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Summary

Molecules containing all-carbon quaternary stereocenters – carbon atoms bonded to four distinct 

carbon substituents – are prevalent in Nature. However, the construction of such compounds in an 

enantioselective fashion remains a long-standing challenge to synthetic organic chemists. In 

particular, methods for forging quaternary stereocenters that are remote from other functional 

groups are underdeveloped. Herein we report a catalytic and enantioselective intermolecular Heck-

type reaction of trisubstituted-alkenyl alcohols with aryl boronic acids. The reported method 

allows direct access to quaternary all-carbon-substituted β-, γ-, δ-, ε- or ζ aryl carbonyl 

compounds, as the unsaturation of the alkene is relayed to the alcohol resulting in the formation of 

a carbonyl group. The scope of the process also includes incorporation of pre-existing 

stereocenters along the alkyl chain, which links the alkene and the alcohol, wherein the 

stereocenter is preserved. The described method is flexible, allowing access to diverse building 

blocks containing an enantiomerically enriched, quaternary center.

The quaternary stereocenter is a common structural motif in many natural products and 

pharmaceuticals1-3. However, the synthesis of these stereocenters in a catalytic and 

enantioselective manner represents a formidable challenge, especially in acyclic systems4. 

Typically, quaternary stereocenters are prepared from substrates with pre-existing functional 

groups adjacent to the site of reaction, whereas methods to access quaternary stereocenters 

distant from such groups present a significant, ongoing synthetic hurdle. The most common 

enantioselective and catalytic approaches utilize a carbonyl as a functional handle, wherein 

α-functionalization, via alkylation or aldol reactions4,5, can be accomplished through the 

reaction of enolate equivalents (I in Fig. 1a)6-11. Enantioselective β-functionalization of a 

carbonyl can be accomplished through 1,4-conjugate addition-type processes using various 

transition metals and coupling partners (II in Fig. 1a)12-16. A powerful alternative to the 
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carbonyl as a pre-installed functional group is the allylic electrophile17-19 or nucleophile20, 

which yields a quaternary center adjacent to an alkene (III, Fig. 1a)21-23. However, in all of 

these approaches, the location of C–C bond formation relative to the functional group is 

strictly defined, which does not allow one to directly install a quaternary chiral center at 

more remote sites.

On the basis of our group’s recent success in developing asymmetric redox-relay Heck-type 

reactions of disubstituted alkenyl alcohols24,25, we surmised that a site- and enantioselective 

transformation of trisubstituted alkenes could address this synthetic limitation (Fig. 1b). 

Applying the proposed method, one could position the alcohol at different chain-lengths 

from the alkene to obtain a diverse range of functionalized carbonyl products. This is a 

mechanistic consequence of the process. Specifically, site-selective migratory insertion26,27 

of an alkene into the organometallic intermediate produces a Pd-alkyl B, that can migrate 

toward the alcohol through a sequential β-hydride elimination/reinsertion process (Fig. 1b, 

D→E) to ultimately release the desired carbonyl product C28,29. Although venerable Heck 

cyclization reactions have been developed and extensively applied to the formation of 

quaternary centers by intramolecular reaction of trisubstituted alkenes30-32, no examples of 

catalytic, asymmetric, quaternary stereocenters synthesized via intermolecular Heck-type 

reactions of isolated (non-conjugated) trisubstituted alkenes are known2.

Several concerns were considered at the outset of this effort including questions regarding 

reactivity, site-selectivity, and enantioselectivity when using trisubstituted alkenes in 

intermolecular Heck-type reactions. Acyclic, non-conjugated trisubstituted alkenes are rare 

substrates in intermolecular Heck-type reactions likely due to either poor binding to the 

catalyst or slow migratory insertion33. If a reaction does occur, the question of site-

selectivity is intriguing as the ability to forge a quaternary center relies on addition to the 

more substituted carbon. In our previous report, we found that subtle electronic variance of 

the alkenyl carbons, as determined by 13C chemical shift differences, correlates to site-

selectivity, with the aryl nucleophile adding to the carbon that is more downfield shifted24. 

