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Abstract

The 3-dimensional structure of the nucleocapsid (NC) of bacteriophage φ6 is described uti-

lizing component tree analysis, a topological and geometric image descriptor. The compo-

nent trees are derived from density maps of cryo-electron microscopy single particle

reconstructions. Analysis determines position and occupancy of structure elements respon-

sible for RNA packaging and transcription. Occupancy of the hexameric nucleotide tripho-

sphorylase (P4) and RNA polymerase (P2) are found to be essentially complete in the NC.

The P8 protein lattice likely fixes P4 and P2 in place during maturation. We propose that the

viral procapsid (PC) is a dynamic structural intermediate where the P4 and P2 can attach

and detach until held in place in mature NCs. During packaging, the PC expands to accom-

modate the RNA, and P2 translates from its original site near the inner 3-fold axis (20 sites)

to the inner 5-fold axis (12 sites) with excess P2 positioned inside the central region of the

NC.

Introduction

Bacteriophage φ6 and its relatives are model systems for virus assembly, genome packaging

and dsRNA polymerization. The RNA packaging, replication, transcription mechanism, and

overall structure resembles that of reoviruses making the species an excellent model system to

study these important pathogens. Of particular interest is the molecular, spatial relationships

and overall organization of the RNA packaging and transcription elements found in the pro-

capsid (PC) and mature nucleocapsid (NC). We compare the relative location and occupancy

of viral portal proteins in the NC and make comparisons to existing models of the pre-pack-

aged PC. A component tree analysis is employed on single particle reconstructions of the NC

to identify and locate the viral elements and to estimate protein occupancy.

The φ6 cystovirus species consist of multilayered particles that assemble in a specific order

[1, 2]. The initial step in ϕ6 replication is the assembly of an unexpanded procapsid (PC), the
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structure responsible for the viral messenger RNA (mRNA) packaging, replication to dsRNA,

and the early phase transcription of the mRNA. The PC is composed of four proteins–P1, P2,

P4, and P7 [1]. It is built from 120 identical P1 proteins organized into a (triangulation num-

ber) T = 1 shell containing 60 non-symmetric dimers where each dimer is composed of sub-

units A and B of the same 3-dimensional fold [3, 4]. The P1 crystal structure has been

determined for viruses ϕ6 and ϕ8 and is a trapezoidal shape that accommodates the significant

conformational changes that occur during RNA packaging [3].

Ultimately all three segments are replicated to dsRNA segments that are enclosed into a

nucleocapsid (NC), the outer layer of which is a shell composed of a matrix assembled of pro-

tein P8 [5–7]. The P8 shell is composed of 200 trimers arranged as a T = 13 lattice that partially

covers the filled PC [5, 8, 9]. Recently Sun et al. has shown that Ca+ can induce transition of

the P8 trimer from a closed to open conformation during the outer shell assembly [10]. Two

states of the P8 trimers were noted as open and closed allowing domain swapping.

Of particular interest within the cystovirus field has been the location and precise occu-

pancy number of the protein components that constitute the RNA replicative apparatus. This

structure consists of the RNA-directed RNA polymerase (RdRP) P2, the hexameric nucleotide

triphosphorylase (NTPase) P4, and the packaging factor P7. The initial position of P2 is at the

inner 3-fold axis (20 sites) [11] however, after RNA packaging, P2 translates to the inner 5-fold

axis (12 sites) as noted in the related species ϕ12 [12]. The position and function of the P7

packaging factor remains controversial. [13] suggested, based on Cryo-EM studies of the PC,

that the P7 density overlaps the P2 density implying mutual exclusion of each protein at an

inner 3-fold axis site. However difference maps generated between PC reconstructions and

mutants lacking either P2 or P7 strongly suggest that P7 stabilizes P2 at the inner three-fold

axis prior to RNA packaging [14]. This implies P2 and P7 can interact and that they are located

near each other in the vicinity of the inner 3-fold axis. Single particle reconstructions with

imposed symmetry of the PC and NC [5, 9] show the protein locations. However, the imposed

symmetry forces the non-symmetric RNA into a concentric appearance in the reconstruction.

