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ABSTRACT The genus Neisseria includes two pathogenic species, N. gonorrhoeae and
N. meningitidis, and numerous commensal species. Neisseria species frequently exchange
DNA with one another, primarily via transformation and homologous recombination
and via multiple types of mobile genetic elements (MGEs). Few Neisseria bacteriophages
(phages) have been identified, and their impact on bacterial physiology is poorly under-
stood. Furthermore, little is known about the range of species that Neisseria phages can
infect. In this study, we used three virus prediction tools to scan 248 genomes of 21 dif-
ferent Neisseria species and identified 1,302 unique predicted prophages. Using compar-
ative genomics, we found that many predictions are dissimilar from prophages and
other MGEs previously described to infect Neisseria species. We also identified similar
predicted prophages in genomes of different Neisseria species. Additionally, we exam-
ined CRISPR-Cas targeting of each Neisseria genome and predicted prophage. While
CRISPR targeting of chromosomal DNA appears to be common among several Neisseria
species, we found that 20% of the prophages we predicted are targeted significantly
more than the rest of the bacterial genome in which they were identified (i.e., back-
bone). Furthermore, many predicted prophages are targeted by CRISPR spacers encoded
by other species. We then used these results to infer additional host species of known
Neisseria prophages and predictions that are highly targeted relative to the backbone.
Together, our results suggest that we have identified novel Neisseria prophages, several
of which may infect multiple Neisseria species. These findings have important implica-
tions for understanding horizontal gene transfer between members of this genus.

IMPORTANCE Drug-resistant Neisseria gonorrhoeae is a major threat to human health.
Commensal Neisseria species are thought to serve as reservoirs of antibiotic resistance
and virulence genes for the pathogenic species N. gonorrhoeae and N. meningitidis.
Therefore, it is important to understand both the diversity of mobile genetic elements
(MGEs) that can mediate horizontal gene transfer within this genus and the breadth
of species these MGEs can infect. In particular, few bacteriophages (phages) are known
to infect Neisseria species. In this study, we identified a large number of candidate
phages integrated in the genomes of commensal and pathogenic Neisseria species,
many of which appear to be novel phages. Importantly, we discovered extensive inter-
species targeting of predicted phages by Neisseria CRISPR-Cas systems, which may
reflect their movement between different species. Uncovering the diversity and host
range of phages is essential for understanding how they influence the evolution of
their microbial hosts.
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The genus Neisseria includes the human pathogens N. gonorrhoeae and N. meningiti-
dis, as well as a multitude of diverse commensal species that colonize mucosal surfa-

ces of humans and animals (1). Because of the extensive spread of antibiotic resistance
among strains of N. gonorrhoeae, infections caused by this pathogen are becoming
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increasingly difficult to treat (2). Consequently, the WHO and CDC consider N. gonor-
rhoeae a high-priority and urgent threat (3, 4). While resistance to frontline treatment is
rare in N. meningitidis, penicillin-resistant strains have been recently detected in multiple
countries and may pose an emerging threat (5–7).

Neisseria species are naturally competent and frequently exchange DNA with one
other via transformation and homologous recombination (8–11). Mobile genetic ele-
ments (MGEs), such as plasmids, genetic islands, and bacteriophages (phages), can also
mobilize genetic material and are powerful forces in shaping bacterial evolution (12–17).
Phages are incredibly abundant and can profoundly influence the fitness and virulence
of their bacterial hosts, particularly when integrated into the bacterial chromosome as
prophages (18–23). For example, the filamentous prophage MDAU promotes attach-
ment of N. meningitidis to epithelial cell monolayers (21) and is associated with the ability
of this pathogen to cause invasive disease (20).

In contrast to many highly studied Gammaproteobacteria prophages, few have been
identified and characterized in the Betaproteobacteria (24–26). Neisseria prophages have
been identified primarily in N. gonorrhoeae and N. meningitidis and consist of a small
number of filamentous (27–30) and double-stranded DNA (dsDNA) prophages (31),
including Mu-like prophages (24, 32–35). With the exception of MDAU, the impact of
phages on Neisseria biology and pathogenicity remains poorly understood (16).
Furthermore, few studies have investigated the host ranges of Neisseria phages (36, 37).

Microbes can defend themselves against phages and other MGEs using a variety of
systems. One such system is CRISPR-Cas, which is composed of clustered regularly
interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) pro-
teins. Importantly, sequence identity between the spacer and the MGE is required for
immunity, which means that CRISPR arrays contain a record of previous encounters
with MGEs in the sequences of their spacers. Therefore, this historical record can be used
to infer the bacterial hosts of viruses (38–42). Approximately 40% of N. meningitidis
genomes encode type II-C CRISPR arrays (43, 44), and multiple putative CRISPR systems
have been identified in several commensal species (44–46). In contrast, no functional
CRISPR systems have been identified in N. gonorrhoeae (44, 45).

In this study, we sought to uncover novel Neisseria phage diversity. We used bioin-
formatic virus prediction tools to scan publicly available genomes of pathogenic and
commensal Neisseria species for prophages. Using comparative genomics, we found
that many of these predictions are dissimilar from previously identified Neisseria MGEs
and are potential targets of CRISPR-Cas systems. Finally, we used interspecies CRISPR
targeting of known and predicted prophages to infer whether they may infect multiple
different Neisseria species.

RESULTS
Predicting prophages in genomes of pathogenic and commensal Neisseria

species. To search for prophages, we compiled a data set of 248 publicly available
high-quality genome assemblies of N. gonorrhoeae, N. meningitidis, and 19 commensal
species that were obtained from GenBank (47, 48) (see Materials and Methods,
Table S1, tab A. The relationships between the genomes in this data set are shown in a
phylogenetic tree based on ribosomal gene sequences and in a heatmap of the aver-
age nucleotide identity (ANI) between each pair of genomes (Fig. 1). The phylogeny
presented here is consistent with previously reported relationships between Neisseria
species (49).

We used three bioinformatic tools to predict prophages in the above-described set
of genomes, PhiSpy (50), VirSorter2 (51), and Seeker (52) (see Materials and Methods
for the rationale used to select these tools). In total, we obtained 2,050 predicted pro-
phages (Table S2, tab A).

