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Abstract

comparable to normal breast).

promote rapid induction under appropriate conditions.

Background: Carcinoembryonic antigen cell adhesion molecule 1 (CEACAMT) is a transmembrane protein with
multiple functions in different cell types. CEACAM1 expression is frequently mis-regulated in cancer, with down-
regulation reported in several tumors of epithelial origin and de novo expression of CEACAMT1 in lung cancer and
malignant melanoma. In this report we analyzed the regulation of CEACAM1 expression in three breast cancer cell
lines that varied in CEACAM1 expression from none (MCF7) to moderate (MDA-MB-468) to high (MCF10A,

Results: Using in vivo footprinting and chromatin immunoprecipitation experiments we show that the CEACAM1
proximal promoter in breast cells is bound in its active state by SP1, USF1/USF2, and IRF1/2. When down-regulated
the CEACAMI promoter remains accessible to USF2 and partially accessible to USF1. Interferon-y up-regulates
CEACAMT mRNA by a mechanism involving further induction of IRF-1 and USF1 binding at the promoter. As
predicted by this analysis, silencing of IRF1 and USF1 but not USF2 by RNAI resulted in a significant decrease in
CEACAMT protein expression in MDA-MB-468 cells. The inactive CEACAM1 promoter in MCF7 cells exhibits
decreased histone acetylation at the promoter region, with no evidence of H3K9 or H3K27 trimethylation, histone
modifications often linked to condensed chromatin structure.

Conclusions: Our data suggest that transcription activators USF1 and IRF1 interact to modulate CEACAM1
expression and that the chromatin structure of the promoter is likely maintained in a poised state that can

Background

Carcinoembryonic antigen (CEA)-related cell adhesion
molecule 1 (CEACAM]1) is a member of the immunoglo-
bulin super family of glycoproteins [1,2]. It is expressed
on the surface of epithelial and endothelial cells, as well
as on cells from the immune system and plays a role in a
variety of cellular processes like cell-cell adhesion, prolif-
eration and differentiation, apoptosis and immune
response. Several studies have reported down-regulation
of CEACAML1 expression in cancers of epithelial origin,
including colon [3], breast [4], liver [5], gastric [6] and
prostate [7]. The degree of CEACAM1 down-regulation
varies between different tissues: in colon cancer the pro-
tein is almost completely absent (90% down-regulation),
while in breast cancer only about 30% of tumors exhibit
a decrease in CEACAMI1 expression. Importantly, forced
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over-expression of CEACAMLI in prostate, breast, colon
or liver cell lines results in a decrease of the tumorigenic
potential [8-11]. In addition to the widespread CEA-
CAM1 down-regulation, elevated CEACAM1 expression
has been observed in lung cancer [12] and malignant
melanoma [13,14], underlying the importance of studying
the mechanisms which determine CEACAM]1 expression.

Several transcription factors function in inducing CEA-
CAM1 transcription. We have previously reported that
CEACAM1 transcription can be induced by interferon
(IEN) y [15] through activation of interferon regulatory
factor 1 (IRF1), which binds to an interferon response ele-
ment (ISRE) at the CEACAM1I promoter [16]. By perform-
ing in vivo footprinting with ligation-mediated (LM)-PCR
and gel shift assays, we have identified SP1, USF and IRF1
as factors which activate CEACAM]1 transcription in HeLa
cells and colon cells. An earlier study of the CEACAM1
promoter in colon and hepatoma cells implicates USF and
possibly HNF-4 and AP-2 in transactivation [17]. More
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Table 1 Oligonucleotides

qPCR Forward Primer/Reversed Primer Size (bp)

EACAM1 5-TGCTGGCATTGTGATTGGAG-3'
5-ACATGCCAGGGCTACTGCTATC-3' 61

IRF1 5-CTCTGAAGCTACAACAGATGAGG-3'
5-CTGTAGACTCAGCCCAATATCCC-3 215

IRF2 5-GAGTATGCGGTCCTGACTTCAAC-3'
5-CATCGCTGGGCACACTATCAGTCG-3' 259

USF1 5-TCGTGCAGCTCTCCAAGATAATCC-3
5-CCTGTTGTCGAAGCACGTCATTG-3' 188

USF2 5-CAGATGGACAACGAGCTCCTGAG-3'
5-GCATGTGTCCCTCTCTGTGCTAAG-3' 207

GAPDH 5-CATTGCCCTCAACGACCACTTTGT-3'
5-CACCCTGTTGCTGTAGCCAAATTC-3' 73

RNAI Sequence

IRF1 #1 5-CCCUGGCUAGAGAUGCAGAUUAAUU-3'

IRF1 #2 5-GGGACAUCAACAAGGAUGCCUGUUU-3

IRF1 #3 5-CGGACAGCACCAGUGAUCUGUACAA-3'

IRF2 #1 5-GGCUUAGUAAUGGAGUAAGUGAUCU-3'

IRF2 #2 5-UCUCCUGAGUAUGCGGUCCUGACUU-3'

IRF2 #3 5-GAGGAGCAGAUAAACUCCAACACGA-3'

USF1 #1 5-CCUGGCACUGGUCAAUUCUUUGUGA-3'

USF1 #2 5-UGGAUCGUGCAGCUCUCCAAGAUAA-3

USF1 #3 5-CAUCAGUGGCUACCCUGCCACUCAA-3'

USF2 #1 5-CCAGCGUCCAGUGUGGGAGAUACUA-3'

USF2 #2 5-CCAGGAUGUGCUUCAGACAGGAACA-3'

USF2 #3 5-GGAUCCUGUCCAAGGCCUGCGAUUA-3'

recently, CEACAM!1 has been identified as a direct tran-
scriptional target of SOX9 in colon cells, by a variety of
methods including microarrays, analysis of SOX9 deficient
mice, and chromatin immunoprecipitation (ChIP) [18].
While the above-mentioned studies have addressed mainly
the mechanisms of activation of the CEACAM1 promoter,
a single study has addressed the down-regulation of
CEACAMLI, by implicating the SP2 transcription factor as
a direct repressor of CEACAMI1 transcription in rat pros-
tate cells [19].