That the hexameric P4 appears pentameric in reconstructions with imposed icosahedral sym-

metry further demonstrates the limits of a symmetric reconstruction [15, 16].

The structure of the pre-packaged PC has been investigated extensively from single particle

reconstructions generated from cryo-EM projections [9, 11, 14, 16–18]. The relative locations

of ϕ6 PC proteins have been determined by comparing 3-D reconstructions of the PC to

reconstructions of PC mutants lacking P2, P7 or both [14]. The P7 protein was seen to stabilize

the RdRP protein P2 at the inner three fold axis prior to RNA packaging [14]. Sen, Heymann,

et al. [11] observed ring-like densities on the inner 3-fold axis and estimated that there were

approximately 10 copies of P2 per PC particle. In our initial studies single particle reconstruc-

tions of cryo-EM images of the NC from the related cystovirus ϕ12 the position of the RdRP

was suggested to be at the inner 5 fold axis after RNA packaging and replication [12]. The

assumption is that during packaging the RdRP is released from the P7 protein and migrates to

the inner 5 fold axis—a position that could facilitate viral RNA transcription.

While there are many sophisticated tools for generating single particle reconstructions of

viruses, once a reconstruction is generated, determination of viral elements first rely on visible

examination of 2D slices or isosurfaces to isolate densities corresponding to viral elements. An

interactive visual methodology that explores spatial relationships and EM densities of the full

three-dimensional map will facilitate identification of multiple elements including relative

proximity. Therefore component tree analysis can be an effective tool for identification of viral

elements when applied to 3D reconstructions.

A component tree is an image descriptor which manifests structural relationships among

different parts of an image and have been used in a variety of image processing algorithms,

φ6 component trees
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simplification, and object identification [19–22]. A component tree captures the essential

structural information about a biological specimen in a way that is independent of the resolu-

tion of its density map and the process (e.g. cryo-EM or X-ray crystallography) used to obtain

the map. In this study we analyze single particle image reconstruction of the φ6 NC using com-

ponent tree analysis to determine the RNA replication complex, and protein occupancy and

position. Using the spatial relationships found in the NC, we propose that the RdRP, P2, is

located in two discreet positions after RNA packaging and replication.

Materials and methods

Purification of φ6

The media used to grow the φ6 host cell, Pseudomonas syringae LM2333 (provided by the Pub-

lic Health Research Institute, Newark, NJ) was Luria-Bertani (LB) supplemented with 100 μg/

ml ampicillin to inhibit contamination. Plate lysates of ϕ6 were prepared by plating phage dilu-

tions into soft agar with a culture of LM2333. The plates were incubated overnight at room

temperature prior to collecting the phage-containing top agar. The cell debris and agar were

removed by centrifugation in a Sorvall GSA rotor at 15,000 rpm (3.0 × 104 g) for 30 min at

4˚C.

φ6 was collected by centrifugation in a Sorvall T-1270 rotor at 33,000 rpm (1.0 × 105 g) for

2 h at 4˚C. The suspended virus pellets were then layered on a 10% to 30% sucrose gradient.

Sedimentation centrifugation was at 23,000 rpm (9.4 × 104 g) for 1 h at 15˚C using a Beckman

SW 40 Ti rotor, after which the virus particle band was visualized by light scattering and the

band collected by needle puncture, pelleted by centrifugation (Sorvall T-1270 rotor) at 33,000

rpm (1.0 × 105 g) for 2 h at 4˚C, and resuspended in 1 ml of buffer A. Final purification of the

phage was by equilibrium centrifugation through 40 to 60% sucrose gradient in buffer A (10

mM KH2PO4, 1 mM MgSO4) using a Beckman SW 40Ti rotor at 23,000 rpm (9.4 × 104 g)

overnight at 4˚C. The next day the phage band was again visualized by light scattering and col-

lected by tube puncture. The phage sample was then centrifuged with a Sorvall T-1270 rotor at

33,000 rpm (1.0 × 105 g) for 2 h at 4˚C and the collected phage particles suspended in 100 μl

buffer ACN (10 mM KH2PO4, 1 mM MgSO4, 200 mM NaCl, 0.5 mM CaCl2).