We assessed whether the tools described above could identify nine previously
described prophages in N. gonorrhoeae FA 1090 (27, 29, 31) and four in N. meningitidis
Z2491 (27, 28, 32) (Table S1, tab B). Combined, the three tools predicted 6/9 known,
intact prophages in FA 1090 (Fig. S1A) and 2/4 in Z2491 (Fig. S1B). Our results are
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FIG 1 Relationships between bacterial genomes used in this study. Maximum likelihood ribosomal multilocus sequence typing (rMLST) tree of the
smaller set of high-quality Neisseria genomes (described in Table S1, tab A) and a heatmap of pairwise average nucleotide identity (ANI) values

(Continued on next page)
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consistent with previous observations that several tools have difficulty predicting
Neisseria prophages (53).

None of the above-described tools correctly identified known Neisseria filamentous
prophages (light gray, Fig. S1); they were either missed entirely or combined with an
adjacent dsDNA prophage into a single prediction (NgoU2 with NgoU6; NgoU3 with
NgoU9) (Fig. S1A). This difficulty may be due in part to the characteristic low sequence
identity between filamentous phages and their small sizes (PhiSpy imposes a cutoff for
the minimum number of genes in a prophage region to be called a prophage [22, 50]).

Actively replicating prophages result in high prophage-to-host read coverage ratios (54).
We used hafeZ (55) and PropagAtE (54) to investigate whether the predicted prophages
may be active in a subset of genomes for which Illumina reads are available (see Materials
and Methods; Table S1, tab C). No active prophages were identified by PropagAtE, and only
seven by hafeZ (two of which overlap with Seeker predictions), suggesting that most
prophages in the subset of genomes examined do not produce virions.

To exclude identical predictions in subsequent analyses, we performed dereplica-
tion at 95% length aligned (see Materials and Methods; Table S2, tab B), resulting in
1,302 unique predictions. No phages identified in different bacterial species were
found to be similar at $95% length aligned (Table S2, tab B). The distribution of
lengths of dereplicated prophages predicted by each tool is shown in Fig. S2.

Subsequently, we present analyses on predictions made by all three tools (Table S2, tab
A) and 13 known Neisseria phages (Table S1, tab B). For the sake of clarity, analyses of
PhiSpy predictions are presented in the main text, while analyses of VirSorter2 and Seeker
predictions are included in the supplemental material. We focus on a single tool to avoid
the issue of reconciling overlapping predictions between tools and selected PhiSpy because
it more accurately predicted the boundaries of known Neisseria prophages (Fig. S1).

Few predictions are similar to known Neisseria plasmids and the gonococcal
genetic island. In this study, we used prediction tools that search for viruses. However,
because VirSorter2 has been reported to have difficulty distinguishing plasmids from
viral sequences (51, 56, 57), we wanted to address the possibility that predictions from
any tool may resemble other types of Neisseria MGEs.

Specifically, we compared our predictions to known Neisseria plasmids and the gon-
ococcal genetic island (GGI). To perform this analysis, we performed hierarchical clus-
tering based on percent length aligned of dereplicated predictions and nucleotide
sequences of plasmids and the GGI obtained from GenBank (47, 48) (Table S1, tab D).

Only 14 unique predictions cluster with Neisseria plasmids and the GGI based on
nucleotide sequence (Fig. S3, Data set S1). Of these 14 predictions, 2 (both predicted
by VirSorter2) cluster with known Neisseria plasmids (Fig. S3A), and 12 predictions (all
predicted by Seeker) cluster with the GGI (Fig. S3B).

Because our study focuses on phages, we excluded these 14 predictions from our
subsequent analyses. The results described above indicate that the majority of predic-
tions in this study are dissimilar to known Neisseria plasmids and the GGI.

Comparing predicted prophages to known phages using gene-sharing networks.
Classifying phages is challenging due to their high genomic diversity, extensive mosai-
cism, and lack of universally shared genes (58–61). Therefore, gene-sharing networks
are commonly used to compare novel phages to previously identified phages (38, 39,
61–65). Here, we used vConTACT v.2.0 (64, 66) to assess whether the prophages we
predicted are similar to known Neisseria phages (Table S1, tab B) or phages that infect
other bacterial taxa (i.e., reference viruses; see Materials and Methods). vConTACT gen-
erates a similarity score between each pair of viruses based on the protein clusters

FIG 1 Legend (Continued)
between each genome. Ribosomal gene sequences were identified and concatenated using PubMLST and used to create a phylogenetic tree using
RAxML. The tree was visualized with iTOL and rooted using midpoint rooting. The species of each genome is indicated by the vertical color strip to the
right of the tree (and the identical horizontal color strip above the heatmap), where each color represents a different species as defined in the Neisseria
species key. The order of species in the tree is the same as the order shown in the key. Bootstrap support is indicated by the color of each branch,
where red indicates low support as defined in the branch support key. The tree file is provided in Data set S1, tab 1. ANI values were calculated using
FastANI and are represented as a color gradient as indicated in the ANI (%) key.
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they share. If two viruses are significantly similar to one another (i.e., the pair has a
score of $1), then they are connected by an edge. Groups of viruses that are highly
similar are placed within the same subcluster and are likely members of the same viral
genus (64). We used vConTACT to separately analyze dereplicated predictions from
each tool, resulting in three distinct networks (Fig. 2, Fig. S4A and B).

First, we examined whether PhiSpy predictions are significantly similar to known
Neisseria phages (i.e., connected by an edge in the network). While 83% of PhiSpy predic-
tions (229/277) are connected to known Neisseria phages, only 52% of PhiSpy predictions
(144/277) cluster with known Neisseria phages (Table S2, tab C). These 144 predictions
belong to the following four subclusters: 181_0 (dark blue circle) and 1139_0, 1401_0, and
1318_0 (pink circles, Fig. 2). Thus, only half of PhiSpy predictions are likely members of the
same viral genus as known Neisseria phages.

Next, we compared PhiSpy predictions to viruses that infect bacterial taxa other
than Neisseria (i.e., reference viruses). We found that 86% of PhiSpy predictions (239/
277) are significantly connected to reference viruses (Table S2, tab C). However, only
15% of PhiSpy predictions (42/277) cluster with reference viruses (Table S2, tab C).
These 42 predictions belong to either subcluster 181_0 (dark blue circle) or 239_0 (light
blue circle, Fig. 2); below, we explore these 2 subclusters that contain both PhiSpy pre-
dictions and reference viruses.