Additional support for electronically influenced site-selectivity was revealed by recent 

density functional theory calculations on the redox-relay Heck reactions of disubstituted 

alkenes34,35. These studies show that site-selectivity is controlled by remote dipole 

interactions of the attached alcohol. These observations suggested that, in the case of a 

trisubstituted alkene, insertion should occur preferentially at the more substituted carbon 

(the hindered and downfield shifted carbon). This also would likely relieve steric strain as 

the bulky Pd-catalyst is positioned at the less hindered carbon. As the final concern, it is not 

evident if this process would be highly enantioselective, as cis and trans disubstituted 

alkenes have previously yielded enantiomers as products24,25. Considering that trisubstituted 

alkenes contain both of these stereochemical relationships, the outcome is not simply 

predicted.

We began our investigation by revisiting our previously developed catalytic system24 for 

enantioselective oxidative Heck reactions36-40 of disubstituted alkenes. A trisubstituted 

homoallylic alcohol (1), which displays ethyl and methyl groups at the terminus of the 

alkene, was selected as a model substrate (Fig 2). Any success with this substrate would 

bode well for expanding the scope of the reaction to substrates containing other substituents 
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on the alkene with more pronounced differences. Our initial efforts resulted in poor 

conversion to the desired product 2a (40% conversion, 23% yield). Nevertheless, migratory 

insertion occurred to exclusively install the aryl group at the γ-position (γ/β>15:1) and the 

product was generated in a high enantiomeric ratio (er) of 97:3 (Table S1, see SI). 

Encouraged by this initial result, we explored various changes to the reaction conditions, yet 

these afforded little noticeable improvements in yield. During our previous studies, we 

observed that the arylboronic acid coupling partner was consumed by various side reactions, 

such as decomposition of the boronic acid into a phenol and homocoupling of this 

reagent41-43. Indeed, we detected that the arylboronic acid was consumed after 24 h, with 

corresponding poor conversion of the alkene. We speculated that slow addition of the 

arylboronic acid would suppress the undesired pathways and favor product formation. 

Batch-wise addition of the arylboronic acid did improve the yield to 50%. Increasing the 

catalyst loading led to 65% yield (Fig 2, 2a), with >15:1 regioselectivity (γ:β) and excellent 

enantioselectivity (er: 97:3). A series of control experiments verified the importance of the 

various reaction components: removing either Cu(OTf)2
44 or 3 Å MS45 substantially 

reduced the yield, and when the palladium catalyst was excluded, no reaction was observed 

(Table S1). Both of these additives are frequently used in oxidative Pd-catalysis to facilitate 

reoxidation of Pd(0) although their precise role in this transformation is not currently 

understood.

The scope of arylboronic acid coupling partners was investigated with homoallylic alcohol 1 
(Fig. 2a). A wide-array of arylboronic acids were found to be compatible, delivering the 

corresponding all-carbon quaternary γ-aryl aldehyde products with uniformly high 

enantioselectivity (er up to 99:1) and in moderate to good yields (2a–2n). High site-

selectivity (γ/β ≥ 15:1) is observed with both electron-deficient and electron-rich arylboronic 

acids. This stands in contrast to our previous reports on enantioselective redox-relay Heck-

type reactions of disubstituted alkenes, where only modest site-selectivity was achieved for 

electron-rich aryl boronic acids24. This observed difference suggests that the electronic 

nature of the alkene dictates site-selectivity. Higher yields are achieved with electron-rich 

arylboronic acids, as compared to their electron-poor counterparts (compare 2e with 2k), 

which is consistent with their greater nucleophilicity facilitating migratory insertion of the 

presumed alkene complex. In all cases, excellent enantioselectivity is observed and the 

reaction can be scaled to 10 mmol yielding >2 grams as demonstrated by example 2f. Not 

surprisingly, lower yields are observed when ortho-substituted arenes are utilized, as 

illustrated by 2m and 2n, although enantioselectivity remains high. The absolute 

configuration of a derivative of 2f was determined to be (R) via X-ray crystallography (see 

supplementary information for details).