Preparation of φ6 nucleocapsids

The NC particles were isolated by removing the φ6 envelope with Triton X-100 [23, 24]. In

summary, the purified φ6 was mixed with 10% Triton X-100 solution in buffer ACN. The NCs

were centrifuged at 33,000 rpm (7.5 × 104 g) for 1.5 h at 4˚C. Pellets were washed in buffer

ACN and then re-suspended in ACN. Although NC concentrations cannot be verified by pla-

que formation, Triton X-100 envelope removal is essential complete and thus the NC concen-

trations are approximately equal to the initial whole virion concentrations. Prior analysis of

TEM micrographs of NC particles using this procedure has demonstrated nearly complete

removal of the viral envelope [25].

Cryo-electron microscopy and reconstruction

Samples for electron microscopy were plunge frozen in liquid ethane on copper grids with

holey carbon film, and imaged with a JEOL 3200 microscope (JEOL Inc. Peabody, MA) oper-

ating at 300 kV. Micrographs were acquired at a magnification of 80K on a 4k × 4k CCD detec-

tor, a pixel size corresponding to 1.41 Å/pixel. In the reconstruction, a voxel corresponds to a

volume of 2.8 × 10−3 nm3. The defocus range was -1 to -3 μm.

φ6 component trees
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The NC symmetric single particle reconstruction was computed from a data set consisting

of 3450 isolated particles picked from 300 micrographs using XMIPP [26]. A typical TEM

micrograph with 11 boxable virions is displayed in Fig 1. Averaged power spectra for the

micrographs was generated in SPIDER [27]. The contrast transfer function (CTF) parameters

were calculated with CTFFIND3 [28]. Boxed particles were preprocessed for normalization

and linear gradient using the RobEM function in the AUTO3DEM software package [29]. The

single particle reconstruction was computed in AUTO3DEM using 10 iterations. Initial mod-

els were created using the random model method and refined with AUTO3DEM.

Estimation of protein and RNA segment volumes

Protein volumes were calculated using an average protein density of 1.35 g/cm3 (8.12 × 102

Da/nm3) [30]. Volumes of the 3 dsRNA segments were estimated based on an average molecu-

lar weight of 680 Da/bp and a density of 2.0 g/cm3. The RNA volumes are: S segment, 2948 bp,

1.8 × 103 nm3; M segment, 4063 bp, 2.3 × 103 nm3; and L segment, 6374 bp, 3.6 × 103 nm3. The

calculated volumes of viral elements were compared to volume estimates determined from

counting voxels in each element. At the microscope magnification used, each voxel occupies a

volume of 2.8 × 10−3 nm3. In any real (i.e. noisy) cryo-EM reconstruction, volume estimates

are sensitive to the choice of cutoff threshold—a higher threshold gives a smaller volume esti-

mate but enhances resolution of adjacent features. However, volume estimates can still be

employed to support assignment of the object to the viral proteins and RNA segments.

Fig 1. Typical TEM micrograph showing ϕ6 NCs to be selected for boxing.

https://doi.org/10.1371/journal.pone.0188858.g001

φ6 component trees
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Computation and interpretation of component trees

The component tree was generated and simplified from an NC reconstruction [19]. The com-

ponent tree was simplified using input parameters λ and κ which only highlighted relevant

biological elements and removed noise. The protein volumes estimated from molecular

weights served as a guide for the selection of κ values. A larger κ value will combine smaller,

adjacent branches into a single element and remove branches corresponding to noise. How-

ever, viral subfeatures may also be combined into a single element, e.g. presenting an entire P4

hexamer as a single branch.

Important nodes of the simplified component tree, representing subsets of voxels, were

identified. The voxels subsets were exported and displayed with Chimera [31] for the genera-

tion of isosurfaces corresponding to the NC viral elements represented by the different compo-

nent tree nodes.

The interpretation and use of component trees in the exploration of biological structures

was presented in detail in [19]. Here we give just a simple graphical illustration based on the

reconstruction of the φ6 nucleocapsid (NC).

