomly generated by using a
restricted number of parents Np (Schopp et al. 2017). Sample LD is
conserved from parents to progeny between cosegregating loci, and has
therefore been termed cosegregation. However, it was also demonstrated
that SNPs contribute to rg;ĝ by capturing pedigree relationships between
individuals (Habier et al. 2007). Research in a companion paper (Schopp
et al. 2017) showed that the choice ofNp in synthetics crucially affects the
relative importance of LDA and cosegregation as well as the contribution
of pedigree relationships in a single cycle of GS in synthetics. However, no
study systematically investigated the importance of these information
sources for the persistency of rg;ĝ and

P​DG in recurrent GS.
Besides the choice of Np; an important question is how often the

source material should be recombined before starting RS. Additional
recombination might release genetic variability useful for long-term
genetic gain (Schnable et al. 1996). For instance, Bernardo (2009) rec-
ommended the use of F2 instead of F1 plants in the production of maize
doubled haploids. However, additional recombination might also ad-
versely affect the three information sources in GS, and so far studies
have not addressed whether this can outweigh the potential increase in
long-term genetic gain.

In the present study, we applied fully stochastic forward-in-time
simulations and generated two ancestral populations differing substan-
tially in LDA: From these, we sampled different numbers of parents Np

to create synthetics that were subjected to multiple cycles of recurrent
GS, either directly or after additional generations of recombination.
Our objectives were to (i) analyze rg;ĝ and

P​DG in recurrent GS,

depending on the number of parents Np; LDA; and the number of
recombination generations NR; and (ii) determine the importance of
the three information sources, considering also NTS and SNP density.
Finally, we discuss implications for practical decisions in breeding pro-
grams employing recurrent GS.

METHODS

Genome properties and simulation of
ancestral populations
Properties of the genome, constructionof the geneticmap, and simulation
of ancestral populations are detailed in Schopp et al. (2017). In brief, we
selected maize (Zea mays L.) as a model species using genetic map
positions for 37,286 SNPs distributed over 10 chromosomes with
1913 cM in total. Using the software QMSim (Sargolzaei and Schenkel
2009), we simulated two ancestral populations with either short-range
LDA (SR) or extensive long-range LDA (LR). First, we generated an initial
population of 1500 diploid individuals by sampling alleles at each (bial-
lelic) locus independently from a Bernoulli distribution with probability
0.5. Second, 5000 loci were randomly sampled from all SNPs and hence-
forth interpreted as QTL; all remaining loci were considered as SNP
markers. Third, these individuals were randomly mated for 3000 gener-
ations with a constant population size of 1500 and a mutation rate of
2:5 � 1025 until mutation-drift-equilibrium was reached. Fourth, a
strong population bottleneck was imposed by reducing the population
size to 30 arbitrarily selected individuals, followed by 15 additional gen-
erations of randommating to generate extensive long-range LDA. Lastly,
the populationwas expanded to 10; 000 individuals and randomlymated
three times more to establish ancestral population LR. Ancestral popu-
lation SR was derived from LR by continuing random mating for 100
generations with constant population size of 10; 000 to break down long-
range LDA. Due to this large population size, genetic drift had only a
negligible influence and hence allele frequencies were nearly identical in
both ancestral populations. The heterozygous ancestral populations (LR
and SR) were considered as unrelated and were used as reference bases
for the pedigree of all subsequently derived individuals.

Simulation of synthetic populations
TheRSbreeding schemeapplied is shown inFigure 1 and factors analyzed
are listed in Table 1. The simulation of the synthetics varied, depending
on whether the parents of the TS and the recurrent selection candidates
(RSC) were identical (PTS ¼ PRSC) or disjoint ðPTS \ PRSC ¼ øÞ: For
PTS ¼ PRSC ; a single synthetic was simulated from which both the TS
and the RSC were sampled, whereas for PTS \ PRSC ¼ ø TS and RSC
were taken from two synthetics having no parents in common. In both
cases, Np 2 f2; 3; 4; 6; 8; 12; 16; 32g parental gametes were randomly
drawn from the same ancestral population and chromosomes were dou-
bled in silico to generate fully homozygous parent lines. These were
intermated to obtain all possible ½NpðNp 2 1Þ�=2 single crosses, denoted
as generation Syn0: Subsequently, single crosses were randomly mated
NR times (allowing for selfings) to obtain generation SynNR; from
which the TS (SynTSNR

) and RSC (SynRSCNR
) were later drawn. Here,

NR 2 f1; 2; 3; 4; 5g counts the number of recombination generations
conducted prior to initiating RS. For the special case of Np ¼ 2; the
Syn0 corresponded to a F1 cross and Syn1 to a F2 family.