Subcluster 181_0 includes Mu-like phages that infect N. meningitidis (Pnm1-2, MuMenB),
Mannheimia haemolytica (3927AP2), and Haemophilus parasuis (SuMu, shown in bold,
Fig. 3A). Previously, Pnm1-2 and MuMenB were found to resemble a Mu-like phage that
infects Haemophilus influenzae (24). There is a high degree of synteny between members of
181_0, and the proteins shared between known Neisseria prophages and the predictions in
this subcluster have.50% sequence identity (Fig. 3A).

Similarly, subcluster 239_0 contains two Mu-like phages that infect Burkholderia ceno-
cepacia (BcepMu) and Burkholderia thailandensis (phiE255, Fig. 3B). Except for several late
phage genes, most predicted proteins are shared between the Burkholderia phages and
Neisseria predictions (at ;30 to 50% sequence identity, Fig. 3B). Together, these results
suggest that several Neisseria species may be infected by phages similar to those that
infect Haemophilus, Mannheimia, and Burkholderia—microbes that Neisseria species may
encounter within the respiratory tracts of humans and/or animals.

We also explored subcluster 7_0 (orange circle, Fig. 2). Although it does not include
any reference viruses, members of 7_0 share many genes with reference viruses (many
surrounding dark gray nodes, Fig. 2). In particular, a Neisseria sp. KEM 232 prediction
belonging to 7_0 shares 48% of predicted proteins (29/60) with other members of 7_0
(Fig. 3C) and also shares 30% of proteins (18/60) with two Mannheimia P2-like phages
that do not belong to this subcluster (587AP1 and phiMHaA1, Fig. 3C).

While the majority of PhiSpy predictions do not cluster with reference phages
(Table S2, tab C), many predictions were found to have a low degree of similarity to dif-
ferent reference phages (as indicated by the low similarity scores between predictions
and reference viruses, Fig. S5). For example, the N. lactamica and N. elongata predic-
tions belonging to subcluster 479_0 (orange circle, Fig. 2; Fig. 3D) each have a low
degree of similarity to ;20 to 50 different reference viruses (Fig. 2). Therefore, these
findings suggest that many PhiSpy predictions are distantly related to multiple viruses
that infect other bacterial taxa.

Finally, we found differences in how similar predictions from each tool are to known
Neisseria phages and reference phages (together referred to as “known phages”).
Specifically, (i) a smaller proportion of Seeker predictions are connected to known
phages compared to PhiSpy and VirSorter2 predictions (Table S2, tab C), (ii) the degree
to which Seeker predictions are similar to known phages is significantly lower than
those of the other tools, as indicated by lower similarity scores (Fig. S5), and (iii) zero
Seeker predictions cluster with known phages (Table S2, tab C). Thus, Seeker predictions
may represent novel phages, other MGEs, or alternatively, regions of the chromosome
that were incorrectly called.

Prophage Prediction in Neisseria Species mSystems

May/June 2022 Volume 7 Issue 3 10.1128/msystems.00083-22 5

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00083-22


Highly similar predicted prophages are found in distantly related Neisseria
species. Next, we explored whether different Neisseria species may be infected by
highly similar phages by examining whether any vConTACT subclusters include PhiSpy
predictions found in genomes of different Neisseria species (Fig. 4A).

Out of the 12 subclusters that include PhiSpy predictions, 9 contain predictions iden-
tified in different Neisseria species (Fig. 4A). Strikingly, subclusters 181_0 and 239_0

FIG 2 vConTACT clustering of PhiSpy predictions, known Neisseria phages, and phages that infect other
bacterial taxa. vConTACT v2.0-generated network of dereplicated PhiSpy predictions and known phages
visualized with Cytoscape using an edge-weighted spring-embedded algorithm. Nodes represent predicted
prophages (color corresponding to the Neisseria species in which the prophage was identified), known Neisseria
phages (dark gray outlined in the color corresponding to the bacterial host species), or phages that infect
other bacterial taxa (i.e., reference viruses; dark gray without outline). Edges represent the vConTACT-generated
similarity score between each pair of viruses (only similarity scores of $1 are included in the network). Highly
similar viruses are positioned close together. Only reference viruses that are connected to $1 predicted
prophage are included in the network. Information about vConTACT subclusters is included in Data set S1, tab
3, and similarity scores (edge weights) in tab 4.
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FIG 3 Genes shared between PhiSpy predictions, known Neisseria phages, and phages that infect other bacterial taxa. (A to D) Clinker-generated
visualizations showing genes that are shared between members of the following vConTACT subclusters: 181_0 (A), 239_0 (B), 7_0 (C), and 479_0 (D). The

(Continued on next page)
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(Fig. 3A and B) include predictions found in 7 and 10 different Neisseria species, respec-
tively (Fig. 4A).

We also investigated whether the bacterial species (in which the predictions were
identified) are closely or distantly related to each other. For every subcluster that
includes $5 predictions, we calculated the pairwise average nucleotide identity (ANI)
between each bacterial genome in which the predicted prophages were identified.

Every subcluster we examined includes multiple phages found in the same species,
as shown by an ANI of .95% (Fig. 4B). Additionally, four subclusters include predic-
tions found in closely related species (ANI, 90 to 95%).

Finally, five subclusters contain predictions found in more distantly related species
(ANI, ,90%; Fig. 4B), including three subclusters with an ANI of ;80% (181_0, 239_0,
7_0; Fig. 4B) that were highlighted above (Fig. 3). Therefore, these results suggest that
even distantly related Neisseria species may be infected by closely related phages.

Identification of CRISPR arrays and spacer matches in Neisseria genomes. Here,
we surveyed a larger set of 2,619 Neisseria genomes (see Materials and Methods,
Table S1, tab E) for the presence of CRISPR arrays (Data set S1). Consistent with previ-
ous findings (43–45), we identified type II-C CRISPR arrays in 45% of N. meningitidis
genomes (862/1,894) and no CRISPR arrays in N. gonorrhoeae genomes (0/630).

In addition, we identified CRISPR arrays in $1 genome of every commensal species
included in this study. Repeat sequences in arrays of commensal species are associated
with seven different CRISPR subtypes (I-A, I-C, I-F, II-C, III-A, III-B, III-D). In total, we found
3,676 unique CRISPR spacers (Data set S1).