On the top of Fig 2, is a part of the component tree obtained from the reconstructed NC.

Every voxel in the reconstruction is assigned a numerical value (referred to as the “density”)

that is the estimated value of the electron density inside the voxel. Every point in the compo-

nent tree (such points are referred to as “nodes”) determines a set of voxels in the voxel array

of the reconstruction. The vertical distance from the top of the tree (called the level) of a node

is indicative of a density, all voxels in the set determined by the node will have densities greater

than or equal to its level. For example, the large set of voxels that correspond to the node indi-

cated by the small gray disk near the top of Fig 2 has a surface that is displayed in (transparent)

Fig 2. Illustration of the use of a component tree for structural analysis using part of NC component

tree to show relationship between nodes of the tree and image voxels.

https://doi.org/10.1371/journal.pone.0188858.g002
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gray below the tree. On the other hand, the sets of voxels that correspond to the two nodes fur-

ther down in the tree indicated by small red disks (of different shades) have surfaces displayed

in the corresponding shades of red in the isosurface of Fig 2.

An essential property of the component trees is that if a node B is a “descendant” of another

node A, then the set of voxels associated with B is a subset of the voxels associated with A. This

is exemplified in Fig 2 by either of the red nodes as B and the gray node as A. The reason why

the surface associated with the gray node is displayed as transparent is that we desire to see

through it and so identify inside it the locations of the surfaces associated with the red nodes.

On the other hand, neither of the red nodes is a “descendant” of the other, in the theory of

component trees this implies that the two associated sets of voxels have no elements in com-

mon (are disconnected), as can be seen in the surface display part of Fig 2.

The two sets of voxels referred to in the previous paragraph are sufficiently far from each

other to make their analysis resistant to the kind of inaccuracies that we are likely to experience

in practice: it is clear that there are two of them and, by selecting the levels that are used for

their exact definition appropriately, the volumes of the underlying biological entities can be

reliably estimated. This is no longer the case if multiple objects (proteins, in our case) are near

to each other. This is because the reconstructions contain blurred out versions of the objects

and, in order to be able to count the number of them accurately, we need to select a relatively

high level. This concept can be illustrated with a simple 1D example described below.

Let us suppose that an imaging process is such that if it is applied to an object with values 0

0 0 0 0 0 3 0 0 0 0 0 0, then the resulting image is 0 0 0 0 0 1 1 1 0 0 0 0 0. This implies (if the

imaging process is linear and shift-invariant) that 0 0 0 0 0 3 3 3 0 0 0 0 0 is imaged as 0 0 0 0 1

2 3 2 1 0 0 0 0. Here the actual volume of the object in the original is three and, for threshold 2,

the size of the object in the image is also three. However, consider now 0 0 3 3 3 3 0 3 3 3 0 0 0;

the actual total volume of the two objects (of different sizes) is seven. The imaging process

returns 0 1 2 3 3 2 2 2 3 2 1 0 0. The component tree for this image is shown in Fig 3. There is

only one level 2 node since the original two objects blur into each other at that level, however,

the size of the node (8 voxels) is close to the combined size of the two objects (7 voxels). We

get the correct number of original objects by going to level 3. But at that level the total volume

of the two objects in the image is only 3 voxels, which seriously underestimates the actual total

Fig 3. Component tree of a 1D example. The nodes are indicated by black disks. The horizontal bars

through the disks identify voxels that belong to the sets of voxels associated with the corresponding nodes

and the numbers next to the disks are the numbers of voxels in those sets.

https://doi.org/10.1371/journal.pone.0188858.g003
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volume. This indicates a difficulty that, as we will see, causes a problem in trying to estimate

both the number of proteins and the volumes of those proteins in the reconstructed NC. It

should be noted that this problem arises from poor resolution of the image collection and pro-

cessing, not from the generation of the component tree. If the image process returned the

exact object, 0 0 3 3 3 3 0 3 3 3 0 0 0, then there would be two level 3 nodes in the tree and the

corresponding object would have the correct sizes of 4 and 3 voxels.