In this work, we have focused on the analysis of
the CEACAM1 promoter in breast cancer cell lines
that vary in CEACAM1 mRNA expression from none
(MCF?7), to moderate (MDA-MB-468), to higher levels
(MCF10A) approximating those found in normal breast.
MCEF?7 cells have played an important role in our 3D
model of mammary morphogenesis, where CEACAM1-
deficient MCF?7 cells fail to form glands with lumena, while
forced expression of CEACAMI1 restores lumen formation
[20]. In contrast, MCF10A cells that express CEACAM1
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mRNA in levels similar to normal breast epithelia, form
abundant glands in 3D culture [21]. When CEACAMI1 was
silenced by antisense in the related MCF10F cell line, these
cells failed to form glands with lumena [22]. Given that
these two cell lines (MCF7 and MCF10A) vary dramatically
in their mRNA expression of CEACAM1 with important
biological consequences in terms of phenotypes, they were
chosen for promoter analysis studies. The choice of MDA-
MB-468 as a cell line with intermediate expression of CEA-
CAM1 was prompted by its response to IRF-1 leading to a
reduction of survivin expression and a return to a more
normal breast epithelial phenotype [23]. In this respect, we
predict that the change in phenotype may also be depen-
dent on CEACAM]1 expression.

We have studied the CEACAMI promoter activation
in these 3 breast epithelial cell lines by performing in
vivo footprinting using LM-PCR. We have identified
protected binding sites at the CEACAM1 promoter that
correspond to the footprints for SP1, USF and IRF1
identified in our earlier study in colon cells [16]. We
have confirmed the binding of these transcription fac-
tors to the promoter region by chromatin immunopreci-
pitation (ChIP) and have detected binding of USF
factors even in the absence of CEACAMI1 transcription
in MCEF7 cells. In two out of three of the breast cell
lines studied (MCF10A and MDA-MB-468) IRFlcan be
detected at the ISRE before induction with IFN-y,
together and possibly in competition with IRF2, which
can function to modulate CEACAM]1 expression level.
Silencing of IRF1 and USF1 but not USF2 by RNAi
resulted in a significant decrease in CEACAMI1 protein
expression in MDA-MD468 cells. The inactive CEA-
CAM1 promoter in MCEF7 cells displays a partially open
chromatin structure with significant histone hypoacety-
lation, which could play a role in the promoter down-
regulation.

Methods

Cell culture, reagents, and treatments

MCEF7 and MDA-MB-468 cells were grown in a 5% CO,
incubator at 37°C in MEM supplemented with 1% Sodium
Pyruvate, 0.15% Sodium Bicarbonate, 1 x Non-essential
Amino Acids, 1 x Penicillin/Streptomycin/Amphotericin
B and 10% heat-inactivated FBS. MCF10A cells were cul-
tured in DMEM/F-12 (50/50), supplemented with MEGM
SingleQuot Kit (Lonza) and 10% heat-inactivated FBS.

For interferon y mediated induction of CEACAMI,
MCEF7 cells were seeded at a density of 1.5 x 10° cells
in 6-well plates 24 h prior to treatment. Human recom-
binant interferon y (Pierce) was added to the medium at
a concentration of 500 U/ml for 6 h. After incubation,
RNA and proteins were isolated as described below.

Trichostatin A treatment was performed with MCF7
cells seeded at a density of 0.8 x 10° cells in 12-well
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plates. 24 h after seeding the cells, Trichostatin A
(Sigma) at a concentration of 1 uM was added for 0, 6 h
and 24 h, respectively, together with DMSO controls.
RNA from each time point was isolated as described
below.

The following antibodies used for chromatin immuno-
precipitation and Western blot were from Santa Cruz
Biotechnology: anti-SP1 (PEP-2, sc-59), anti-SP2 (K-20,
sc643 and H-282, sc-11400), anti-USF1 (C-20, sc-497),
anti-USF2 (N-18, sc-861), anti-IRF-1 (C-20, sc-497),
anti-IRF-2 (C-19, sc-498). Western blots for CEACAM1
were performed with mAbT84.1 [24] and anti-B-actin
antibody was from Abcam. Anti-trimethyl-Histone H3
(Lys27), anti-trimethyl-Histone H3 (Lys9), clone 6F12-
H4 and anti-acetyl-Histone H3(Lys9/18) antibodies used
for ChIP were from Millipore.

RNA isolation and RT-PCR

Total RNA was isolated by the RNeasy mini kit (Qia-
gen). The RNA was treated with RNase-free DNase set
(Qiagen), and RNA (2 pg) was reverse-transcribed in a
20 pl reaction using random hexamers and Superscript
II (Invitrogen) according to the manufacturer’s instruc-
tions. 1/20 to 1/100 of the reaction was used for semi-
quantitative PCR with gene-specific primers and Phire
Hotstart DNA Polymerase (New England Biolabs) for
32-35 cycles. The products were resolved on 2% agarose
gels and visualized by staining with SYBR Green I (Invi-
trogen). Gels were photographed on a GelLogic 200
Imaging System.