Next, we used BLASTn to search for matches between CRISPR spacers and sequen-
ces in Neisseria genomes. We only kept matches that had 100% identity over the entire

FIG 4 Several vConTACT subclusters include PhiSpy predictions from different Neisseria host species. (A)
For each vConTACT v2.0 subcluster, the Neisseria host species of each PhiSpy prediction was determined.
The histogram shows how many subclusters (y axis values) include the indicated numbers of unique host
species (x axis values). (B) The percent average nucleotide identity (ANI) between the Neisseria genomes
in which PhiSpy predictions were identified. Only vConTACT subclusters that include 5 or more predicted
prophages are shown (“_0” was omitted from the end of subcluster names). The distribution of ANI
values is represented as a histogram where the width of bars at a given ANI corresponds to the
proportion of genome pairs with that ANI. The color of each subcluster indicates the types of predictions
that belong to that subcluster (orange, predictions only; pink, predictions and known Neisseria phages;
light blue, predictions and reference phages; dark blue, predictions, known Neisseria phages, and
reference phages). Information about vConTACT subclusters is included in Data set S1, tab 3.

FIG 3 Legend (Continued)
location of each subcluster within the vConTACT-generated network is shown in Fig. 2. Known Neisseria phages and phages that infect other bacterial taxa
(i.e., reference phages) are indicated in bold. Arrows with the same color indicate genes that are similar between phages; connections between arrows
indicate amino acid sequence identity as described in the key. Gray arrows indicate genes that are not shared between phages; ellipses indicate that .2
unshared genes are present at either end of a prophage genome. Shared genes are annotated with predicted functions of encoded proteins (except for
hypothetical proteins). In panel A, several late phage genes are present/absent between Burkholderia phages and predicted Neisseria phages (gene order in
phiE255 from left to right: lysin, holin, tail tape measure, fiber). Panel C also includes two reference viruses that do not belong to subcluster 7_0,
Mannheimia phages 587AP1 and phiMHaA1. Information about vConTACT subclusters is included in Data set S1, tab 3.
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length of the spacer (i.e., 0 mismatches), and we looked for both intra- and interspecies
matches.

We found that 22% of spacers (820/3,676) target sequences in the smaller set of
high-quality Neisseria genomes. Out of these targeting spacers, 66% (539/820) match
known or predicted prophages. Previously, Zhang et al. identified five self-targeting
spacers in six N. meningitidis genomes (44). Here, we found that 52% of CRISPR-positive
high-quality N. meningitidis genomes (23/44) encode self-targeting spacers.

Examining the locations of CRISPR matches in Neisseria genomes. We next
examined the genomic locations of spacer matches. In addition to providing defense
against MGEs, the type II-C CRISPR system of N. meningitidis has been proposed to play a
role in limiting natural transformation (44, 45). If CRISPR systems restrict transformation,
we would expect to see targeting evenly distributed along the length of the bacterial
chromosome with no obvious enrichment of targeting in any location. If, however, pro-
phages are targeted by CRISPR immunity, we would expect that matches would be
enriched in prophages.

Figure 5 shows the genomic locations of spacer matches in two genomes that
encode CRISPR arrays (N. meningitidis, sp. 10022) and two that do not (N. gonorrhoeae,
N. weaveri). In N. gonorrhoeae and N. meningitidis genomes, we observe a low level of
targeting across the length of the genome (Fig. 5A), consistent with inhibiting transfor-
mation. There are also regions of high targeting; in N. gonorrhoeae, peaks correspond
to the location of several known prophages, whereas peaks in the N. meningitidis ge-
nome may correspond to as yet unidentified MGEs (Fig. 5A).

Matches in sp. 10022 and N. weaveri genomes primarily correspond to predicted pro-
phages (Fig. 5B). Overall, many fewer spacers appear to target sp. 10022 and N. weaveri
genomes; this is likely due at least in part to the few available genomes of commensal
species (Table S1, tab F), leading to a small pool of targeting spacers. Thus, our ability to
make comparisons of targeting between N. meningitidis and commensals is limited.

Finally, we examined which species encode the targeting spacers (color of each
circle, Fig. 5). Previously, N. meningitidis spacers were reported to match protospacers
in N. gonorrhoeae genomes (44); here, we observe that N. meningitidis is largely respon-
sible for the low-level targeting of the N. gonorrhoeae and N. meningitidis genomes in
Fig. 5A. In contrast, prophages in these four genomes are matched by spacers from
N. meningitidis or (an)other species (Fig. 5). In subsequent analyses, we quantify CRISPR
targeting of each prophage and bacterial genome and further investigate interspecies
targeting.

Comparing CRISPR targeting of each predicted prophage to backbone
targeting. Above, we observed CRISPR targeting along the entire length of the chromo-
some in N. gonorrhoeae and N. meningitidis (Fig. 5A). To distinguish whether predicted
prophages are preferentially targeted, it is necessary to compare the level of targeting of
predicted prophages to the background level across the rest of the genome. Therefore,
we quantified the density of CRISPR targeting of every predicted prophage and the rest
of the bacterial genome in which it was identified (i.e., the backbone).

We define prophage targeting density as the number of CRISPR matches in the pro-
phage divided by the prophage length. Backbone targeting density is obtained by
dividing backbone targeting (the number of CRISPR matches in a bacterial genome
excluding targets in all known or predicted prophages and CRISPR arrays) by the
length of the backbone (length of the entire bacterial genome minus the combined
lengths of the prophages identified in that genome).

First, we compared the targeting density of each prophage to the targeting density
of the backbone and determined which prophages are significantly more highly tar-
geted than the backbone (Fig. 6A). We then compared ratios of prophage/backbone
targeting between different Neisseria species (Fig. 6B).

Although many N. gonorrhoeae and N. meningitidis prophages have high targeting
densities (Fig. 6A), the high degree of backbone targeting of these genomes results in
mostly low targeting ratios (Fig. 6B). For example, even though all 13 known Neisseria
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FIG 5 Locations of matches between CRISPR spacers and Neisseria genomes. (A and B) Genomic locations of matches between Neisseria CRISPR spacers
and bacterial genomes (at 100% identity over the entire spacer length). Each plot shows a genome of a different species—N. gonorrhoeae (GenBank

(Continued on next page)
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prophages are matched by spacers, only 5 of them (MDAU and NgoU6 to -9) are signif-
icantly more highly targeted than the backbone (Data set S1).

In multiple commensal species, the ratio of prophage/backbone targeting is very
high (Fig. 6B), in many cases due to little or no backbone targeting (Fig. 6A). Low levels
of backbone targeting could be due to several, nonmutually exclusive reasons: (i) primar-
ily, the small number of commensal spacers sampled in this study resulting in lower
apparent targeting, (ii) infrequent encounters between certain species (e.g., N. weaveri is
an opportunistic pathogen rather than a resident of the human mucosa) (67), or (iii) spe-
cies-specific barriers to transformation, including differences in DNA uptake sequences
(68) and in whether CRISPR systems target chromosomal DNA (44, 45).

