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ABSTRACT: Commercial membranes have predominantly been
fabricated from polymers due to their economic viability and
processability. This choice offers significant advantages in energy
efficiency, cost-effectiveness, and operational simplicity compared to
conventional separation techniques like distillation. However,
polymeric membranes inherently exhibit a trade-off between their
permeability and selectivity, which is summarized in the Robeson
upper bound. To potentially surpass these limitations, mixed-matrix
membranes (MMMs) can be an alternative solution, which can be
constructed by combining polymers with inorganic additives such as
metal−organic frameworks (MOFs) and zeolites. Incorporating
high-aspect-ratio fillers like MOF nanosheets and zeolite nanosheets
is of significant importance. This incorporation not only enhances
the efficiency of separation processes but also reinforces the mechanical robustness of the membranes. We outline synthesis
techniques for producing two-dimensional (2D) crystals (including nanocrystals with high aspect ratio) and provide examples of
their integration into membranes to customize separation performances. Moreover, we propose a potential trajectory for research in
the area of high-aspect-ratio materials-based MMMs, supported by a mathematical-model-based performance prediction.
KEYWORDS: 2D materials, high aspect ratio, metal−organic frameworks, zeolites, composite membrane, gas separation

■ INTRODUCTION
Membrane separation technology has been widely used in
various industrial applications, including water treatment,
pharmaceuticals, food and beverage, petrochemicals, and
more.1 Mainly for gas separations, membranes are used in
various processes to separate different kinds of gases, including
carbon dioxide capture, ammonia separation, natural gas
sweetening, hydrogen separation, syngas production, dehydra-
tion, and hydrocarbon separations in petrochemical areas.2,3

Membrane separation technology is expected to offer energy-
efficient, cost-effective, and environmentally friendly separation
solutions in various industries, benefiting from compact design,
ease of operation, and scalability.4,5

Polymers are predominantly employed as membrane
materials due to their cost-effectiveness and moderate
selectivity, but they exhibit a permeability−selectivity trade-off
known as the Robeson upper bound.6 To address this limitation,
ongoing research explores diverse polymer modifications.7,8 A
promising approach involves incorporating filler materials,
resulting in composite membranes, so-called mixed-matrix
membranes (MMMs).9,10 These composite membranes consist
of a polymer matrix integrated with fillers like metal−organic
frameworks (MOFs) and zeolite nano/microparticles. The

strategic combination of these porous materials with high
permeability and selectivity holds the potential to surpass the
upper bound and achieve commercially appealing outcomes.
Even with the aforementioned advantages, in conventional

MMMs it is challenging to achieve strong compatibility between
the polymer matrix and the incorporated filler materials.11

Ensuring proper dispersion and adhesion of these fillers within
the polymer matrix is complex, potentially leading to low
separation performance with reducedmechanical stability. If not
properly managed, poor compatibility can result in filler
agglomeration, inadequate interface bonding, and rearrange-
ment of polymer chains on the surface of the fillers.
Consequently, consistent and reliable MMM performance can
only be achieved through material selection, precise fabrication
techniques, and comprehensive characterization.
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On the other hand, performance enhancement can be
maximized when high-aspect-ratio fillers such as zeolite
nanosheets and MOF nanosheets are used instead of isotropic
particles.12 The high-aspect-ratio fillers are known for offering
tortuous pathways, particularly for nonpermeable molecules.13

At the same time, permeable gas can easily permeate through the
composite membranes, which can significantly enhance gas
selectivity based on diffusion pathway difference. Moreover,
two-dimensional (2D) fillers can improve mechanical strength,
such as stiffness and modulus, allowing MMM fabrication with
high-loading fillers.14,15 The layered structure of 2D fillers can
decrease the occurrence of defects and imperfections compared
to isotropic particles. Consequently, this feature enhances the
uniformity and predictability of separation performance.
Furthermore, the integration of a 2D filler allows for the
fabrication of a thin coating layer on porous supports, thereby
reducing the overall thickness of the resulting membrane, which
is required for preparing practical unsymmetric composite
membranes.16

Within this perspective, we focus on 2D MOFs and 2D
zeolites that have been prepared in powder form to explore their
potential for integration into composite membranes. Our
objective is to present techniques for synthesizing 2D crystals
and to elucidate their incorporation into membranes, specifically
targeting gas separation applications.We also propose a forward-
looking trajectory for research into MMMs based on 2D

materials, supported by the implementation of a mathematical
model.