Genetic model
Weassumed a quantitative trait based on 1000 biallelicQTLwith purely
additive gene action and absence of QTL · year interactions. For each
simulation replicate, QTL were randomly sampled from the 37,286
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SNPs present in the ancestral population. Following Meuwissen et al.
(2001), absolute values of QTL effects were drawn from a gamma
distribution with scale and shape parameter of 0.4 and 1.66, respec-
tively. Signs of QTL effects were sampled from a Bernoulli distribution
with probability 0.5. Although we assumed biallelic QTL, the alleles of
neighboring QTL are strongly correlated due to LDA and linkage, ef-
fectively leading to haploblocks that could be considered as higher-level
multi-allelic QTL. The true breeding value (TBV) gi for any individual
i (either from the synthetics or from the ancestral populations) was
computed as gi ¼

Pm
k¼1Wij aj; where Wij counts the number

of minor alleles at the j-th QTL centered by the respective ancestral
allele frequency in LR, and aj is the associatedQTL effect. Phenotypes yi
were simulated as yi ¼ gi þ ei; where ei � Nð0;s2

e Þ is an environ-
mental noise variable. The error variance s2

e was assumed to be con-
stant throughout all simulations and was determined as follows: for all

individuals in the ancestral population LR, TBVs were calculated
according to the above procedure under replicated sampling of
1000 QTL together with their associated effects. The variance of the
noise variable s2

e was then set equal to the mean additive genetic
variance s2

AðancÞ. As the allele frequencies in both ancestral popula-
tions were virtually identical, s2

AðancÞ was also the mean additive ge-
netic variance in ancestral population SR. This approach implies that
the heritability in ancestral populations LR and SR was, on average, 0.5.
Heritability was lower in the synthetics due to the finite sample of
parents and, on average, h2/0:5 for Np/20; 000:

Information source scenarios
Weemployed four distinct scenarios to evaluate the contributions of the
three information sources used in Genomic Best Linear Unbiased
Prediction (GBLUP) for estimating actual relationships at causal loci
by SNPs (cf. Habier et al. 2013). These scenarios can be distinguished by
(i) the relatedness of the TS and RSC and (ii) the type of data employed
for calculating the relationship matrix used as a kernel in GBLUP
(Supplemental Material, Table S1).

Our standard scenariowasRe� LDA � SNP;where theTS andRSC
were related (Re) as their parents were identical ðPTS ¼ PRSCÞ: The
kernel in GBLUP was calculated based on SNPs (excluding QTL)
and thus contained genomic relationships. As a consequence, this sce-
nario harnesses all three sources of information, namely: (i) pedigree
relationships captured by SNPs, (ii) cosegregation between QTL and
SNPs by virtue of the parents being identical, and (iii) LDA between
QTL and SNPs due to the presence of LDA in the ancestral population,
which was carried over to the synthetics. Re� LDA � SNP is a realistic
scenario and is perhaps the most frequent scenario encountered in
applications of GS.

Scenario Re� LEA � SNP was artificial and was derived from
Re� LDA � SNP: Here, for each of the 10 chromosomes, the multi-
locus genotypes of QTL and SNPs were regarded as separate units and
were reshuffled among the Np parents prior to intermating. This pro-
cedure broke up historical associations between QTL and SNPs due to
LDA; while conserving the LD structure among QTL and among SNPs
as well as their allele frequencies. Hence, information from LDA cannot
contribute to rg;ĝ and any LD between QTL and SNPs is exclusively due
to sampling a limited number of parental gametes from the ancestral
population, i.e., sample LD.

Scenario Re� LDA � Ped was identical to Re� LDA � SNP except
that the kernel of GBLUP was the numerator relationship matrix cal-
culated from pedigree records of all individuals (pedigree BLUP). This
scenario provided a reference for rg;ĝ and its dynamics across cycles that
can be obtained exclusively from knownpedigree relationships between
TS and RSC.

In scenario Un� LDA � SNP, the TS and RSC were unrelated
ðUnÞ; because their parents were distinct ðPTS \ PRSC ¼ øÞ: Thus,
the influence of pedigree relationships captured by SNPs and cosegre-
gation between QTL and SNPs is eliminated, and the only remaining
connection between the TS and RSC is the LD shared due to their
common ancestral population, i.e., LDA:

Genomic prediction model
We used GBLUP to predict breeding values gi according to the model
equation

yi ¼ mþ gi þ ei;

where yi and gi are the phenotypic and breeding values, respectively,
of the i-th individual, m is the overall population mean, and ei the

Figure 1 Schematic representation of the breeding program applied

in this study. Two synthetic populations Synð1ÞNR
and Synð2ÞNR

were sepa-
rately created by using NR recombination generations from Np paren-
tal gametes drawn from one ancestral population [with short- (SR) or
long-range linkage disequilibrium (LR)]. If the training set (TS) and the
recurrent selection candidates (RSC) were related, TS and RSC were

sampled from the same synthetic Synð1ÞNR
; and if they were unrelated,

they were drawn from separate synthetics Synð1ÞNR
and Synð2ÞNR

: In each
cycle of recurrent selection, Ns ¼ 10 individuals were selected and
recombined to establish the next generation.
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associated model residual. Standard assumptions about the
distribution of the random effects were ðgiÞ � MVNð0;s2

aKÞ;
ðeiÞ � MVNð0;s2

eIÞ, and stochastic independence of ðgiÞ and ðeiÞ:
Variance component estimates for s2

a and s2
e , as well as predicted

breeding values were calculated using the R-package rrBLUP
(Endelman 2011). The matrix s2