The effect of chain length (the distance from the alcohol to alkene) using various racemic 

trisubstituted alkenyl secondary alcohols was evaluated (Fig. 2b). Of particular note, high 

site- and enantioselectivity is observed irrespective of the chain length, enabling access to β- 

(3a), δ- (3b, 3c), or ε- (3d–3f) quaternary functionalized ketone products. Alkenes bearing 

another oxygen substituent are well-tolerated (3a–3c) although styrene derived substrates 

are unreactive under the current reaction conditions. Substrates were also selected to probe 

the effect of differential size of the alkene aliphatic substituents (3g–3j, Fig. 2c). 
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Gratifyingly, excellent site- and enantioselectivity were again observed in all cases. To 

highlight this, an alkene featuring an ethyl and a butyl group, which have negligible steric 

differences, performs well, yielding 3i in 97:3 er.

In analysis of the reaction scope, it appears that the enantioselectivity is essentially 

independent of the steric and electronic nature of both reaction partners, which is atypical in 

enantioselective reactions. To further explore this, the effect of alkene geometry on 

enantioselection was probed by comparing the reaction of (Z)-1a and (E)-1a (Fig. 2d). The 

magnitude of the enantioselectivity is the same for both substrates, again suggesting a robust 

enantioselective reaction. However, the major enantiomer produced in both cases is 

different. This is consistent with the binding orientation of the alkene not changing. 

Specifically, in comparing hypothesized intermediates A and B (Fig. 2d), the alkenyl carbon 

closer to the alcohol remains fixed leading to the observed stereochemical outcomes, which 

is supported by the relative insensitivity of the process to what is displayed on the terminal 

end of the trisubstituted alkenes. While the precise details of why this catalyst is 

exceptionally selective is under further investigation, these results support that few synthetic 

limitations should be encountered in variation of the alkenyl aliphatic substituents.

As hypothesized in the initial mechanistic proposal, the Pd-catalyst presumably migrates 

along the alkyl chain until the aldehyde is formed. Indeed, computational studies34,35 of the 

relay Heck reaction of disubstituted alkenes shows generally low energy barriers for the 

chain-walking events46-48. Therefore, a key question, with implications for the applicability 

of this method in more complex settings, is whether the catalyst disengages during the 

“chain-walking” process. To explore this possibility, a natural product derived substrate, 

(R)-4, containing a preinstalled stereogenic center in the alkyl chain was evaluated using 

both enantiomers of catalysts. Preservation of the enantiomeric composition was observed 

when treating this substrate with either catalyst enantiomer under redox relay Heck 

conditions to yield (R)-5 (Fig. 3a). This implies that as the catalyst proceeds through the 

iterative β-hydride elimination/reinsertion events depicted in Fig. 3c, the catalyst remains 

both ligated to the substrate and on the same face of the alkene throughout the relay process. 

As a more striking example, alkene (S)-6 was treated with both enantiomers of catalyst to 

yield the relay products 7 and 8 in high diastereoselectivity (Fig. 3b). Two distinct 

diasteresomers are produced by the use of different enantiomers of catalyst, since the initial 

migratory insertion is under catalyst-controlled face selection, but the preset stereogenic 

center is not altered during the relay process.

To further support the chain walking proposal, an isotopic labeling experiment was carried 

out (Fig. 3d). A deuterium labeled analog of 4, alkenol 9, bearing deuterium atoms at the 

carbon connecting to the alcohol, was synthesized and submitted to the redox relay Heck 

reaction. The experiment reveals clean repositioning of one deuterium atom at the site α to 

the carbonyl group in the product (13) (Fig. 3d). This result is consistent with a mechanism 

whereby the Pd-catalyst migrates through the chain to form intermediate 10, which 

undergoes β-D elimination followed by reinsertion into 11 to yield intermediate 12 (Fig. 3d).