■ PREPARATION OF 2D MOF AND 2D ZEOLITE
NANOSHEETS

Recognized as the pioneer among various 2D materials,
graphene possesses atomic thickness and a high aspect ratio,
rendering it a suitable candidate for polymer composites.17

Nonetheless, graphene’s intrinsic gas barrier properties make it
unsuitable for direct implementation in gas separation
applications.18,19 For the graphene prepared by chemical
vapor deposition (CVD), pore generation is achievable to
enhance separation performance for specific gases.20 However,
the CVD graphene is prepared as a thin film and requires a
transfer process from metal foils to porous supports.21,22 More
importantly, challenges persist in generating powdered porous
graphene and facilitating its integration with polymers. The
resultant pores, furthermore, exhibit limitations in their capacity
for distinct gas segregation. Pore generation of graphene oxide
via post-treatment, including chemical reduction and thermal
activation, is a relatively easy way to prepare nanoporous
graphene powder; however, it is difficult to precisely define and
control the pore size and density.23,24 Ideally, developing
materials with atomically controlled porous crystals, such as
MOFs and zeolites, in 2D configurations holds promise for
circumventing these challenges because the difference in the

Figure 1. Kinetic diameters of industrially important gas molecules and examples of MOF and zeolite crystal types prepared in the form of nanosheets
or plates with high aspect ratio.
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kinetic sizes of gas molecules is tiny, from a few angstroms to
subangstrom levels. Therefore, porous crystals with precisely
controlled pore sizes are necessary for effective separation.
The Cambridge Structural Database and the International

Zeolite Association Structure Commission (IZA-SC) collec-
tively list over 120,000 crystal structures for MOFs and 255
crystal structures for zeolites, but only a few have been
successfully synthesized and applied, typically in isotropic
particle shapes.25,26 Recognizing the advantages conferred by
2D nanosheets, such as substantial surface area, elevated surface-
to-volume atom ratio, and reduced diffusion paths, intensive
efforts are directed toward the 2D synthesis of MOFs and
zeolites. Notably, only a few 2D MOF and zeolite nanosheets
have been prepared in powder form (Figure 1). A subset of these
crystals possesses pore apertures positioned between specific gas
molecules, enabling size-based molecular separation. Notable
examples include the SOD-type zeolite andMAMS-1 utilized for
H2/CO2 separation and the deployment of ZIF-67 for CO2/N2
separation.27,28 However, certain crystals like copper 1,4-
benzenedicarboxylate (CuBDC) and MWW zeolite, with
aperture sizes of 5.2 and 4.1 Å, respectively, characterized by
larger aperture dimensions relative to typical gas molecules, find
application in compact gas separations like H2/CO2 and CO2/
N2.

29−31 This is attributed to separation mechanisms extending

beyond molecular sieving, as gas−crystal interactions signifi-
cantly influence permeation dynamics.32,33 In contrast to smaller
gas molecules like H2 or CO2, the utilization of 2D nanosheets to
separate relatively larger gas molecules such as hydrocarbons has
been rarely reported. A distinctive instance is observed with
MFI-type (or MFI/MEI-type) zeolite nanosheets, showcasing
notable efficacy in separating xylene isomers and in butane
isomer separation.34 To achieve the separation of diverse and
economically essential gas molecules, it is required to precisely
tailor the pore aperture dimensions of MOFs and zeolites as well
as to couple them with reliable membrane fabrication
techniques.
The preparation method of those 2D MOFs and zeolites (or

high-aspect-ratio nanoplates) can be divided into three big
categories: top-down exfoliation, bottom-up direct synthesis,
and conversion methods (Figure 2). Just as the solution-phase
exfoliation of graphene from graphite has been documented in
initial studies on 2D materials, the exfoliation of nanosheets
from larger particles has been observed in the case of MOFs and
zeolites since their earliest investigations.30,35,36 This phenom-
enon arises due to the presence of an interlayer structure and
stacking of layers within certain crystal structures of MOFs and
zeolites. Particularly with zeolites, the structural configuration
frequently involves organic compounds, like alkyl chains, being