aK ¼ ðs2
akijÞ describes the vari-

ance-covariance structure of the breeding values of all individuals
(TS and RSC) and was computed based on different types of data,
depending on the information scenario. For Re� LDA � SNP;
Re� LEA � SNP, and Un� LDA � SNP; SNP-based genomic rela-
tionship coefficients kij between individuals i and j were computed
following VanRaden (2008) as

kij ¼
P

k

�
xik 2 2pk

��
xjk 2 2pk

�

P
k2pi

�
12 pk

� ;

where xik; xjk 2 f0; 1; 2g are the genotypic SNP scores and pk is the
frequency at the k-th SNP marker in the ancestral populations. In
scenario Re� LDA � Ped; pedigree relationships were computed
from the complete pedigree records of all individuals using the
R-package pedigree (Coster 2013).

Recurrent genomic selection scheme
The TS was sampled once from synthetic Synð1ÞNR

(Figure 1) and
thereupon was used to predict breeding values in all of 30 selection
cycles. The initial 100 RS candidates were sampled from the
remaining individuals of Synð1ÞNR

; if PTS ¼ PRSC; or from the second

synthetic Synð2ÞNR
; if PTS \ PRSC ¼ ø: In each cycle C; the top Ns ¼ 10

individuals were selected (before flowering) either based on (i)
EBV calculated by GBLUP or pedigree BLUP (scenario Re�
LDA � Ped), (ii) TBV, corresponding to phenotypic selection with
h2 ¼ 1; or (iii) “random breeding values” (RBV), being chosen at
random. While EBV shows the realistic decay of rg;ĝ (taking into
account that rg;ĝ in earlier cycles influences rg;ĝ in later cycles),
TBV provides an identical and constant selection accuracy of
one, independent of rg;ĝ for all scenarios. RBV shows the decay
of rg;ĝ without directional selection, i.e., the decay that is caused by
recombination and genetic drift alone. The selected fraction of
10% is realistic for practical applications and has been used in
other simulation studies (e.g., Jannink 2010). The selected candi-
dates were subsequently recombined by random mating to create
100 new progeny, serving as RSC in the next selection cycle. The
effects of NTS 2 f250; 1000g and of SNP density f0.125, 2.5 SNPs
per cMg were examined in independent simulations, with default

values of NTS ¼ 250 and 2:5  cM21 SNPs. For each combination
of factors, we conducted 500 independent simulation replicates.
Here, one replicate encompasses: (i) sampling of Np parents from
the ancestral population; (ii) sampling of 1000 QTL together with
their QTL effects and an appropriate number of SNPs to reach the
desired marker density; (iii) creation of the synthetics assuming
different numbers of generations of random mating, and sampling
of the TS and the initial RSC; (iv) simulation of phenotypes for TS
individuals; and (v) conduction of recurrent GS without retraining
for 30 selection cycles. All simulations were performed with the R
statistical language (R Core Team 2015) and code is provided in
File S2.

Cumulative genetic gain, additive genetic variance, and
prediction accuracy
In each selection cycle, the cumulative genetic gain (

P
DG) was com-

puted as the average of all 100 TBVs gi of the RSC relative to the average
in C ¼ 0. The s2

A of the RSCwas computed as the variance of gi values.
The

P
DG was expressed in units of sAðancÞ and s2

A in units of
s2
AðancÞ: rg;ĝ was calculated as the Pearson correlation coefficient be-

tween TBVs gi and predicted breeding values ĝi of the RSC.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS

Dynamics of genetic gain, prediction accuracy, and
additive genetic variance
An overview of the dynamics of cumulative genetic gain

P
DG and

prediction accuracy rg;ĝ under recurrent GS for the standard scenario
Re� LDA � SNP is given in Figure 2. Across selection cycles,

P
DG

increased concavely, approaching a plateau. Regardless of the number
of parentsNp;

P
DG was higher in LR compared to SR. For LR,

P
DG

increased together with Np; whereas for SR,
P

DG was lowest for
Np ¼ 2; highest for Np ¼ 4, and intermediate for Np ¼ 16: In the
model training generation ðC ¼ 0Þ; rg;ĝ ranged between 0.7 and 0.8
and was higher for smaller Np: After the first round of selection, there
was a substantial decline in rg;ĝ that was strongest for large Np: rg;ĝ
generally approached an asymptotic value of�0.1 in cycleC ¼ 30: The
overall level of s2

A (Figure S1) in the RSC was higher for larger Np and
strongly declined during selection, especially after the first cycle. In
C ¼ 0; s2

A was nearly identical for LR and SR, and showed a slightly
steeper decline in LR.

n Table 1 Overview of the factors analyzed in our simulation study

Factors Levels

Primary factors
Ancestral population SR, LR
Information scenario Re� LDA � SNP; Re� LDA � Ped; Re� LEA � SNP; Un� LDA � SNP
Number of parents (NP ) 2, 3, 4, 6, 8, 12, 16, 32

Secondary factors
Selection scenario EBV, TBV, RBV
Number of recombination generations (NR ) 1, 2, 3, 4, 5
Marker density 0.125, 2.5 cM21

Training set size (NTS ) 250, 1000

For secondary factors, bold face type factor levels indicate the default simulation setting. SR, short-range; LR, long-range; Re, related; LDA, ancestral linkage
disequilibrium; SNP, single nucleotide polymorphism; Ped, pedigree; LEA, ancestral linkage equilibrium; Un, unrelated; EBV, estimated breeding values; TBV, true
breeding values; RBV, random breeding values.