For real time PCR, 1/1200 of the reverse transcription
reaction was used to quantitate GAPDH mRNA and 1/20
of the reverse transcription reaction was used to measure
CEACAMI1 mRNA levels. The reactions were performed
on iQ5 Multicolor RealTime PCR Detection System
(Bio-Rad) in a 25 pl volume with iQ SYBR Green Super-
mix (Bio-Rad) and primers for CEACAM1 (forward,
5-TCTACCCTGAACTTTGAAGCCCA; reverse,
5-TGAGAGACTTGAAATACATCAGCACTG) and
anti-GAPDH (forward, 5-ATCCATGACAACTT-
TGGTATCGTG and reverse, 5-ATGACCTTGCCCA-
CAGCCTT). After denaturation for 3 min at 95°C, 40
cycles were performed (10 sec at 95°C, 30 sec at 64°C, 20
sec at 72°C); fluorescence was recorded at the extension
step at 72°C. At the end of the reaction melting curves
were generated between 55°C and 95°C, for every 0.5°C.
CEACAM1 mRNA levels were calculated by using
GAPDH for normalisation.

Quantitation of mRNA expression level of CEACAMI,
IRF1, IRF2, USF1, USF2, and GAPDH was performed
with primers (Table 1, top) using the iQ™5 Multicolor
Real-Time PCR Detection System (Bio-Rad Laboratories,
Hercules, CA). Briefly, 1/50 of cDNA from the reverse
transcription reaction was used for qPCR with 20 pmol
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of each primer in a total volume of 20 pl using the
Sense Mix Plus SYBR® (Quantace Inc, Norwood, MA)
and the following conditions: initial denaturation step at
94°C for 3 min; followed by 40 cycles of 95°C for 15 sec,
55°C for 15 sec, 72°C for 15 sec. The fluorescence was
measured at the end of the extension step at 72°C. Sub-
sequently, a melting curve was recorded between 55°C
to 95°C every 0.2°C with a hold every 1 second. Levels
of mRNA (triplicate) were compared after correction by
use of concurrent GAPDH message amplification.

Protein isolation and Western Blot

For total protein extraction, cells at a confluency of
about 90% were incubated in RIPA buffer (10 mM
sodium phosphate (pH 7.2), 150 mM NaCl, 1% Nonidet
P40, 1% Na deoxycholate, 0.1% SDS, 2 mM EDTA, 1
mM DTT), supplemented with 1 mM PMSF, 100 U/ml
benzonase, proteinase inhibitor cocktail (Roche) and
phosphatase inhibitor cocktail (Pierce). Cells were incu-
bated on ice for 30 min and the lysate was cleared by
centrifugation and kept at -80°C [25]. Typically 25-50 pg
of protein from the lysate was loaded on 4-12% polya-
crylamide SDS gel (Novex) and the proteins were trans-
ferred from the gel to PVDF membrane. The Western
blot was performed with infrared dye labelled secondary
antibodies (Li-COR Biosciences) and signal was detected
on the Odyssey Infrared Imaging System (LI-COR
Biosciences).

In vivo footprinting with dimethyl sulfate
MDA-MB-468, MCF7 or MCF10A cells (4-6 x 10°) at a
confluency of about 90% were treated with 0.1%
dimethyl sulfate (DMS, Sigma) for 5 min at room tem-
perature. After three washes with PBS, DNA was iso-
lated with DNeasy Tissue kit (Qiagen), eluted in TE pH
7.5 and stored at 4°C. Purified genomic DNA isolated
from MDA-MB-468 cells was incubated with 0.5% DMS
for 2 min at room temperature and then treated with
piperidine as described in [26]. G and G+A Maxam-Gil-
bert sequencing reactions with purified genomic DNA
(from MDA-MB-468 cells) were performed according to
Pfeifer et al. [26]. In vivo footprinting with LM-PCR was
performed essentially according to [27], with the use of
an infrared-labeled primer and subsequent detection on
a LI-COR DNA sequencer [28]. The primer sets for the
coding strand were:

P1: 5-GTTGCAAAGAAAATAATTACCAC, biotiny-
lated at 5" end

P2: 5-CCACATTTGGATATGCCAGGGTTCTC

P3: 5-TGGATATGCCAGGGTTCTCTGTGTGCTGC,
labelled with IR700 (LI-COR Biosciences). The primer
set for the noncoding strand were:

P1AS: 5-TCCTGCTGGCCCTGTCTTCAC, biotiny-
lated at 5" end
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P2AS: 5-TTCACCTGTGGAGGAGAGCTTGGGC
P3AS: 5-GAGAGCTTGGGCTCCAGGAACGCTTC-
GAG, labelled with IR700.