Results and discussion

NC reconstruction

Fig 4 shows a central slice of the NC single particle reconstruction with icosahedral symmetry

imposed. The resolution of the NC reconstruction is 1.1 nm as determined by Fourier Shell

Correlation (FSC) (see Fig 5) using a 0.143 cut-off criterion [32]. The resolution is sufficient to

resolve the NC proteins and RNA segments. The slice shows a series of layered structures. The

outermost layer is the icosahedral P8 lattice interrupted by the hexameric P4 NTPases sitting

at the 5-fold axes [12] and seen in the cross-section as 2 distinct densities at each axes site. P4

densities are comparable to the P8 density, suggesting near 100% occupancy (discussed

below). This is in contrast to P4 densities in φ8 and the φ6 PC [14, 16]. Immediately under the

P8 lattice is the P1 matrix. The center of the NC exhibits high density regions of the internal

proteins (P2 and P7). Below P1 are a series of layers of lower density which correspond to the

RNA segments and non-central internal proteins. Small volume, high density regions are

observed in the layer directly beneath P1 at the 5-fold symmetry axes sites. An inner layering is

observed in the reconstruction, likely a result of imposing 5-fold symmetry on the asymmetric

RNA segments. This ring-like artifact has been observed in previous NC single particle recon-

structions of cystovirus (φ6 and φ8) [5, 16]. To confirm that the ring-like appearance of the

RNA is a result of imposing symmetry, a class analysis of the boxed projection images was per-

formed with P8 and P1 masked and no imposed symmetry. The mask diameter was 39.6 nm,

Fig 4. Near central slice of the NC reconstruction showing the NC elements.

https://doi.org/10.1371/journal.pone.0188858.g004
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sufficient to remove the outer proteins. A maximum likelihood alignment 2D classification

with XIMPP resulted in 20 classes with approximately equal numbers of particles (154 ± 23

projections/class) indicating that the inner region is not packed with RNA possessing 5-fold

symmetry. Thus the layering is a result of imposing symmetry. The fact that no clear classes

were observed indicates that the RNA exhibits much less symmetry than the outer protein

layers and a non-symmetric reconstruction will display the correct RNA orientation. The

class averages are shown in Fig 6. Yet in these class images, the RNA still appears somewhat

Fig 5. NC Fourier Shell Correlation. Resolution is 1.1 nm using an FSC cutoff of 0.143.

https://doi.org/10.1371/journal.pone.0188858.g005

Fig 6. Class Analysis of dsRNA projections without imposed symmetry. The 20 classes have a

comparable number of particles in each class indicating a non-symmetric reconstruction could not properly

present the RNA. Bar is 10 nm.

https://doi.org/10.1371/journal.pone.0188858.g006
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concentric. Indeed in reoviruses the RNAs and RdRPs have been described as having a pseu-

dosymmetric organization [33] Therefore in both the related viral families cystoviruses and

reoviruses a highly symmetric NC structure encloses a lower symmetry dsRNA genome. How-

ever we note that the component tree analysis denotes three distinct branches, a result in

agreement with the 3 distinct dsRNA segments that comprise all the cystovirus species

genomes [34].

Using component trees to identify proteins in the ϕ6 nucleocapsid

The component tree generated from the NC reconstruction was simplified using a κ value

such that features less than 2.8 nm3 (103 voxels) are considered to be noise and pruned from

the tree. λ was chosen to be equal to 1 for the NC tree generation. The simplified NC compo-

nent tree is plotted in Fig 7. The association of nodes of the component tree to virus compo-

nents was made by comparing the number and volumes (voxel count) of nodes to the known

copy numbers and element sizes, respectively. The low density nodes in the upper right of Fig

7 corresponds to voxels located external to the NC, and thus represent vitrified ice.

At the highest component tree levels (i.e. greatest electron density–region outlined at the

bottom of Fig 7 by polygon outlined by a red dotted line) three groups of branches are evident.

The group of branches on the left has a volume of 1.2 × 104 nm3 and consists of ~75 branches.