804 | D. Müller, P. Schopp, and A. E. Melchinger

http://www.g3journal.org/content/suppl/2017/01/04/g3.116.036582.DC1/FileS2.zip
http://www.g3journal.org/content/suppl/2017/01/04/g3.116.036582.DC1/FigureS1.pdf


Cumulative genetic gain
To explore in greater detail

P
DG in C ¼ 30 and the information

sources primarily exploited, we varied Np between 2 and 32 (Figure
3). Here, the relationship between

P
DG and Np in scenario

Re� LDA � SNP was strongly affected by the level of LDA: For LR,P
DG initially increased between Np ¼ 2 and Np ¼ 8 and then

remained nearly constant for larger Np: For SR,
P

DG also increased
initially, but then strongly decreased for larger Np: In scenario
Un� LDA � SNP ðPTS \ PRSC ¼ øÞ; PDG was much lower than in
Re� LDA � SNP and monotonically increased with growing Np: This
increase and the overall level of

P
DG was much higher in LR than

SR. In scenario Re� LDA � Ped;
P

DG was zero for Np ¼ 2; and
strongly increased with Np; plateauing at 8#Np # 12: For scenario
Re� LDA � Ped; virtually no further genetic gain could be realized
after C ¼ 2 (Figure S2).

Persistency of prediction accuracy
The persistency of rg;ĝ for selection regimes EBV, TBV, and RBV under
LR is shown in Figure 4. For scenarios Re� LDA � SNP and
Re� LEA � SNP; the overall level of rg;ĝ declined with growing Np;
whereas it increased for scenario Un� LDA � SNP (compare Figure
S3). In scenario Re� LDA � SNP; the decay of rg;ĝ was strongest in the
first selection cycle, especially for large values of Np: In scenario
Re� LDA � Ped; rg;ĝ could not be calculated for Np ¼ 2 and
NR ¼ 1; as discussed in File S1; for Np . 2; rg;ĝ started in C ¼ 0 at
intermediate values of �0.5 for Np ¼ 4 and �0.6 for Np ¼ 16 but
declined to zero within a few cycles if the selection was based on either
EBV or TBV. With selection based on RBV, rg;ĝ approached zero only
for C . 10: Scenarios Re� LDA � SNP and Re� LEA � SNP
showed identical rg;ĝ for NP ¼ 2: For Np . 2, rg;ĝ decreased faster in
Re� LEA � SNP than in Re� LDA � SNP and more so with increas-
ing Np: When ancestral long-range LDA was absent (SR), the differ-
ences between Re� LEA � SNP and Re� LDA � SNP were generally
much smaller, but otherwise trends were similar (results not shown).
Scenario Un� LDA � SNP showed an overall low level of rg;ĝ ; espe-
cially for SR, where it was close to zero. However, the decline of rg;ĝ
across cycles was attenuated compared to the other scenarios. When
selection was exercised based on TBV, the decay of rg;ĝ was similar to

selection based on EBV, but much stronger compared with selection
based on RBV.

TS size and SNP density
The influence of NTS and SNP density on rg;ĝ under selection based
on EBV is shown in Figure 5. For all scenarios, increasing NTS elevated
the level of rg;ĝ across cycles. Specifically, for scenarios assum-
ing PTS ¼ PRSC; increasing NTS reduced the drop in rg;ĝ after
the first selection cycle, which was not observed for scenario
Un� LDA � SNP ðPTS \ PRSC ¼ øÞ: Increasing marker density from
0.125 to 2.5 cM21 notably increased the level of rg;ĝ for all SNP-based
scenarios and led to higher persistency of rg;ĝ for SNP-based scenarios
with identical parents ðPTS ¼ PRSCÞ: Scenario Un� LDA � SNP did
not show an increased persistency with higher marker density.

Number of recombinations
In general, increasing the number of recombinations NR resulted
in a decrease of rg;ĝ (C ¼ 0; Figure 6), except for scenario
Un� LDA � SNP; where rg;ĝ stayed nearly constant. Increasing NR

in scenario Re� LDA � Ped resulted in the strongest decline in rg;ĝ
of all scenarios, except if Np ¼ 2; where it remained constant. For
scenario Re� LDA � SNP; increasingNR from 1 to 5 slightly increased
long-term

P
DG in C ¼ 30 for selection based on TBV, but not nota-

bly for selection based on EBV (Figure 7). The s2
A in C ¼ 0 was not

affected by NR (Figure S4A).