Chromatin Immunoprecipitation

MDA-MB-468, MCF7 or MCF10A cells (4-6 x 10°) at a
density of 90% were crosslinked with 1% formaldehyde
(Sigma) for 10 min at room temperature. After washing
with PBS, cells were lysed in 750 pl buffer containing
1% SDS, 10 mM EDTA, 50 mM tris-HCI, pH 8.1, for 30
min on ice. Lysates were subjected to sonication on a
Branson digital sonifier for 8 x 10 sec at 40% amplitude.
These conditions typically sheared DNA to fragments
between 200 bp and 1.5 kb in size. The lysates were
cleared by centrifugation at 14 000 rpm, 7 min, 4°C, fro-
zen in liquid nitrogen and stored at -80°C until further
use. For immunoprecipitation, after preclearing the
lysates with Protein G Plus agarose beads (Pierce) for 1
h at 4°C, the beads were removed and the supernatant
was diluted 1:10 in buffer containing 0.01% SDS, 1.1%
Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCI, pH
8.1, 167 mM NaCl. Aliquots of the lysates (200 pl for
transcription factors and 100 pL for histone modifica-
tion) were incubated overnight with 5 pg of antibody at
4°C on a rotating platform, followed by addition of Pro-
tein G Plus agarose for 2 h. The beads were washed at
4°C once in low salt buffer (0.1% SDS, 1% Triton X-100,
2 mM EDTA, 20 mM Tris-HCI ph 8.1, 150 mM NaCl),
once in high salt buffer (0.1% SDS, 1% Triton X-100, 2
mM EDTA, 20 mM Tris-HCI ph 8.1, 500 mM NacCl),
once in LiCl buffer (0.25 mM LiCl, 1% Nonidet P40, 1%
Na deoxycholate, 1 mM EDTA, 10 mM Tris pH 8.1)
and twice in TE buffer. DNA was eluted with 1% SDS/
0.1 M NaHCOj3 and the crosslinks were reversed by
incubation at 65°C for 4 h. The DNA was purified by
treatment with Proteinase K (Sigma) for 2 h at 50°C,
extracted with phenol/chlorofom/isoamyl alcohol
and precipitated with ethanol. DNA was dissolved
in Tris-HCI, pH 7.5 and amplified using Phire Hot-
start DNA polymerase using the following primers
for the CEACAMI promoter region: forward, 5'-
GGTCTGGGAAACCAAAATGTAGACAG, reverse 5'-
CTCTGTGCTGAGCCTCCTCCCT. Aliquots of the
reactions were resolved on 2% agarose gel containing
SYBR Green I and visualized on a GelLogic 200 Imaging
System.

RNAi treatment

Cells were transfected with RNAi oligos (Table 1, bot-
tom) using the Lipofectamine™ RNAIMAX transfection
agent. Cells were split, seeded at 50% confluence in T25
flasks overnight, washed twice with 1x PBS, and treated
with RNAi oligos (200 nM) and tranfection agent (1:100
dilution) in Opti-MEM"® I reduced serum medium for 18
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hours without removing the transfection solution, after
which time the cells were supplemented MEM contain-
ing 10% fetal bovine. Cells were treated with RNAi oli-
gos for a total of 72 hours.

Results

CEACAM1 mRNA expression in MDA-MB-468, MCF10A
and MCF7 cells

To study the factors responsible for CEACAM1 tran-
scription in breast epithelilal cells, we chose three well
studied cell lines that vary in their mRNA expression
levels of CEACAMI from none (MCF7) to moderate
(MDA-MB-468) to high (MCF10A). To assay the CEA-
CAMI1 mRNA levels in these cell lines, we isolated RNA
and performed RT-PCR using a primer pair that detects
all CEACAMLI splice variants (Figure 1A). The mRNA
in the three cell lines was quantified by real-time PCR
using GAPDH for normalization (Figure 1B). As
expected, MCF10A and MDA-MB-468 cells expressed
CEACAMI1 mRNA with MCF10A levels greater than
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Figure 1 CEACAM1 mRNA expression in MDA-MB-468, MCF10A
and MCF7 cells. A. RT-PCR with RNA isolated from MDA-MB-468,
MCF10A and MCF7 cells and amplified with primers detecting all
isoforms of CEACAM1. GAPDH has been used as loading control. B.
CEACAMT mRNA levels in the three cell lines were quantified by
real time PCR, using GAPDH for normalisation.
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MDA-MB-468, while in MCF7 cells, the CEACAM1
transcript was very low.

In vivo DMS footprinting of the CEACAM1 promoter

We next proceeded to determine transcription factor
binding sites on the CEACAM]1 promoter, by perform-
ing in vivo footprinting mediated by LM-PCR. Since we
were interested in comparing the CEACAMI promoter
occupancy in breast cells to published data for the CEA-
CAM1 promoter in colon cells [16], we chose to look at
the immediate promoter sequence, between -65 to -365
bp. We treated MCF7, MDA-MB-468 and MCF10A
cells with dimethyl sulfate (DMS) in vivo, isolated DNA
and subjected it to LM-PCR. As a control for band
intensity we used purified genomic DNA isolated from
MDA-MB-468 cells, digested in vitro with DMS. DNA
from MDA-MB-468 cells was also subjected to Maxam-
Gilbert sequencing and used as a marker. Using primers
that amplify the coding DNA strand, we were able to
distinguish several protected bases on DNA form MDA-
MB-468 and MCF10A cells, with both cell lines giving
very similar patterns (Figure 2, top left). The G at -143
maps in a site for USF1/2, while G at -157 marks a site
for binding of SP1. The double band at -223/4 is part of
a binding site for IRF-1. All three binding sites were
also protected in colon cells, as reported previously [16].
In breast cells, we have detected two additional foot-
prints, at G -167-168 and G -184-186. For MCF7 cells,
we have failed to detect any protected bases, except for
G-143, in the binding site for USF1/2. Footprinting with
primers amplifying the antisense DNA strand confirmed
the SP1 and USF1/2 binding sites in MDA-MB-468 and
MCF10A cells, as well as the detection of USF1/2 on
the promoter in MCF7 cells (Figure 2 top right).