Figure 2. Preparation methods of MOF and zeolite nanosheets.
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incorporated between zeolite sheets of the unit cell’s
dimensions, a characteristic influenced by the type of
structure-directing agent (SDA).37−39

Mechanical exfoliation, such as ball milling and ultra-
sonication, involves the delamination of bulk MOFs or zeolite
crystals into 2D nanosheets by applying shear force (Figure
2A).40,41 By controlled mechanical stress, layers are separated
from parent crystals. Bulk crystals are pulverized into fine sheets
using balls within a rotating container in ball milling.
Ultrasonication employs high-frequency sound waves that can
fracture the bulk crystal’s layers. Peng et al. proposed a physical
exfoliation process to synthesize Zn2(bim)4 nanosheets.40

Pristine bulk crystals were first ball-milled and then ultra-
sonicated in volatile solvent to obtain 1.12 nm thickness
nanosheets. The Zn2(bim)4 membrane on a porous support
exhibited H2 permeance of 2700 GPU with H2/CO2 selectivity
of 291. Bothmethods are feasible for synthesizing small amounts
of 2D nanosheets but unsuitable for large-scale production.
Moreover, the in-plane structure can be damaged due to the
physical force, and the lateral size can decrease.
Interlayer intercalation is an exfoliation method that is based

on introducing guest molecules, typically ions, solvents, or
polymers, into the interlayer spaces of layered MOFs or zeolite
bulk particles (Figure 2B).42,43 These intercalants induce
subsequent swelling of the layers, which facilitates delamination.
Ding et al. demonstrated the synthesis of Zn2(PdTCPP)
nanosheets by chemical exfoliation from the intercalation
method.42 Due to the intercalation of the dipyridyl ligand, the
interlayer interactions between nanosheets of the parent bulk
crystal are weakened, resulting in the exfoliation of subnan-
ometer nanosheets in high yield. This method can yield
significant quantities of 2D nanosheets, but additional steps
might be necessary to eliminate intercalants from the final
product.
The polymer compounding method blends bulk material with

a polymer and induces shear force to divide bulk crystals into
layers (Figure 2C).34,37 The polymer can stabilize the exfoliated
nanosheets and prevent them from aggregating or restacking.
The Tsapatsis and Agrawal groups reported the polymer
compounding method for the exfoliation of MWW and MFI
zeolite nanosheets.44 Layered precursors were melt-blended
with polystyrene and compounded with a twin-screw extruder.
The obtained nanosheet−polymer nanocomposites were
dispersed in a solvent and sonicated. Finally, larger particles
were removed by centrifugation. Despite the fact that the
process can prepare nonaggregated intact nanosheets, the
viscosity of the polymer matrix and shear force can significantly
influence the effectiveness, and the processing steps are
laborious because the polymer must be removed from the final
product with solvent washing. In addition, for polymer
composites, the zeolite nanosheets must be calcined at a high
temperature of around 500 °C or employed with a reactive
solvent (piranha solution) to remove the SDA molecules.34,39,45

Diffusion-mediated modulation is a synthesis method of 2D
MOF nanosheets (Figure 2D).46−48 By carefully controlling the
concentration and diffusion rates of the metal ion and organic
linker solutions, 2D nanosheets are formed due to the diffusion
of each layer. A representative example of diffusion-mediated
modulation is CuBDC synthesis.46 CuBDC is typically
synthesized with this method, containing three different liquid
layers. Synthesized CuBDC nanosheets were incorporated into
various polymers such as Matrimid, PIM-1, and OPDA-
TMPDA for excellent CO2/CH4 separation. This method can

produce nanosheets with uniform thickness and composition,
but the reaction conditions, such as concentrations, temper-
ature, and pH, should be precisely adjusted.
The seed growth method involves the controlled nucleation