DISCUSSION
In plant breeding, small effective population sizes that result from a
small number of population parents crucially influence the information
sources contributing to rg;ĝ in a single cycle of GS. For a large number of
parents, LDA and pedigree relationships are the driving forces of accu-
racy, whereas for few parents, cosegregation between QTL and SNPs
dominates.While exploitation of information from cosegregation leads
to high accuracy, it is unclear how this affects persistency of rg;ĝ across
selection cycles. Moreover, genetic gain depends on the available ge-
netic variance, which is expected to be reduced for a small number of
parents, as opposed to the trend expected for rg;ĝ . Although persistency
and genetic gain in GS have been previously studied, the important

Figure 2 (A) Average cumula-
tive genetic gain

P
DG and (B)

average prediction accuracy rg;ĝ
in scenario Re� LDA � SNP un-
der recurrent genomic selection
across C ¼ 0; 1; . . . ; 30 selection
cycles for synthetics produced
from Np ¼ 2; 4; 16 parents
taken from ancestral populations
SR or LR. Values of

P
DG are

expressed in units of sAðancÞ:
LDA, ancestral linkage disequi-
librium; LR, long-range linkage
disequilibrium; Re, related; SNP,
single nucleotide polymor-
phism; SR, short-range link-
age disequilibrium.
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situation of the very small effective population sizes in plant breeding,
where cosegregation plays a central role, has not been addressed.
Hence, the purpose of the present study was to investigate the contri-
butions of the information sources to persistency of rg;ĝ and genetic
gain across multiple cycles of recurrent GS in synthetic populations,
depending on the number of parents.

Persistency of prediction accuracy across cycles
The persistency of rg;ĝ in GS is of crucial importance for practical
breeding, because it determines the number of generations that can
be employed until retraining of the prediction equation becomes nec-
essary. Thus, it affects the optimum design of a breeding program using
recurrent GS and its costs and efficiency compared to phenotypic RS. In
agreement with previous studies, we observed a substantial drop in rg;ĝ
in scenario Re� LDA � SNP; especially after the first cycle (Figure 4).

It was hypothesized that this decline is due to a loss of information from
pedigree relationships captured by SNPs (Habier et al. 2007; Wolc et al.
2011b, 2016). In support of this explanation, we observed rg;ĝ to plum-
met after the first cycle in scenario Re� LDA � Ped and this can be
attributed to two reasons. First, even without directional selection,
the variation in pedigree relationships between the TS and RSC
erodes as the number of generations between both increases (Figure
S5C, selection based on RBV). Second, selection based on pedigree
relationships favors the choice of candidates closely related to one
another (Quinton et al. 1992; Daetwyler et al. 2007), as verified by
the substantial increase in inbreeding and the reduced variation in
pedigree relationships (Figure S5, A and C), making the breeding
population already genetically narrow after only one selection cycle.
This causes EBVs to be more similar to each other and hence, also
rg;ĝ is severely reduced, although the top pedigree relationships

Figure 3 Average cumulative genetic gainP
DG under recurrent genomic selection in se-

lection cycle C ¼ 30 for synthetics produced
from different numbers of parents Np taken from
ancestral populations SR or LR. All values are
expressed in units of sAðancÞ: s2

AðancÞ, mean
additive genetic variance; LDA, ancestral linkage
disequilibrium; LEA, ; LR, long-range linkage dis-
equilibrium; Ped, pedigree; Re, related; SNP, sin-
gle nucleotide polymorphism; SR, short-range
linkage disequilibrium.

Figure 4 Average prediction accuracy rg;ĝ under recurrent genomic selection across C ¼ 0;1; . . . ; 10 selection cycles for synthetics produced
from Np ¼ 2;4;16 parents taken from ancestral population LR. Selection of candidates was based on either true breeding values (TBV), random
breeding values (RBV), or estimated breeding values (EBV). LDA, ancestral linkage disequilibrium; LEA, ; LR, long-range linkage disequilibrium; Ped,
pedigree; Re, related; SNP, single nucleotide polymorphism.
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between the TS and RSC individuals increase (Figure S5B). Con-
versely, selection on TBV (corresponding to phenotypic selection
with h2 ¼ 1) imposes less inbreeding (Figure S5A), because candi-
dates can have equally high breeding values without necessarily
being closely related, which results in the selection of clusters of
closely related candidates (Figure S8).

The strong drop of rg;ĝ in scenario Re� LDA � Ped for selection
based on EBV might suggest that pedigree relationships only con-
tribute for one or at least very few generations to rg;ĝ of scenario
Re� LDA � SNP:However, it has to be taken into account that cose-
gregation of SNPs and QTL allows capturing of Mendelian sampling
(Daetwyler et al. 2007), which reduces the selection pressure on ped-
igree relationships and in turn increases persistency of rg;ĝ in scenario
Re� LDA � SNP: The effect of reduced selection pressure on pedi-
gree relationships can be inferred from scenario Re� LDA � Ped un-
der selection based on RBV, where essentially all selection pressure
was removed and individuals were selected irrespective of their an-
cestry. Here, rg;ĝ showed a much slower decay compared to selection
based on EBV (Figure 4). This suggests that in scenario
Re� LDA � SNP with selection based on EBV, pedigree relationships
probably contribute longer to rg;ĝ than indicated by Re� LDA � Ped
(selection based on EBV).