Overall, 20% of dereplicated prophages predicted in this study (259/1,306) have a signifi-
cantly higher targeting density than the backbone (Table S2, tab C, Data set S1).
Furthermore, the majority of significantly targeted predictions (74%; 191/259) do not cluster
with known Neisseria phages, plasmids, or the GGI (Table S2, tab C). These 191 predictions
belong to 30 different vConTACT subclusters (Data set S1), including 3 PhiSpy subclusters
highlighted above (239_0, 7_0, 479_0; Fig. 3). Therefore, these 191 predictions represent
likely candidates for novel Neisseria prophages.

Interspecies CRISPR targeting is widespread among Neisseria species. We
observed a high degree of interspecies targeting in our data set. Out of 539 spacers
that target known or predicted prophages, 288 spacers are involved in interspecies tar-
geting of prophages. Furthermore, 186 spacers only target prophages found in another
species (and not prophages found in genomes of their own species).

We further explored interspecies CRISPR targeting using a network to represent tar-
geting relationships between Neisseria species (Fig. 7). This network includes targeting of
known prophages, predictions from all three tools, and backbone sequences (defined
above). To increase the likelihood of examining phages (instead of chromosomal or plas-
mid sequences), we only included dereplicated predictions that have significantly higher
targeting densities than those of the backbone (i.e., significantly targeted predictions)
and that do not cluster with Neisseria plasmids.

The network is highly interconnected; all 21 Neisseria species included in this study are
connected to$1 other species in the network, and 16 species are connected to$2 others
(Fig. 7). Interestingly, N. meningitidis spacers match prophage and backbone sequences of
17 and 20 different species, respectively, and N. gonorrhoeae and N. meningitidis are each
targeted by 7 Neisseria species.

Moreover, there are differences in the type of sequences targeted (edge color,
Fig. 7). N. meningitidis spacers predominantly match backbone genome sequences of
N. meningitidis and several other species (many pink arrows pointing from N. meningiti-
dis). In contrast, N. subflava and N. lactamica spacers primarily target prophages of
other species (mostly green arrows pointing from N. subflava and N. lactamica).

While these results suggest that interspecies targeting of Neisseria sequences is wide-
spread, an alternative explanation is that spacers were exchanged between species.
However, out of 3,676 total spacers, only 2 identical spacers were present in genomes
from different species (Data set S1). Taken together, the findings described above may
indicate that interspecies CRISPR targeting is common between Neisseria species.

Finally, we investigated whether Neisseria prophages may be targeted by other bac-
terial taxa using CRISPRopenDB and its database of 11 million spacers (69). Four predic-
tions identified in N. animalis are matched by the same, single spacer from Eikenella
corrodens (another member of the Neisseriaceae), while an N. elongata prediction is
matched by one spacer from Aggregatibacter aphrophilus (Data set S1).

FIG 5 Legend (Continued)
assembly version no. GCA_000006845.1) and N. meningitidis (GCA_000009105.1) (A); sp. 10022 (GCA_002327085.1) and N. weaveri (GCA_900638685.1) (B).
Each data point (circle) represents the number of spacers that match each position (1-kb bin) in the bacterial genome. The color of the circle
corresponds to the species encoding the spacer (as indicated in the key, with mixed indicating .1 unique species). In parentheses is the number of
spacers encoded by each species that match the genome. CRISPR arrays are denoted by stars, and prophages are represented by rectangles (the type of
prophage is indicated in the key). Information about CRISPR targeting of each genome is provided in Data set S1, tab 10. Locations of CRISPR arrays are
included in tab 7. Locations of known and predicted prophages are found in Table S1, tab B and Table S2, tab A, respectively.
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FIG 6 Comparing CRISPR targeting densities of prophages and bacterial genome backbones. (A) Matches were identified between CRISPR
spacers and bacterial genomes in the smaller genome data set (at 100% identity over the entire spacer length). Then, targeting densities

(Continued on next page)
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Many known and predicted Neisseria prophages have additional inferred host
species. Elucidating the host range of phages is critical for understanding how they
influence their microbial hosts, including their role in mobilizing DNA (15). Since CRISPR
targeting data are frequently used to predict the bacterial hosts of phages (38–42), we
took advantage of the extensive interspecies CRISPR targeting observed above to per-
form a similar analysis.

Specifically, we inferred additional hosts of known Neisseria prophages and signifi-
cantly targeted predictions (defined above) from PhiSpy, VirSorter2, and Seeker (see
Materials and Methods). Our findings suggest that 254/259 significantly targeted pre-
dictions and all 13 known Neisseria phages have $1 additional host species (Fig. 8A,
Table S2, tab D) and that prophages are shared among a variety of Neisseria species
(Fig. 8B).

N. gonorrhoeae predictions, in particular, have broad inferred host ranges (Fig. 8A).
All (145/145) significantly targeted N. gonorrhoeae predictions have $2 inferred addi-
tional host species, and 72/145 have $4 additional host species (Table S2, tab D). N.
gonorrhoeae phages (dark purple dots, Fig. 8B) are shared primarily with three closely
related species, N. meningitidis, N. polysaccharea, and N. lactamica (median ANI
between each species and N. gonorrhoeae, 93 to 95%; Fig. 1), and also with N. cinerea,
which is less closely related (median ANI, 90%).

Furthermore, N. meningitidis is predicted to share phages with many species, especially
predictions that do not cluster with known Neisseria MGEs (many differently colored dots
in the N. meningitidis row, Fig. 8B). Among these species, seven (N. animaloris, N. canis,
N. dentiae sp. 10022, N. weaveri, N. zalophi, N. zoodegmatis, Fig. 8B) are distantly related to
N. meningitidis (median ANI,,80%; Fig. 1).

Finally, we compared the number of inferred additional host species of PhiSpy pre-
dictions between vConTACT subclusters. Members of 1318_0 (including known pro-
phages NgoU1 and NgoU2) have 3 to 5 additional host species, while members of
other subclusters have 0 to 2 (Fig. S6, Table S2, tab D). Together, our findings suggest
that diverse Neisseria species may be infected by the same phages.