Direct binding of SP1, USF1/2 and IRF1 at the CEACAM1
promoter assayed by ChIP

To confirm that SP1, USF1/2 and IRF1 indeed bind to
the promoter sites identified by in vivo footprinting, we
performed chromatin immunoprecipitation. ChIP with
antibodies to SP1 indicated that SP1 was weakly bound
to the CEACAM1 promoter in MCF10A and MDA-MB-
468 cells (Figure 3A). At the same time, SP1 was very
low in MCF7 cells by ChIP, despite being expressed at a
higher level compared to MDA-MB-468 and MCF10A
(Figure 3D). We also tested the binding of SP2 to the
CEACAMI1 promoter, since SP2 has been reported to
bind to the CEACAMI promoter in rat prostate cells as
a transcriptional repressor [19]. We were unable to
detect binding of SP2 to the human CEACAMI1 promo-
ter in any of the cell lines tested, despite the fact that
the protein was expressed in all three lines (Figure 3D).
Similar results were obtained using a different SP2 anti-
body (H-282; data not shown).
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We further performed ChIP with antibodies to USF1
and USF2, which are known to bind to promoter
sequences predominantly as a USF1/USF2 dimer [29].
We detected USF1 binding at the promoter region in all
three cell lines tested, including MCF7, as predicted by
the footprinting data (Figure 3B). We noted that USF1
gives a stronger signal in MDA-MB-468 and MCF10A
cells compared to MCF7 cells. USF2 was absent in
MCF10A cells where the highest expression of CEA-
CAM1 was observed. Western blot analysis indicated
that both USF1 and USF2 were present in all three cell
lines but differed in the expression of their molecular
sizes (Figure 3D). USF1 has a major molecular species,
detectable in all three cell lines (Figure 3D, asterisk), as
well as a threonine-phosphorylated molecular species
(Figure 3D, open circle) and an acetylated molecular
species (Figure 3D, closed circle) reported to exhibit dif-
ferential transcription potentials [30]. MCF10A cells
exhibited detectable levels of the phosphorylated USF1
isoform, while the acetylated USF1 isoform was predo-
minantly expressed in MDA-MB-468 and MCF?7 cells.
To verify binding of a transcription factor at the IRF-1
binding site, we performed ChIP with an antibody to
IRF-1, as well as an antibody to IRF-2. IRF-2 is a well-
studied repressor recognizing consensus sites common
to the IRF group of proteins [31], thus making it a can-
didate for modulation of CEACAMI1 expression, perhaps
opposing IRF-1. While IRF1 binding was evident in
MCF10A and MDA-MB-468 cells, there was a very low
IRF-1 ChIP signal in MCF7 cells (Figure 3C). On the
other hand, strong IRF-2 binding to the CEACAM1 pro-
moter was detected only in the MDA-MB-468 cells.
Western blot analysis demonstrated that IRF2 is
expressed in both MCF10A and MCF7 cells, but weakly
in MDA-MB-468 cells (Figure 4B). Our data is consis-
tent with the footprinting results that show no IRF1
binding at the ISRE site in MCF-7 cells. The possible
role for IRF-2 as a transcriptional repressor is unlikely
since it was detected only in the ChIP analysis on
MDA-MB-468 cells that are able to express CEACAMI.

Interferon vy induction of CEACAM1

We next induced CEACAM1 expression by treating the
cells with interferon (IFN) y and looked for changes in the
transcription factor binding to the CEACAMI promoter in
MCE?7 cells by ChIP. Previously, we demonstrated that
treatment with IFN y induces CEACAM1 in colon cells
through induction of IRF-1 [16] and thus reasoned that
IEN y might have a similar effect on the CEACAMI tran-
scription in breast epithelial cells. We treated MDA -MB-
468, MCF10A and MCF?7 cells with IFN y under the con-
ditions described for colon cells (500 U/mL for 6 h) and
isolated RNA and protein to monitor CEACAM1 induc-
tion. RT-PCR demonstrated that IFN vy treatment indeed
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Figure 2 CEACAM1 promoter regions protected through binding of transcription factors. Top, In vivo footprinting with LM-PCR performed
with DNA isolated from DMS-treated MDA-MB-468, MCF10A and MCF7 cells. Top left, footprinting on the coding DNA strand; top right,
footprinting on the non-coding DNA strand. G+A, a Maxam-Gilbert sequencing reaction performed with DNA isolated from MDA-MB-468 cells. G,
purified genomic DNA from MDA-MB-468 cells modified with DMS in vitro and subjected to LM-PCR. Closed circle, protected bases on the
coding strand; open circle, protected bases on the non-coding strand. Bottom, part of the sequence of the proximal CEACAM1 promoter, from
-70 bp to -250 bp. Underlined are previously identified binding sites for USF, -143-148, SP1, -153-162, and IRF1, -210-230. Closed and open circles
show the protected bases identified by the in vivo footprinting experiment.
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Figure 3 Direct binding of transcription factors to the CEACAM1 promoter region. Chromatin immunoprecipitations were performed with
antibodies to SP1 and SP2 (K-20) (A), USF1 and USF2 (B), and IRF1 and IRF2 (C) in MDA-MB-468, MCF10A and MCF7 cells. Primers amplify the
CEACAMT promoter region. In: input DNA from the ChiPs; IgG, rabbit IgG used as negative control, numbers refer to percent of input. D. Total
cellular protein lysates from MDA-MB-468, MCF10A and MCF7 cells were subjected to Western blot and probed with antibodies to SP1, SP2 (K-
20), USF1 and USF2; B-actin was used as a loading control. Closed circle, acetylated form of USF1, open circle, phosphorylated form of USF1,
asterisk, USF1 (see Corre et al,, [30])

up-regulated CEACAMI1 mRNA in all three cell lines
tested (Figure 4A). Although CEACAM]1 transcription was
induced several fold in MCF7 cells, the steady-state
mRNA level in these cells did not reach the CEACAM1
mRNA levels in uninduced MDA-MB-468 and MCF10A
cells. We also detected a robust induction of IRF-1 (Figure
4B) by Western blot analysis, consistent with the mechan-
ism of IFN y induction described for colon cells. On the
other hand, there was no change in IRF-2 levels (Figure

4B), in agreement with a previous report [32]. IEN y treat-
ment also induced CEACAMI1 in MDA-MB-468 and
MCF10A cells, but in MCF7 cells CEACAM1 was still
undetectable.