It is known that the 600 copies of P8 are organized as 200 trimers that form the outer T = 13

lattice [35]. The total volume of the 600 P8 (MW: 16 kDa) is 1.19 × 104 nm3, strongly implying

that this branch is the P8 lattice. However, in the simplified component tree, the 600 individual

copies of P8 are not resolved, likely a result of P8’s relatively small molecular weight and the

close proximity of P8 proteins in the tightly-knit matrix. To the right of the P8 branches, there

are 12 branches which correspond to the 12 P4 hexamers. The volume of each hexamer branch

is 1.6 × 102 nm3. This is somewhat smaller than the actual P4 hexamer volume (2.6 × 102 nm3),

a consequence of choosing a level that is high enough to separate the P4 hexamers from the P8

Fig 7. Simplified component tree of the NC reconstruction with branches representing the viral elements identified and labeled

in the tree.

https://doi.org/10.1371/journal.pone.0188858.g007

φ6 component trees

PLOS ONE | https://doi.org/10.1371/journal.pone.0188858 January 4, 2018 9 / 16

https://doi.org/10.1371/journal.pone.0188858.g007
https://doi.org/10.1371/journal.pone.0188858


proteins (see the last two paragraphs of Section 2.5). Employing a smaller κ value (component

tree not plotted), each P4 branch demonstrates 5 sub-branches, a consequence of the enforced

icosahedral symmetry. An isosurface rendering of the voxels incorporated into this group of

branches (voxels corresponding to the node indicated in the Figure by the small gray disk near

the top) is shown in Fig 8A. Two of the twelve P4 hexameric packaging motors are shown in

red in Fig 8A (voxels corresponding to the red-coded nodes in the Figure). The gray isosurface

demonstrates that these branches are indeed located at the outermost layer of the NC, confirm-

ing our identification of the branches corresponding to the P8 lattice and the 12 P4 hexamers.

Fig 8. Isosurfaces of viral elements generated from selected voxels in the NC component tree branches identified as (A) P8 and

P4; (B) P1; (C) L and (D) M segments of dsRNA and external P2; (E) S segment dsRNA; (F) internal P2 and P7.

https://doi.org/10.1371/journal.pone.0188858.g008
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The branches towards the lower right side of the tree (Fig 7) consist of 120 leaves configured

as 12 groups of 5 leaves plus 60 additional leaves. It is known [3, 36] that P1 occurs in 2 confir-

mations termed P1A and P1B with P1A being pentameric with each pentamer surrounded by 5

P1B. This reinforces the assignment of these branches to P1 with the 12 groups of 5 leaves cor-

responding to the 12 P1A pentamers and the other 60 leaves corresponding to the 60 P1B con-

formations. The volume of the branch is 8.4 × 103 nm3, smaller than the total P1 volume (120

P1 proteins with a molecular weight of 85 kDa each, has a total volume of 1.26 × 104 nm3). The

discrepancy may be a result of some P1 voxels being included in lower density nodes of the

tree. An isosurface rendering of P1 is shown in Fig 8B–generated from voxels in the node

shown by gray disk in Fig 8B. The elements represented by these branches are located directly

beneath the P8 lattice strongly reinforcing our suggestion that the branches represent the P1

matrix. One P1A pentamer generated from the blue-coded node is highlighted, also in blue, in

Fig 8B. The location of this branch at the 5-fold axis, directly underneath the P4 packaging

motor further demonstrates that it represents the P1A pentamer.

At lower densities than the P8/P1/P4 branches, are two groups of branches. Both groups

subdivide into three sets of branches. The branches on the right (designated within the blue

rectangle in Fig 7) consist of 2 branches with 30 leaves each and one branch with 12 leaves.

The two branches with 30 leaves have volumes of 3.6 × 103 nm3 and 2.3 × 103 nm3 nearly equal

to that of the L and M RNA segment volumes, respectively. In the packaged and expanded PC,

P2 is located at the 12 inner 5-fold axes sites. Therefore the 12-leaf branch most likely repre-

sents external P2 although the average leaf volume (60 nm3) is somewhat less than the volume

of a P2 protein (92 nm3) due to the phenomenon explained at the end of Section 2.5. Isosurface

renderings of these L-RNA and M-RNA branches are shown in Fig 8C and 8D, respectively.