DISCUSSION

In this study, we sought to broaden the diversity of phages known to infect
Neisseria species. We used three different virus prediction tools to scan 248 genomes
of commensal and pathogenic Neisseria species for prophages. Clustering approaches
revealed that many of these predictions are dissimilar from known Neisseria MGEs
(phages, plasmids, or the GGI) and phages described to infect other taxa. Therefore, we
may have uncovered novel Neisseria phage diversity.

We also identified prophages in several commensal Neisseria species that are
highly similar to the N. meningitidis prophages Pnm1 and -2 and MuMenB, as well as
Mu-like phages that infect Haemophilus parasuis and Mannheimia haemolytica, two
members of the Gammaproteobacteria. Although Pnm2 and MuMenB are defective,
they may retain the ability to contribute genes to other coinfecting phages (59). In
addition, we found several predicted Neisseria prophages that are highly similar to
Mu-like phages that infect other Betaproteobacteria, Burkholderia cenocepacia and B.
thailandensis.

Commensal Neisseria species frequently colonize the upper respiratory tracts of

FIG 6 Legend (Continued)
were determined for every bacterial genome, known Neisseria prophage, and dereplicated prophage predicted by PhiSpy, VirSorter2, and
Seeker. For each prophage, the density of matches in the prophage was compared to the density of matches in the rest of genome in
which the prophage was identified (i.e., the backbone). y coordinates represent the number of matches in each prophage divided by the
length of the prophage. x coordinates represent the number of matches in the backbone (excluding spacers targeting all known or
predicted prophages in that genome) divided by the length of the backbone (excluding the length of all known or predicted prophages in
that genome). Each data point represents a known Neisseria prophage or a predicted prophage. The color of the circle corresponds to the
species in which the prophage was identified. Larger circles indicate prophages that have significantly higher targeting densities compared
to the backbone (statistical testing is described in Materials and Methods). (B) Violin plot showing the distribution of prophage/backbone
CRISPR targeting ratios from panel A grouped according to the species in which the prophage was identified. CRISPR targeting densities
and ratios are provided in Data set S1, tab 10, and significantly targeted prophages are listed in tab 11.
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humans and animals. Thus, these species may encounter Haemophilus, Mannheimia,
and Burkholderia species within these niches and could be exposed to the same or sim-
ilar phages. Additionally, we found highly similar predicted prophages in different
Neisseria species, including distantly related species.

FIG 7 Interspecies CRISPR targeting of Neisseria prophages and bacterial genome backbones. Network representing intra- and interspecies CRISPR targeting
of prophages and the rest of the genome in which the prophage was identified (i.e., the backbone) visualized using Cytoscape. The prophages included in
this analysis are known Neisseria prophages and dereplicated prophages predicted by PhiSpy, VirSorter2, and Seeker that are targeted significantly more
than the backbone and do not cluster with Neisseria plasmids. Each node represents a bacterial species, and the adjacent number in parentheses indicates
the total number of spacers encoded by that species. Nodes are connected by an edge if CRISPR spacers encoded by one species target another species.
The direction of CRISPR targeting is indicated using an arrow that points to the species being targeted. Edge color indicates the relative number of spacers
targeting prophages compared to the targeting of the backbone (excluding CRISPR arrays or sequence contained in any known or predicted prophages—
not only predictions that are significantly targeted). Information about CRISPR spacers and targeting is provided in Data set S1, tabs 9 to 10.
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FIG 8 Inference of additional host species of Neisseria phages using interspecies CRISPR targeting data. (A) Violin plot showing the
distribution of the number of inferred additional host species of known Neisseria phages and dereplicated predictions made by PhiSpy,

(Continued on next page)
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CRISPR-Cas immune systems provide a historical record of encounters between
microbes and MGEs. Previously, Zhang et al. identified CRISPR spacers that match the
filamentous phage MDAU (44), and here, we found that 13 known Neisseria prophages
are matched by spacers. To identify predictions that are more likely to be phages, we
compared targeting of each predicted prophage to targeting of the backbone ge-
nome. We found that 20% of dereplicated predicted prophages (259/1,306) have a sig-
nificantly higher targeting density than that of the backbone, and 74% of these (191/
259) do not cluster with known Neisseria MGEs. Therefore, we believe that these 191
predictions warrant further study.

Moreover, we found evidence of widespread interspecies targeting of predicted
prophages and backbone sequences by Neisseria spacers. We used those data to infer
additional host Neisseria species of predictions that are significantly more highly tar-
geted than the backbone. Building upon previous findings (36, 37), our results suggest
that multiple known and predicted phages may be able to infect multiple species of
Neisseria, including distantly related species.

In addition to defending against MGEs, CRISPR-Cas systems of N. meningitidis and
other microbes may also play a role in restricting the exchange of chromosomal DNA
between species (44, 45, 70, 71). Our observation that backbone sequences of various
Neisseria species are targeted by N. meningitidis spacers at a low level is consistent
with this model. Furthermore, multiple immune systems may work in concert to limit
gene flow between Neisseria species (43, 72, 73).

This study has several important limitations. Commensal species are underrepre-
sented among the available Neisseria genome assemblies and, thus, also in this study.
This underrepresentation limits our ability to compare patterns of CRISPR targeting
between species. Also, our inference of host species is limited by whether genomes
encode CRISPR spacers (e.g., N. gonorrhoeae genomes do not encode CRISPR arrays).

We only used three virus prediction tools, among which only PhiSpy was specifically
designed to predict prophages (i.e., integrated phages) (50). Our predictions are likely
biased toward tailed phages; however, the diversity of Neisseria filamentous prophages
has been explored recently (37).

Additionally, we do not know the true boundaries of the predicted prophages, whether
they are intact or incomplete, and whether they are able to produce virions. Although
only seven putative, active prophages were identified in the 51 genomes examined here,
it is possible that additional prophages may be induced under certain conditions.

Prophages are known to influence the fitness and virulence of many bacterial spe-
cies, including N. meningitidis (18–23). Furthermore, considerable evidence suggests
that accessory genes are shared extensively between Neisseria species and that com-
mensal species are a reservoir of antibiotic resistance and virulence genes (46, 74–78).
Therefore, it is critical to understand the diversity and host range of phages, which
have the potential to mobilize genes among Neisseria species and alter their evolution-
ary trajectories. Further research on phages is also crucial for developing phage ther-
apy approaches (79).