Since CEACAM1 was not induced in IFN-y treated
MCE?7 cells, we performed additional ChIP analysis in
these cells. As expected, we detected USF2 at the pro-
moter both before and after induction (Figure 4C).
The USF1 signal increased considerably after IFN y
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Figure 4 Induction of CEACAM1 expression in MCF7 cells with IFN y. A. Top, RT-PCR with total RNA isolated from MCF7 cells, either
untreated (-) or treated for 6 h with 500 U/ml of IFN y (+). Bottom, CEACAM1 mRNA levels were monitored by real time PCR and normalized to
GAPDH (triplicates + SD). B. Total cellular protein lysates from MDA-MB-468, MCF10A and MCF7 cells either untreated (-) or treated (+) with 500
u/ml IFN vy were subjected to Western blot and probed with antibodies to IRF1
Closed and open circle indicate two CEACAM1 isoforms with a different migration from MDA-MB-468 and MCF10A cells, respectively.
C. Chromatin immunoprecipitation of CEACAMT promoter DNA from MCF7 cells untreated (-) or treated with 500 u/ml of IFN y for 6 h.
Antibodies to USF1, USF2, IRF1 and a control IgG were used, numbers refer to percent of input.

, IRF2, and CEACAM1. B-actin was used as a loading control.

treatment, suggesting that the level and/or strength of
USF1 binding at the promoter might influence CEA-
CAM1 transcription. We could not detect binding of
IRF1 to the promoter region, likely reflecting the low
level of CEACAM1 induction.

Chromatin structure at the CEACAM1 promoter in MDA-
MB-468, MCF10A and MCF7 cells

In order to determine whether chromatin structure
plays a role in modulating CEACAMI transcription, we
monitored the promoter region for histone modifica-
tions. First, we used an antibody which recognizes acety-
lated lysine 9 and lysine 18 of histone H3, marks
associated with actively transcribed genes, and probed
the CEACAM1 promoter by ChIP in MDA-MB-468,
MCF10A and MCEF7 cells. While both MDA-MB-468
and MCF10A cells exhibited a strong signal for

acetylated histone H3, in MCF7 cells the CEACAM1
promoter showed significantly decreased acetylation, in
agreement with the CEACAMI1 expression pattern in
these cell lines (Figure 5A). Since a hypoacetylated pro-
moter can be activated by histone deacetylase inhibitors,
we treated MCF7 cells with 1 puM Trichostatin A for 0
h, 6 h, and 24 h, respectively and monitored CEACAM1
mRNA levels by RT-PCR. Trichostatin A treatment
induced a modest increase in CEACAM1 mRNA levels
(Figure 5B), suggesting that apart from reduced acetyla-
tion there are other factors contributing to CEACAM1
down-regulation. We next performed ChIP with antibo-
dies to trimethyl-histone H3 Lys 9, a well studied his-
tone modification linked to condensed chromatin
structure and gene silencing [33]. Neither MDA-MB-
468 nor MCF10A cells showed H3 Lys9 trimethylation
at the CEACAM1I promoter; for MCF7 cells the signal
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was also essentially negative. We also performed ChIP
to detect histone H3 lysine 27 trimethylation at the
CEACAM!1 promoter, another mark of silenced chroma-
tin [34,35]. Unexpectedly, all three cell lines exhibited
strong H3K27 trimethylation at the CEACAMI promo-
ter region (Figure 5A). Thus, it is unlikely that the role
of the H3K27 mark on the CEACAMI promoter is
solely down-regulation of gene expression. It is also
unlikely that H3K27 trimethylation is responsible for
CEACAMI1 down-regulation in MCF7 cells.

Effect of RNAi for transcription factors on CEACAM1
expression in MDA-MB-468 cells

We conclude from the above analyses that IRF1 and
USF1 are critical transcription factors in the regulation
of CEACAMLI in the breast cell lines analyzed. Since the
MDA-MB-468 cells have intermediate levels of CEA-
CAMI1 mRNA expression, lower than MCF-10A and
higher than MCF?7 cells (Figure 1), we predicted that
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they will be most sensitive to alterations in the levels of
these critical transcription factors. In order to test this
prediction, we transfected these cells with RNAi oligos
to IRF1 and USF1 plus RNAI to the related transcription
factors IRF2 and USF2 that bind to the analogous sites
in the CEACAM1 promoter. Several RNAIi oligos plus
non-specific RNAi were tested to confirm the ability of
RNAI to silence their specific targets at mRNA (Table
2) and the protein level (Figure 6A). Compared to the
controls that included no treatment, lipofectamine only,
or unspecific RNAi, we found a dramatic down-regula-
tion of CEACAMI1 protein expression by RNAi to IRF1,
IRF2, and USF1, but not to USF2 (Figure 6B). These
results confirm our prediction that IRF1 and USF1 criti-
cally regulate the expression of CEACAM]I, and further,
add a role for IRF2. This is especially interesting since
in other systems, IRF-2 has been shown to antagonize
IRF1 [36]. The implications of this finding will be dis-
cussed later.
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Figure 6 Effect of RNAI silencing of IRF1, IRF2, USF1 and USF2 on CEACAM1 expression in MDA-MB-468 cells. A. MDA-MB-468 cells were
treated with the following controls: U (untreated), lipofectamine (no RNAI), or non-specific RNAI (-) and IRF1, IRF2, USF1, and USF2 levels
measured by western blot analysis after 72 hrs. Cells treated with RNAi for IRF1 (3 oligos), IRF2 (3 oligos), USF1 (3 oligos), or USF2 (2 oligos) were
analyzed for IRF1, IRF2, USF1, and USF2 expression by western blot analysis after 72 hrs. Lysates were probed with antibody to B-actin to ensure
equal protein loading in each lane. B. MDA-MB-468 cells were treated with the following controls: U (untreated), lipofectamine (no RNAI), or non-
specific RNAI (-) and CEACAM-1 levels measured by western blot analysis after 72 hrs. Cells treated with RNAi for IRF1 (3 oligos), IRF2 (3 oligos),
USF1 (3 oligos), or USF2 (2 oligos) were analyzed for CEACAM1 expression by western blot analysis after 72 hrs. Lysates were probed with
antibody to B-actin to ensure equal protein loading in each lane.
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Table 2 mRNA levels of CEACAM1 after silencing of IRF-1,
IRF-2, USF1 and USF2