The 12 external P2 branches, with two highlighted in green, are also shown in Fig 8C and 8D.

That these viral elements are located at the 5-fold axes below the P4 hexamers strongly rein-

forces our assumption that they are P2. This position below the transcript exit portal would be

expected to facilitate the exit of nascent transcripts from the NC. A similar P2 migration from

the inner 3-fold to the outer 5-fold axis was proposed for the related φ12 virus [12]; the results

reported here strongly support this hypothesis. We again emphasize that the observed struc-

ture of the RNA segments is strongly influenced by the symmetry imposed during reconstruc-

tion. We do not suggest that the three RNA segments are concentric. However, it is likely that

the L segment branch is outermost (immediately below the P1 lattice); the M segment is

beneath the L segment; and the S segment is beneath the M segment, following the packaging

order of [37].

The three branches on the left side of the tree (designated within the cyan rectangle in Fig

7) consist of one branch with 30 leaves and two branches with 20 leaves each. The volumes of

these branches are: 1.6 × 103 nm3 (30 leaves, far left in Fig 7); 1.2 × 103 nm3 (20 leaves, mid-

left); and 9.0 × 102 nm3 (20 leaves, towards right side of cyan rectangle). The volume of the S

RNA segment is 1.7 × 103 nm3. The internal P2 is situated at the 3-fold symmetry axes sites

and thus there are potentially 20 copies of internal P2 for a total volume of 1.8 × 103 nm3. P7

has a molecular weight of 17.2 kDa and a copy number of 60 [35] and therefore a total volume

of 1.25 × 103 nm3. Although P7 is dimeric in solution [38], analysis of difference maps of PC

reconstructions indicate that 3 P7 densities exist at each of the twenty 3-fold axis sites [13].

Therefore, based on relative volumes and copy number, we suggest the 30 leaf branch is the

S-RNA segment; the middle 20 leaf branch is internal P2 and the right 20 leaf branch is P7. An

isosurface of the voxels associated with the 30- leaf branch is shown in Fig 8E. This isosurface

has a shell-like structure which sits beneath the M segment, consistent with the packaging

order, and further reinforcing assignment of this branch to the S-RNA segment. Again, we

emphasize that the 30 leaves are an artifact of the imposed symmetry as is the concentric shell-
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like structures observed in the reconstruction. An isosurface plot of the P2 and P7 branches

are shown in Fig 8F with P2 in green and P7 in yellow. It is known that in the prepackaged PC,

P7 is closely associated with P2 and initially located near the inner 3-fold axes [13, 14]. The

branch locations (internal to the S RNA segment) and their close proximity further supports

our assignment of these branches to P2 and P7.

The positions of P2 at both inner and outer sites puts it in proximity to all three dsRNA seg-

ments. As indicated above, the outer P2, positioned directly beneath P4, would be available

during infection to facilitate the transcription of dsRNA. Similarly, the inner P2 would be

available to facilitate transcription of the innermost dsRNA segments, possibly the S and M

segments.

To further reinforce the assignment of tree branches to the viral elements, the spatial loca-

tions of voxels of the six mid-density groups of branches are identified in the reconstruction

and highlighted in slices spaced at 2.54 nm intervals in Fig 9. Column A shows non-

highlighted slices of the NC. Column B highlights the L segment RNA; column C highlights

the M segment RNA; column D highlights the S segment RNA; the inner and outer P2

branches are highlighted in column E; and the P7 branch is highlighted in column F. This

panel further identifies that the RNA segments are positioned in the packaging order. The

outer P2 are at the 5-fold axes sitting near the L segment. The inner P2 and P7 are centrally

located beneath the S segment.

Protein occupancy in the NC

The occupancy of a protein is estimated as follows. Consider the node in the component tree

that identifies the protein in question. As discussed in Section 2.5, such a node determines a

set of voxels in the reconstruction and each of these voxels has a (reconstructed) density. Let

pd (short for protein density) denote the average of the densities of the voxels in the set. Sup-

pose that we can identify a protein in the NC that we can consider to be 100% occupied (e.g.