By combining clustering and CRISPR targeting analyses, we have identified candi-
date, novel Neisseria phages and inferred that several may infect multiple species
within this bacterial genus. We hope that our findings may inform future studies seek-
ing to elucidate the impact of viruses on Neisseria biology. Finally, we believe that our
work may have implications for understanding the interactions occurring among the

FIG 8 Legend (Continued)
VirSorter2, and Seeker that have a significantly higher CRISPR targeting density than the backbone. Data are grouped according to the
species in which the prediction was identified. Interspecies matches between CRISPR spacers and prophages were used to infer phage
host species in addition to the species in which the phage was identified. (B) Data from panel A shown for each prophage that has $1
inferred additional host species (the species names are along the y axis). Each circle represents a known or predicted prophage, and the
color of the circle corresponds to the species in which the prophage was identified (as indicated in the key). Circles with a black outline
indicate that .1 spacer encoded by that species matches that prophage, while circles without an outline represent a single spacer
match. Phages are categorized as follows: known Neisseria phages, predicted prophages that cluster with known Neisseria prophages, and
predicted prophages that do not cluster with known Neisseria MGEs (phages, plasmids, or the gonococcal genetic island).
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diverse Neisseria species that colonize the oropharynx and the phages that infect
them.

MATERIALS ANDMETHODS
Generation of bacterial genome data sets. A set of high-quality bacterial genome assemblies was

selected for prophage prediction. Specifically, Neisseria genome assemblies with N50 values of $250 kb
and contigs of #10 were downloaded from GenBank (47, 48). This set of 248 assemblies is referred to as
the “smaller Neisseria genome data set” (Table S1, tab A).

For the identification of CRISPR arrays, a second data set of bacterial genome assemblies was com-
piled as follows: Neisseria genome assemblies with an N50 value of $15 kb were downloaded from
GenBank (47, 48) and limited to the species represented in the smaller genome data set. This second set
of 2,619 assemblies is referred to as the “larger Neisseria genome data set” (Table S1, tab E).

All genome assemblies were downloaded on 30 March 2020. For each of the above-described data
sets, the numbers of genomes corresponding to each Neisseria species are summarized in Table S1, tab
F. These data sets include assemblies provided by the Wellcome Sanger Institute community resource
project NCTC 3000 (https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/) and the FDA-ARGOS
genomic database resource (80).

Construction of bacterial phylogenetic tree and heatmap of average nucleotide identity.
PubMLST (81) was used to concatenate sequences of the 53 genes encoding ribosomal proteins of each
bacterial genome in the smaller Neisseria genome data set (82). Then, the concatenated protein sequen-
ces were used to create a maximum-likelihood ribosomal multilocus sequence typing (rMLST) tree using
RAxML (83) (with the GTRCAT model and 100 bootstrap replicates), and it was visualized using iTOL v5
(84). The tree was rooted using midpoint rooting.

The pairwise average nucleotide identity (ANI) between bacterial genomes in the smaller genome data
set was calculated using FastANI (85) and visualized as a heatmap using the R (86) package pheatmap (87).

Prediction of prophages in Neisseria genomes. To increase the likelihood of identifying novel
Neisseria prophages, we selected three command-line tools that use different approaches to predict pro-
phages in the smaller set of Neisseria genomes. PhiSpy (50) uses machine learning to search for charac-
teristics that are unique to prophages (i.e., phages integrated in bacterial genomes), while VirSorter2 (51,
88) combines alignment and machine learning-based approaches to identify microbial viruses. PhiSpy
and VirSorter2 both performed well when evaluated for their ability to predict prophages in bacterial
genomes (56). We also selected Seeker (52), which uses deep learning to detect phages without relying
on sequence features (e.g., genes or k-mers) to explore potential novel prophage diversity.

PhiSpy v4.2.19 was run in strict mode without HMM searches after training using a custom training
set. To generate the custom set, we combined the PhiSpy default reference genomes with the N. gonor-
rhoeae genome FA 1090 (GenBank assembly version no. GCA_000006845.1) annotated with proteins
from the dsDNA tailed phages (NgoU1-5) and filamentous phages (NgoU6-9) (29, 31). We did not add
any N. meningitidis genomes to the training set because N. meningitidis MC58 (GCA_000008805.1) and N.
meningitidis Z2491 (GCA_000009105.1) were already included in the reference data set.

VirSorter2 v2.1 was run using default settings, and Seeker was run using the prophage model
(LSTM_type=“prophage”). The coordinates of each predicted prophage are provided in Table S2, tab A.
The FASTA sequences of each predicted prophage are available at https://doi.org/10.6084/m9.figshare
.19372802.

Active prophage analysis. The GenBank (47, 48) and SRA (48, 89) databases were searched for reads
corresponding to each assembly in the smaller set of Neisseria genomes. Table S1, tab C contains a list of
51 assemblies that were found to have corresponding Illumina paired-end reads. Reads were retrieved
from the SRA database using the prefetch and fasterq-dump tools from the SRA Toolkit (90). hafeZ
v1.0.2 (55) was used to search for active prophages in each assembly in Table S1, tab C (using -T phrogs);
results are available at https://doi.org/10.6084/m9.figshare.19372802. PropagAtE v1.1.0 (54) was used to
estimate whether the 406 prophages predicted by PhiSpy, VirSorter2, and Seeker in the above-described
assemblies are active or dormant (using -v to specify prophage coordinates).

Dereplication of predicted prophages. An all-by-all BLASTn (91) search was performed separately
with prophages predicted by each tool. Predicted prophages were dereplicated at 95% length
aligned using a custom script (blast_average_link_hier_clust_output_clusters.py; https://github.com/
Alan-Collins/Neisseria-prophage-paper). Information about dereplicated predictions and the predic-
tions used as their representatives is in Table S2, tab B. Known Neisseria plasmids were dereplicated
using the same method.