It was previously shown that information from LDA is highly per-
sistent across generations (Habier et al. 2007). In synthetics, the ob-
served LD largely corresponds to LDA only ifNp is large, which implies
that LDA mainly contributes to rg;ĝ for large Np (Schopp et al. 2017).
Consistent with these findings, for large Np (e.g., 16) LDA was the
dominant information source across selection cycles, as verified by
the strong reduction in rg;ĝ when LDA was artificially removed
from scenario Re� LDA � SNP as in Re� LEA � SNP (Figure 4).

Conversely, for small Np, the representation of LDA in the synthetics
is hampered by randomly created sample LD when selecting the par-
ents, which raises the question how this influences persistency of rg;ĝ for
small Np: Our results show that for Np ¼ 4; the persistency of rg;ĝ in
scenario Re� LDA � SNP was even higher than compared with
Np ¼ 16 where it decreased more strongly, even though the contribu-
tion of LDA was markedly reduced (the drop of rg;ĝ in scenario
Re� LEA � SNP was larger for Np ¼ 4 than Np ¼ 16) compared to
Np ¼ 16: This implies that sample LD and therefore information from
cosegregation behaves similarly to LDA regarding the decay of infor-
mation across selection cycles. The strong conservation of LDA can be
directly assessed from scenario Un� LDA � SNP; where TS and RSC
are unrelated and LDA was the only information source (Figure 4).
Here, the decay of rg;ĝ was generally small, and if selection was based
on RBV it was even diminutive, indicating that recombination between
QTL and SNPs only marginally drives ancestral LD structures of the TS
and the RSC apart. Even if cosegregation information dominates over
LDA in the case of small Np (e.g., 4), LDA still substantially contributes
to rg;ĝ ; especially in later selection cycles (Figure 4,Re� LDA � SNP vs.
Re� LEA � SNP).

The genomic prediction methodology used can also have a
bearing on the exploitation of the sources of information, which
was not considered in this study. Previous research indicated that
(Bayesian) variable selection methods are better suited to capture
information from LDA compared to GBLUP, especially if traits are
oligogenic and individual QTL have strong effects (Habier et al.
2007, 2013; Zhong et al. 2009). Therefore, we expect that such
methods are advantageous in situations where rg;ĝ heavily relies
on information from LDA; as is the case for large Np or if TS and
RSC are unrelated.

Figure 5 Average prediction accu-
racy rg;ĝ under recurrent genomic
selection across C ¼ 0; 1; . . . ;10
selection cycles depending on
(A) training set size NTS and
(B) marker density for synthetics
produced from Np ¼ 2;4;16 par-
ents taken from ancestral popula-
tion LR. LDA, ancestral linkage
disequilibrium; LEA, ; LR, long-
range linkage disequilibrium;
Ped, pedigree; Re, related; SNP,
single nucleotide polymorphism.
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Steady state cumulative genetic gain
In any population advanced by RS, the cumulative increase in overall
performance is of central interest to breeders. Here, we continued RS
until cycle C ¼ 30; where further increases in

P
DG were only mar-

ginal because either s2
A was depleted (Figure S6) and/or rg;ĝ was near

zero (Figure 4). This approach allowed for direct comparisons betweenP
DG for different scenarios and conclusions were not contingent on

the amount of s2
A left.

Increasing Np leads to an asymptotic increase in the initially avail-
able s2

A; which was independent of the ancestral population in our
simulation (Figure S7). According to the breeder’s equation, increasing
s2
A results in higher genetic gain, which partially explains the increase

in
P

DG for larger Np: However, besides higher s2
A; differential con-

tributions of the three sources of information to rg;ĝ play a major role.
In scenario Re� LDA � Ped;

P
DG was relatively constant from me-

dium Np $ 8 on (Figure 3), which is presumably the result of the
counterbalancing effects of a slight increase in s2

A and a moderate
decrease in rg;ĝ with increasing Np: As pointed out by Schopp et al.
(2017), increasing Np from medium to large values decreases the fre-
quency of close relatives between TS and RSC and hence, reduces rg;ĝ
(Figure S3). The contribution of pedigree relationships to long-term
genetic gain in scenario Re� LDA � SNP should therefore be relatively
constant for medium to large Np: As the contribution of cosegregation
to rg;ĝ decreases with larger Np;

P
DG of scenario Re� LEA � SNP

strongly declined. Conversely,
P

DG of scenario Un� LDA � SNP
strongly increased with larger Np due to more information from
LDA: Given that there is sufficient LDA present in the ancestral pop-
ulation (LR), both effects largely compensate for each other and hence,P

DG in scenario Re� LDA � SNP appears to be insensitive to
changes in Np beyond four parents for LR (Figure 3). When there is
not sufficient LDA as applies to SR, increasing information due to LDA

can no longer compensate for the loss in cosegregation information and
therefore

P
DG in Re� LDA � SNP decreased for higher Np: Al-

though we considered
P

DG close to its steady state, it is important
to note that the essential trends in

P
DG are already apparent for as few

as two selection cycles (Figure S2), which implies that our observations
do not only apply to the situation of extreme long-term selection with-
out retraining, but also to few selection cycles.