Treatment Relative amount’ Percent of control®
None 14+ 0.1 93
Lipofectamine 14 +0.1 93
Negative control® 1.5 +0.1 100
IRF1 #1 09 +0.1 * 60
IRF1 #2 08 +0.2 * 53
IRF1 #3 1.3 £0.1 87
IRF2 #1 14 £0.1 93
IRF2 #2 1.0 £0.2 * 67
IRF2 #3 09 +0.1 * 60
USF1 #1 1.1 £0.2 * 73
USF1 #2 1.1 £0.2 * 73
USF1 #3 1.0 £0.1 * 67
USF2 #1 09 +0.1 * 60
USF2 #2 09 +0.1 * 60
USF2 #3 1.0 £0.2 * 67

'Relative to GAPDH. assayed in triplicate, 5D, * indicates p < 0.01 compared
to negative control.

2Compared to negative control.
3RNAi medium GC control from Invitrogen.

Discussion

We have studied the CEACAMI promoter region in
three breast epithelial cell lines, that vary in CEACAM1
mRNA expression from none (MCF7) to intermediate
(MDA-MB-468) to high (MCF10A). We have performed
in vivo footprinting with DMS on the CEACAMI pro-
moter region and have detected several protected sites,
indicating binding of multiple transcription factors to
the promoter. These binding sites correspond well with
previous footprinting data for the CEACAMI promoter
in colon cells [16], with some differences. As in colon
cells, the breast epithelial cells expressing CEACAM1
exhibit footprints at the binding sites for SP1, USF1,
USF2 and the interferon response element, suggesting a
common regulation mechanism for these cells. However,
we were able to detect protein/DNA interactions at the
interferon response element even before induction with
IFN y. This result indicates that perhaps even small
quantities of IRF1 bound to the promoter may function
in transcriptional activation of the CEACAM1 promoter.
We have also observed two new protected sites at the
CEACAMI1 promoter in breast cells. The first one,
around nt -165-168, has a weak consensus binding site
for NFkB, but we could not confirm binding of NFkB by
ChIP to the CEACAMI promoter (data not shown). The
second one, around nucleotides -184-186 remains to be
investigated.
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USF1 and USF2 have emerged as key regulators of
CEACAMLI transcription. While USF binding to the
CEACAMI1 promoter has been observed previously, we
have extended our understanding of USF function in
CEACAM1 transcription by demonstrating that USF
proteins remain bound to the promoter in it’s inactive
state, by both in vivo footprinting and ChIP. We have
also observed weaker binding of USF1 compared to
USF2 in MCF7 cells that do not express CEACAM]I,
and an increase in USF1 binding to the CEACAM!1 pro-
moter after IFN y activation. While ubiquitously
expressed in mammalian cells [37], the ratio of USF1 to
USF2 protein varies in different cell lines and in differ-
ent phases of the cell cycle, indicating that the USF pro-
teins are subject to extensive regulation [38,39]. It has
recently been demonstrated that under mild stress con-
ditions USF1 can undergo threonine phosphorylation
that increases the protein’s activation potential [30]. In
addition, the same study documents that under acute
stress or viral infection USF1 undergoes phosphoryla-
tion-dependent acetylation, a modification which nega-
tively affects transcription. We have detected a protein
band on Western blots corresponding to the phosphory-
lated form of USF1 in MCF10A cells, which express the
highest amount of CEACAM1 mRNA, but not in MDA-
MB-468 cells or MCF7 cells. At the same time, in our
analysis both MCF7 cells and MDA-MB-468 cells
express a protein corresponding to the phospho-acety-
lated form of USF1, which could play a role in downre-
gulating transcription at the CEACAMI promoter. Our
data is also broadly consistent with a report that in
breast cancer cells the USF proteins have altered tran-
scription activation potential compared to the nontumori-
genic MCF10A cells, despite being expressed at similar
levels [38]. Of particular interest is a report that USF1
interacts with both SET7/9, a histone methyltransferase,
and with pCAF, a histone H3 acetyltransferase, that
implicates USF1 in recruiting histone modifying enzymes
to promote transcriptional activation and maintain open
chromatin structure [40]. In this light our finding that
the CEACAMI promoter exhibits a significant decrease
in histone acetylation in MCF7 cells might reflect a sub-
optimal presence of USF1 at the promoter in this cell
line. In our assay the inactive CEACAMI promoter in
MCF?7 cells doesn’t appear to differ in two key histone
modification compared to MCF10A and MDA-MB-468
cells, tri-methylation of H3 Lys 9 and tri-methylation of
H3 Lys 27. This result, together with the detection of
USF proteins at the inactive CEACAMI promoter, sug-
gests that the chromatin structure at the promoter might
be partially open, possibly facilitating upregulation of the
gene under specific conditions.