In this work, we have described a catalytic and enantioselective addition of boronic acid 

derivatives to trisubstituted alkenes that is highly site-selective for the more hindered 
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position. The method does not rely on a defined relationship between the site of addition and 

an adjacent functional group, thus providing a modular method to access quaternary 

stereocenters in high enantioselectivity. Furthermore, we anticipate that the mechanistic 

implications of both site-selective addition of an organometallic to a trisubstituted-alkene 

and the ability of the catalyst to migrate through existing chiral centers will inspire further 

studies in this area.

METHODS SUMMARY

General procedure for enantioselective Heck reaction

To a dry 100 mL Schlenk flask equipped with a stir bar was added Pd(CH3CN)2(OTs)2 

(15.9 mg, 0.0300 mmol, 6.00 mol%), Cu(OTf)2 (5.43 mg, 0.0150 mmol, 3.0 mol%), ligand 

(12.3 mg, 0.0450 mmol, 9.0 mol%), 3 Å MS (75.0 mg, 150 mg/mmol), and DMF (8 mL). To 

this flask, a three-way adapter fitted with a balloon of O2 was added, and the flask was 

evacuated via house vacuum and refilled with O2 three times while stirring. The resulting 

mixture was stirred for 10 min. To this, a DMF solution (2 mL) of the alkenyl alcohol (0.5 

mmol) and corresponding boronic acid (1.5 mmol, 3 equiv) was added via syringe. The 

resulting mixture was stirred for 24 h at room temperature. The mixture was diluted with 

diethyl ether (200 mL) and water (50 mL). The aqueous layer was extracted with diethyl 

ether (2 × 50 mL). The combined organic layers were washed with water (3 × 20 mL), brine 

(1 × 20 mL), and dried over sodium sulfate. The organic extracts were concentrated under 

reduced pressure, and the resulting residue was purified by silica gel flash chromatography 

using 2–10% EtOAc in hexanes containing 0.1% triethylamine to yield an aldehyde product. 

Full experimental details and characterization of new compounds can be found in the 

Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Approaches to constructing acyclic all-carbon quaternary stereocenters
a, Conventional enantioselective, catalytic approaches. α-functionalization of carbonyls (I). 

β-functionalization of carbonyls (II). α-quaternary centers adjacent to alkene (III). b, 

Proposed modular strategy using a redox relay enantioselective Heck reaction of 

trisubstituted alkenes and resulting mechanistic analysis.
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Figure 2. Enantioselective construction of remote quaternary stereocenters
Conditions for 2a, 2i–2n, 3c, 3f, 3i–3j: 10 mol% Pd(CH3CN)2(OTs)2, 4 mol% Cu(OTf)2, 14 

mol% ligand, 3 equiv ArB(OH)2 (two batch addition, 12 h between additions). a, 

Exploration of scope using various arylboronic acids. b, Evaluation of various chain-lengths 

between the alkene and alcohol on the substrate. c, Exploration of the alkene substituents. d, 

Proposed origin of enantioselectivity as a function of alkene geometry. TBS is tert-

butyldimethylsilyl.
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Figure 3. Evaluation of alkene substrates containing a branch point
Conditions: 10 mol% Pd(CH3CN)2(OTs)2, 4 mol% Cu(OTf)2, 14 mol% ligand, 3 equiv 

PhB(OH)2. a, Independence of catalyst enantiomer on the conservation of the chiral center 

during the proposed chain-walking process. b, Accessing distinct diasteromers using a 

combination of catalyst and substrate controlled asymmetric synthesis. c, Proposed 

mechanistic origin for the observed formation of 5 from 4. d, Isotopic labeling experiment 

and analysis.
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