Hierarchical clustering of predicted prophages with Neisseria MGEs based on percent length
aligned nucleotide sequence. First, an all-by-all BLASTn (91) search was performed on dereplicated pre-
dicted prophages, dereplicated known Neisseria plasmids, and the gonococcal genetic island. Next, a dis-
tance matrix was created based on the percent length aligned (PLA) nucleotide sequence between pairs
of MGEs (distance = 1 – PLA). The Python (92) package SciPy v1.6.1 (93) was then used to perform aver-
age-linkage clustering on the distance matrix. A custom script (identify_blast_clusters.py; https://github
.com/Alan-Collins/Neisseria-prophage-paper) was used to extract cluster memberships and extract the
tree in Newick format, which was visualized using iTOL v5 (84).

vConTACT v.2.0 clustering of phages based on shared genes. Prodigal v2.6.3 (94) was used to
predict the protein-coding genes of known Neisseria phages and dereplicated predicted prophages (run
in anonymous/metagenomic mode using -p meta). Afterward, Prodigal-generated protein sequences
were clustered with reference viral genomes using vConTACT v2.0 (64, 66).
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As reference viral sequences, we used viruses from the RefSeq database (48, 95) and 12,892 virus
sequences provided by the Millard lab (96) (http://millardlab.org/bioinformatics/lab-scripts/supplementing
-and-colouring-vcontact2-clusters/). Protein sequence files and mapping files generated on 30 May 2020
were downloaded on 20 May 2021. Clustering with reference sequences was performed separately on pro-
phages predicted by each virus prediction tool. The following vConTACT settings were used: –rel-mode
“Diamond”, –db “ProkaryoticViralRefSeq94-Merged” –pcs-mode MCL –vcs-mode ClusterONE. vConTACT
networks were visualized in Cytoscape v3.8.2 (97) using the edge-weighted spring-embedded layout
algorithm, which positions highly similar viruses close together. Duplicate edges were removed from the
network, and reference viruses are only shown if they are connected by an edge to a known Neisseria pro-
phage or predicted prophage.

Analyses of vConTACT viral clusters.We compared the similarity of predicted prophages to known
viruses (i.e., known Neisseria phages and reference phages) between the three tools as follows. First, we
examined each prediction’s connections to known viruses and identified the edge with the highest simi-
larity score. Then, we compared the distributions of similarity scores between each tool using the Mann-
Whitney U test implemented in the Python (92) package SciPy v1.7.3 (93).

To compare gene clusters between the members of each viral subcluster, Prokka v1.14.6 (98) was
used to predict and annotate open reading frames (ORFs) of each phage (using the Pfam, TIGRFAM, and
HAMAP databases) (99–101), and Clinker (102) was used to generate comparisons of annotated pre-
dicted proteins.

Identification of CRISPR arrays in Neisseria genomes. MinCED v0.4.2 (103) (using default settings)
was used to identify CRISPR repeats in the smaller set of Neisseria genomes. For each species, the most
common MinCED-identified repeat(s) was compared to the repeats included in the CRISPRCasDB web-
site (104) (https://crisprcas.i2bc.paris-saclay.fr/MainDb/StrainList), and a consensus list of repeats was
generated. The CRISPRCasTyper webserver (105) was used to predict the CRISPR subtype associated
with each of the identified repeats.

Using the CRISPR repeats identified in high-quality genomes, we used a custom script (reps2spacer-
s.py; https://github.com/Alan-Collins/Neisseria-prophage-paper) to run BLASTn (91) (using -task blastn-
short) and process results to identify spacers in the larger set of Neisseria genomes. To investigate sharing
of identical spacers between genomes of different species, an all-by-all BLASTn (91) search (using -task
blastn-short) was performed on all spacers that were identified in the larger Neisseria genome data set.

Prediction of CRISPR targeting of prophages and bacterial genomes. BLASTn (91) (using -task
blastn-short) was used to identify matches between Neisseria CRISPR spacers (identified in the larger
Neisseria genome data set) and either prophages or high-quality bacterial genomes. Matches were fil-
tered as follows: the spacer had to match the target with 100% identity over the entire length of the
spacer (i.e., 0 mismatches). Additionally, matches between spacers and CRISPR arrays found in bacterial
genomes or prophages were removed. CRISPRopenDB (69) was used to predict CRISPR targeting of pre-
dicted prophages by other bacterial taxa (using the default setting of 2 mismatches).

Comparison of CRISPR targeting of prophages versus bacterial genome backbones and
statistical testing. To compare the CRISPR targeting of predicted prophages and the genomes in which
they were found (i.e., the backbone), we used the following method. As described above, matches
between CRISPR spacers and targets in prophages or bacterial genomes were identified using BLASTn
(91) (using -task blastn-short), and only hits with 100% identity over the full length of the spacer were
kept. CRISPR spacers were excluded if they matched a CRISPR array found in either a predicted prophage
or a bacterial genome.

Next, we quantified CRISPR targeting per kb; importantly, this was done differently for prophages
and backbones as follows. For prophages, the targeting density is the number of CRISPR matches di-
vided by the prophage length in kb. For backbones, targeting is the number of matches in the entire
bacterial genome minus any matches in locations that are known/predicted to be part of a prophage
and locations that are part of CRISPR arrays; the length is calculated by subtracting the length of all pro-
phages identified in the genome from the length of the entire bacterial genome. Then, the backbone
targeting density was calculated as the number of CRISPR targets (not in a known/predicted prophage
or CRISPR array) divided by the length of the genome minus the lengths of all known/predicted
prophages.

Afterward, we performed statistical testing to test whether there is a difference between the target-
ing density of the prophage and the backbone for each prophage; to do this, each kb of prophage or
bacterial genome was treated as a separate datapoint. Specifically, we performed a Mann-Whitney U
test to compare each of the CRISPR targeting counts for the separate kb bins between each prophage
and the backbone using the Python (92) package SciPy v1.7.3 (93). The P values for all phages tested
were adjusted with the Holm-Sidak correction using the Python (92) package Statsmodels v0.13.0 (106).

Inferring host bacterial species of known and predicted prophages. Results from the interspecies
CRISPR targeting analysis described above were used to infer the additional host species of known
Neisseria phages and dereplicated predictions made by PhiSpy, VirSorter2, and Seeker. Only dereplicated
predicted prophages that were found to have a significantly higher targeting density compared to the
rest of the genome in which they were identified (as described above) were included in this analysis.
Any species that was found to target a prophage with $1 spacer was inferred to be a host of that pro-
phage (in addition to the species in which the prophage was identified).

Data availability. All of the genome sequences used in this study were downloaded from GenBank.
The accession numbers of the 248 bacterial genome assemblies in the high-quality, smaller set of
genomes are provided in Table S1, tab A. The accession numbers of all 2,619 bacterial genome
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assemblies used in this study are included in Table S1, tab E. The accession numbers of phage and plas-
mid genomes are listed in Table S1, tabs B and D, respectively.

The custom scripts created for analysis of data in this study are available at https://github.com/Alan
-Collins/Neisseria-prophage-paper. The data sets generated in this study are provided in the supplemen-
tal material and are also available at https://doi.org/10.6084/m9.figshare.19372802.
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