We were particularly interested in identifying pro-
teins acting as repressors of CEACAM]1 transcription,



Gencheva et al. BMC Molecular Biology 2010, 11:79
http://www.biomedcentral.com/1471-2199/11/79

since CEACAMI1 mRNA levels are downregulated in
many cancer types. Since a published report has identi-
fied SP2 as a direct repressor of CEACAMI1 transcrip-
tion in rat prostate cells [19], we tested SP2 binding to
the CEACAM]1 promoter by ChIP in MDA-MB-468,
MCF10A and MCEF7 cell lines. We used two different
antibodies, both of which indicated a similar expression
of SP2 in the three cell lines, but we were unable to
immunoprecipitate CEACAMI promoter DNA. The
proposed SP2 binding site in rat prostate cells overlaps
with the SP1 site on the human CEACAMI promoter.
Thus, assuming a similar mechanism between rat and
human, SP2 would compete for binding with SP1.
However, it has been reported that SP1 and SP2 have
different DNA binding preferences [41], which make
binding of the two proteins to the same site unlikely.
The fact that we do not detect a footprint in MCF7
cells in that region additionaly argues against involv-
ment of SP2 as a repressor stably bound to the human
CEACAMI promoter. However, we can not exclude the
possibility that there are differences between prostate
and breast cells in CEACAMI1 expression; the discre-
pancy might also indicate a difference between rat and
human cells.

Another transcription factor that could act as repres-
sor of CEACAML1 transcription is IRF2 [42]. IRF2 recog-
nizes the same consensus sequence as IRF1 [43,44] and
generally opposes the function of IRF1, leading to down-
regulation of target genes [36]. We were able to detect
IRF2 in two of the cell lines we studied, MDA-MB-468
and MCF7, but IRF2 was largely absent from MCF10A
cells in which the highest expression of CEACAM1
mRNA is observed. This pattern of expression is consis-
tent with reports that IRF2 expression level increases
with cancer progression [45]. In agreement with the
expression pattern, we were able to immunoprecipitate
the CEACAMI promoter region with antibodies to IRF2
in MDA-MB-468 cells, but not in MCF10A cells. This
result suggests that the ratio between IRF1 and IRF2 in
a given cell might modulate the level of CEACAM1
expression, as has been demonstrated for other target
genes regulated by IRF1 and IRF2 [46]. In MCEF7 cells,
in which the CEACAMI promoter is in an inactive
state, we do not detect binding of either IRF1 or IRF2,
suggesting that if IRF2 contributes to CEACAM1 down-
regulation, it is not required to stably bind to the DNA
to maintain the inactive state.

Since our results predict that USF1 and IRF1 are criti-
cal regulators of CEACAMI1 expression in breast epithe-
lial cells, we further predicted that down-regulation of
these two transcription factors would reduce CEACAM1
expression. We chose the MDA-MB468 cell line to test
this prediction because it had relatively high expression
of CEACAM]1 at both the mRNA and protein level. In
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contrast, MCF10A cells had high levels of CEACAM1
expression at the mRNA, making it a good cell line for
transcriptional regulation, but a poor cell line for testing
protein expression. As predicted, silencing either USF1
or IRF1 by RNAI significantly reduced expression of
CEACAM1 at the protein level. A further prediction
was that USF2 and perhaps IRF2 would have no or little
effect on expression. Although this was indeed the case
for RNAi to USF2, surprisingly, RNAi to IRF2 had the
same effect as IRF1. This latter result can be explained
in terms of the varied reports on the role of IRF2 as
both a repressor and activator of genes [31]. In the case
of gene activation, IRF2 has been shown to positively
regulate vascular cell adhesion molecule-1 in muscle
[47], to up-regulate IL-7 production in human intestinal
epithelial cells [48], to activate HPV-16 E6-E7 promoter
in keratinocytes [49], and to be required for CIITA type
IV promoter activation [50]. Furthermore, in a transfec-
tion assay, IRF2 was required for NFxB translocation to
the nucleus and subsequent activation of TNFa tran-
scription [51]. This latter finding is especially intriguing
since NFxB activation has been linked to IFN-y/CEA-
CAM1 mediated effects in Neisseria menningitidis inva-
sion of epithelial cells [52], and we have identified a
putative NF«<B binding site in the CEACAMI promoter.
However, further work is required to determine if and
under what circumstances this binding site becomes
operational. NFxB is a central mediator of inflammation
and it has been shown that IRF2 regulates the inflam-
matory and apoptotic response of mice to LPS [53].
Furthermore, mice deficient in IRF2 have a defect in the
production of Tyl helper T-cells and NK cells [54],
thus linking IRF2 to the production of a pro-inflamma-
tory response.

Besides a putative NFkB binding site in the CEACAM1
promoter, we have identified a putative RUNX1 binding
site that is of potential interest because of the role of
this transcription factor in granulopoiesis [55] and the
finding that CEACAMI is a marker of granulocyte acti-
vation [56,57]. Taken together, these data may indicate
that breast cells may respond to inflammation by up-
regulation of CEACAMI1. However, subsequent events,
perhaps chronic exposure to inflammatory cells/cyto-
kines, may lead to down-regulation of CEACAM]1, thus
accounting for the over-all decrease in CEACAM1
observed in breast cancer. Future studies will be aimed
at studying the effects of chronic inflammation on the
CEACAM1 promoter.

In summary, we have identified USF1 and IRF1 as criti-
cal regulators of CEACAM]1 expression in breast cells by
combined in vivo footprint and ChIP analysis and shown
that treatment with IFN-y up regulates both USF1 and
IRF1 binding to the CEACAM1 promoter followed by
increased protein expression of CEACAM1. Down-
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regulation of these two transcription factors by RNAI sig-
nificantly reduces the expression of CEACAM]1 in MDA-
MB-468 cells. These studies suggest that CEACAMI is
involved in the response of breast cells to inflammation.
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