P1), let its protein density be denoted by PD. Calculate also the average of densities for a set of

voxels that are in vitrified ice; let this average be denoted by ID. Then the occupancy of the

protein in which we are interested is estimated to be (pd—ID) / (PD—ID).

P1 and P8 are considered to be 100% occupied in the complete NC and their respective

nodes are at similar levels in the tree. Since the P4 level (i.e. electron density) is nearly equiva-

lent to that of P1 and P8, P4 in the NC is, therefore, fully occupied. This is significantly greater

occupancy than that reported for the unexpanded PC [14, 17], suggesting that the P8 matrix

likely stabilizes P4, and that in the absence of the P8 matrix, P4 easily becomes detached from

the PC.

Based on electron density, the occupancy of P2 at the external sites is 0.64 for an average of

8 external P2 proteins per NC (0.64 x 12 = 7.68) while the occupancy of P2 at the internal sites

is 0.61 for an average of 12 internal P2 per NC (0.61 x 20 = 12.2) for a total of 20 P2 in the NC.

Therefore, the PC at assembly (but prior to RNA packaging) has 20 P2, corresponding to 100%

occupancy of the unpackaged PC (20 3-fold axes sites). This is significantly higher P2 occu-

pancy than reported for the recombinant PC assembled in E coli [14, 17]. The NC that is ana-

lyzed in this research is assembled during the entire replication cycle and includes the addition

of the P8 lattice. We speculate that the P8 lattice insures that the RNA portal elements are sta-

bilized in situ in order to complete the entire viral architecture—a condition not realized in the

recombinant PC. Therefore the presence of the P8 lattice maintains the NC at near complete

occupancy of P2 and P4, a condition not realized in recombinant PCs. Thus it would be of

interest to examine the final P4 and P2 occupancy of the cystovirus species ϕ8 that normally

lacks the P8 lattice and determine if it matures with 100% P4 and P2 occupancy levels.
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Electron density estimates put the occupancy of P7 at 0.59 which may indicate that in the

unexpanded PC, P7 sites may not be fully occupied. However, it is possible that some P7 may

Fig 9. A) Series of NC reconstruction slices with offset distance from central slice indicated at left. Voxels

corresponding to component tree branches are highlighted for: B) L-RNA segment (blue); C) M-RNA segment (red); D)

S-RNA segment (cyan); E) P2 (green); and F) P7 (yellow).

https://doi.org/10.1371/journal.pone.0188858.g009
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have migrated away from the central region during expansion. Since P7 is a relatively small

protein, the spatial resolution of the reconstruction may not be sufficient to detect isolated P7.

Conclusions

The study presented above demonstrates a new tool for the analysis of EM image reconstruc-

tions of particles. Most notable is the observation that all the major structural elements of a

well classified viral particle are identifiable and located in the reconstruction. Copy number

and occupancy are quantified by the analysis. We demonstrate that component tree analysis

provides a useful tool for understanding the spatial organization of functional elements of viral

reconstructions. Even in the absence of distinct symmetry, component tree analysis may be

applicable for pleomorphic viruses as well.

The analysis demonstrates that the P2 and P4 occupancy is greater in the NC than a particle

lacking the P8 matrix [14, 17]. The occupancy of the P4 hexamer is near 100%. This observa-

tion has been previously reported based upon tomogram and single particle reconstructions of

the PC but never rigorously shown in an NC. The low occupancy of the PC P4 hexamer could

account for the notion that only one (or at the most two) portals are active during RNA

packaging.

A surprising result is the observation that in the NC there are two major P2 classes iden-

tified at two distinct locations–the 20 sites near center of the NC in proximity to the S seg-

ment; and 12 sites in the outer region between the M and L segments. We refer to the near

center sites as internal P2 and the 12 outer sites as external P2. The existence of two distinct

P2 locations lends credence to the idea that some P2 migrates from the inner 3-fold axis to

the outer 5-fold axis. We further speculate that the two P2 classes guarantee association

with the three dsRNA genome segments allowing efficient transcription at initiation of a

subsequent infection. The total number of P2 in both classes adds to 20, i.e. 100% occupancy

in the unexpanded PC.
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