Influence of TS size and SNP density
We found that increasingNTS leads to higher persistency of rg;ĝ in early
selection cycles for scenarios with pedigree relationship between TS and
RSC (PTS ¼ PRSC; Figure 5). This is because, for a given Np; increasing

NTS enhances the probability of obtaining TS individuals that share an
exceptionally large portion of their genome with the RSC individuals
due to Mendelian sampling and because of similarities between indi-
viduals due to LDA: Hence, for small NTS there is a higher reliance on
information from pedigree relationships (Jannink et al. 2010; Schopp
et al. 2017) that quickly erodes under directional selection. For large
NTS; there is a higher weight on information from cosegregation and
LDA; which in turn increases the persistency of rg;ĝ : This shift in
emphasis also entails reduced inbreeding, especially in early selection
cycles (results not shown), in agreement with the findings of Jannink
(2010). Therefore, if a prediction equation is to be used for multiple
cycles, NTS should be chosen large enough to not only guarantee high
initial rg;ĝ ; but also high persistency of rg;ĝ and reduced inbreeding in
order to improve genetic gain from GS. Increasing SNP density from
0.125 to 2.5 cM21; corresponding to�250 and 5000 SNPs in the case of
maize, led to an increase in the persistency of rg;ĝ (Figure 5), which is in
concordance with previous studies (Solberg et al. 2009; Sonesson and
Meuwissen 2009). Higher SNP density theoretically affects all three
sources of information, but its influence should be strongest on LDA

and cosegregation because they rely on physical proximity of SNPs and
QTL. If the SNP density is extremely low (e.g., 0:125  cM21), it is
unlikely that SNPs and QTL are tightly linked and hence, SNPs mainly
capture pedigree relationships, whereas LDA and cosegregation play
only subordinate roles. Therefore, high SNP density improves persis-
tency of rg;ĝover generations, because information from both LDA

(Figure 5,Np ¼ 16) and cosegregation (Figure 5,Np ¼ 2) are less prone
to decay, compared to pedigree relationships. The highest SNP density
we investigatedwas 2.5 cM21;which is relatively low compared towhat
is nowadays available in many plant species. However, because of the
strong influence of cosegregation in synthetics that are produced from a
low to intermediate number of parents, we would expect that little can
be gained by further increasing SNP density, especially if long-range
LDA is present, as can be assumed for elite germplasm in practical
applications. However, the situation can be quite different for large
Np and if there is only short-range LDA in the ancestral population,
which rapidly increases the need for higher SNP densities.

Influence of the number of recombination generations
We hypothesized that larger NR might lead to enhanced long-termP

DG by virtue of a stronger fragmentation of chromosomes in the
synthetic. Actually, the average length of chromosomal segments of
unique parental origin decreased from �66 cM for NR ¼ 1 to 30 cM
(Np ¼ 2) and 20 cM (Np ¼ 16) for NR ¼ 5 (Figure S4B). However, as

Figure 6 Average prediction accu-
racy rg;ĝ in selection cycle C ¼ 0 for
different numbers of recombination
generations NR used for production
of synthetics from Np ¼ 2;4;16 par-
ents taken from ancestral populations
SR or LR. LDA, ancestral linkage dis-
equilibrium; LEA, ; LR, long-range link-
age disequilibrium; Ped, pedigree;
Re, related; SNP, single nucleotide
polymorphism; SR, short-range link-
age disequilibrium.
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information frompedigree relationships strongly declinedwith increas-
ing NR (Figure 6, scenario Re� LDA � Ped), rg;ĝ in C ¼ 0 generally
decreased in scenario Re� LDA � SNP: Conversely, the decline of in-
formation contributed by LDA with increasing NR was negligible
(scenario Un� LDA � SNP). Decreasing selection accuracy reducesP

DG; which can conceal the positive effect of higher genome frag-
mentation. Analysis of the latter factor alone is possible with selection
regime TBV, where selection accuracy was always constant and equal to
one, regardless of NR: Here, we found higher

P
DG for NR ¼ 5 com-

pared to NR ¼ 1 (Figure 7) because finer fragmentation promotes oc-
currence of genotypes with favorable allele combinations for selection.
This is accompanied by a reduced coselection of QTL, such that more
QTL stay polymorphic and therefore s2

A remains higher in advanced
selection cycles. The positive effect of NR on

P
DG under selection on

TBV increased with increasing Np; presumably because larger Np re-
sults in even finer genome fragmentation (Figure S4B). For selection
regime EBV,

P
DG in C ¼ 30 was not higher for NR ¼ 5 than for

NR ¼ 1; suggesting that positive and negative effects of recombination
cancelled out each other. For ancestral population SR,

P
DG was even

slightly lower for NR ¼ 5; because compared to LR, stochastic depen-
dency between QTL is relatively low from the beginning and hence,
higher fragmentation has only aminor effect. A special situation existed
for Np ¼ 2; which is explained in File S1.

It is noteworthy that in our simulations the initial s2
A (C ¼ 0) was

unaffected by NR; although strong sample LD between QTL was bro-
ken up. In reality, ancestral populations (corresponding to source
germplasms in breeding) generally underwent some sort of directional
selection, which can theoretically cause a reduction in s2

A due to the
Bulmer effect (Bulmer 1971; Long et al. 2011). This hidden part of s2

A
attributable to negative LD between causal loci can be recovered by
recombination, which might lead to an increase in

P
DG for NR . 1:

Implications for practical applications
At the start of any breeding program employing GS with the goal of
improving quantitative traits, breeders have tomake a number of crucial
decisions, including the source germplasm, parents, andmating scheme
used todevelop thebreedingpopulation.Furtherdecisions specific toGS
concern the NTS and marker density. All of these factors influence the
importance of the three information sources in GS and thereby have
ramifications on the success of the breeding program.

The choice of the source germplasm crucially determines the im-
provement potential for the target trait (Fountain and Hallauer 1996),
because it determines the genetic diversity and linkage disequilibrium

(i.e., LDA), which are both of central importance for the success of
GS. Our study demonstrates that information from LDA generally
offers high persistency across selection cycles in synthetics, irrespec-
tive of Np: Hence, LDA is particularly important for ensuring sus-
tained genetic progress during the breeding program. However, the
contribution of LDA to genetic gain is itself highly dependent on Np:
Whereas for large Np; LD in synthetics adequately represents LDA;
small Np generates sample LD and, in turn, cosegregation that dom-
inates LD in synthetics. Cosegregation has a similarly high persis-
tency as LDA; but it can only contribute to genetic gain if TS and
selection candidates are related by having parents in common.
However, it must be taken into account that reducing Np also re-
duces the initially available genetic variance for breeding, thereby
impairing

P
DG. In essence, high persistency of rg;ĝ and thereby

prolonged genetic progress may be achieved irrespective ofNp; but if
Np is large, substantial LDA is required.

Pedigree relationships also contribute to predictive information for
Np . 2; and harnessing pedigree information has been recommended
to achieve high rg;ĝ in GS (e.g., Wolc et al. 2011a). Frequent retraining
of the prediction equation, at best in every generation, would be re-
quired to optimally exploit pedigree relationships because information
from them rapidly erodes over generations, especially under directional
selection. In addition, selection using pedigree relationships increases
the rate of inbreeding due to intraclass correlation of EBV for members
of the same family and their coselection (Daetwyler et al. 2007), a result
that is well known in animal breeding (Belonsky and Kennedy 1988)
and was confirmed in our study for synthetics in plant breeding (Figure
S5A). A high rate of inbreeding is undesirable in long-term selection,
because genetic diversity is rapidly depleted and eventually

P
DG is

compromised. In GS, it was shown that molecular markers not only
capture deviations of genomic relationships from pedigree relation-
ships, but also the pedigree relationships themselves (Habier et al.
2007), i.e., the latent family structure in the case of synthetics. There-
fore, the same concerns as for pedigree-based selection partially apply
to GS, so that GS is also prone to selection of close relatives and in-
breeding (Jannink 2010). If the breeding objective is long-term

P
DG;

as classically targeted by RS in genetically broad-based populations
(Hallauer and Carena 2012), corresponding to large Np in our study,
deliberate avoidance of using pedigree relationships might be desirable
for maximizing long-term

P
DG:

There are different possibilities to reduce the influence of
pedigree relationships. Increasing both NTS and marker density
leads to an improved capturing of Mendelian sampling and

Figure 7 Average cumulative genetic gain
P

DG
under recurrent genomic selection in selection cycle
C ¼ 5 and C ¼ 30 for synthetics produced from dif-
ferent numbers of parents Np taken from ancestral
populations SR or LR for NR ¼ 1 and NR ¼ 5 recom-
bination generations. (A) Selection based on true
breeding values (TBV), averages across all informa-
tion scenarios (because values are expected to be
identical). (B) Selection based on estimated breed-
ing values (EBV) for scenario Re� LDA � SNP: All
values are expressed in units of sAðancÞ:s2

AðancÞ,
mean additive genetic variance; LDA, ancestral linkage
disequilibrium; LR, long-range linkage disequilibrium;
Re, related; SNP, single nucleotide polymorphism;
SR, short-range linkage disequilibrium.
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similarities between individuals due to LDA; which reduces the
reliance on pedigree relationships and in turn reduces inbreeding.
Another possibility could be modeling information from LDA;
cosegregation (Calus et al. 2008; Legarra and Fernando 2009),
and pedigree relationships in a joint linear mixed model in an
attempt to isolate information from pedigree relationships. Alter-
natively, one could modify the mating scheme used for generating
the synthetic. Additional generations of recombination success-
fully decreased strong variation in pedigree relationships between
individuals, but only up to Np ffi 5 where a baseline level was
reached (Figure S4C). Mating schemes as employed for establish-
ing the Multi-parent Advanced Generation Intercrosses (MAGIC)
largely avoid population substructure and pedigree relationships,
while they complement the favorable properties of synthetics such
as high genetic diversity and elevated minor allele frequencies with
a fine-grained mosaic of the genome (compare Dell’Acqua et al.
2015; Holland 2015). Thus, they potentially represent ideal candi-
dates for long-term recurrent GS, but this warrants further
research.
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