and growth of MOF and zeolite nanosheets on predefined seed
crystals or substrates (Figure 2E).39,49 Jeon et al. first reported
the bottom-up synthesis of MFI nanosheets without the
formation of orthogonal intergrowths.49 By the hydrothermal
seed growth method, MFI nanocrystal seeds were first grown
cylindrical, and faceted nanosheets appeared from the corner.
While the nanosheets grow, they encircle the original seed with
uniform thickness and well-defined facets with preferred b
orientation. This method can produce well-ordered, high-
aspect-ratio 2D nanosheets with a high degree of control over
their shape and size. However, it has a high level of difficulty, and
only a few zeolite materials have been reported with this method.
Utilizing a substrate with suitable crystallographic orientation,

substrate-assisted growth directs the alignment of MOF or
zeolite nanosheets during synthesis (Figure 2F).50−52 Stassen et
al. demonstrated a CVD process for ZIF-8 film formation.50

Homogeneous ZIF-8 thin films with uniform thickness were
fabricated by depositing the metal oxide first. A consecutive
vapor reaction step is followed for oxide-to-MOF trans-
formations. However, by the substrate-assisted growth method,
it is impossible to obtain the product in powder form, which
restricts further applications. To use them in gas separation
membranes, additional treatment, such as polymer impregna-
tion, is needed.
Ideally, a 2Dmaterial has a thickness at the atomic level. In the

case of zeolites andMOFs, it is accurate to define 2Dmaterials as
having a thickness on the order of a few unit cells. However,
since the aspect ratio is more critical than the thickness for
enhancing separation performance, nanoplates with high aspect
ratios can also be utilized in membrane fabrication. Conversion
methods are known to make relatively thick nanoplates. The
conversion method is typically used in MOF synthesis rather
than for zeolites. Since MOFs are combinations of metal nodes
and organic linkers, metal precursors are used for conversion by
postligand treatment. The two most typical precursor types are
metal oxide and metal hydroxide (Figure 2G,H). In the case of
metal oxide conversion, zinc oxide sphere and nanorod
templates were used for conversion to ZIF-8.53−55 For most
metal oxide conversion cases, precursors are partially converted
only at the surface. Precursors remained in the synthesized
particles, which is improper for gas separation since unconverted
areas in the metal oxide can serve as a barrier layer, significantly
reducing separation performance. Moreover, a nonplanar shape
template morphology is improper for high-aspect-ratio control.
Meanwhile, a high-aspect-ratio zinc layered hydroxide template
successfully led to perfect conversion to ZIF-8 maintaining a
high aspect ratio. ZIF-8 nanoplates reported by Kim’s group
showed perfect conversion without precursor remaining.14,56

With the addition of ZIF-8 nanoplates into the PI membrane,
superior C3H6/C3H8 and H2/C3H8 separation performances of
the MMM compared with isotropic particles were reported.
Furthermore, the growth of MOF and zeolite nanoparticles

on the surfaces of two-dimensional counterparts like graphene
has been reported.57,58 Generally, oxidized graphene offers
favorable sites for interacting with MOF and zeolite precursors
due to its surface oxygen functional groups, resulting in high
particle densities on the graphene surface. However, due to
graphene’s gas barrier properties, the enhancement in gas
performance is limited, and despite potential additional pores,
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the graphene’s pore density remains relatively low, resulting in

less effective enhancement of separator performance compared

to single-crystal nanosheets. Nonetheless, this approach offers

the advantage of facile preparation of diverse structures by

selecting appropriate precursors, while the aspect ratio can be

readily tuned based on graphene’s dimensions.

■ PROPERTIES OF MMMS WITH DIFFERENT FILLER
MORPHOLOGIES

MOFs and zeolites can be directly synthesized into membranes
on porous supports using solvothermal approaches, in situ
growth, vapor conversion, and electrochemical deposition.62

Commonly employed porous supports include materials like
alumina or silica, occasionally supplemented with gutter layers
to enhance mechanical stability, tune pore rigidity, and enable
the deposition of thin selective layers.59,63,64 These polycrystal-

Figure 3. Structure and gas permeation mechanism of membranes with different filler morphology. (A−C) Polycrystalline membrane: Top and cross-
sectional SEM images of ZIF-8 membrane and its gas permeation mechanism. Reproduced with permission from ref 59. Copyright 2021 Wiley-VCH.
(D−F) MMM with isotropic particles: (D) SEM image of an isotropic ZIF-67 particle; (E) cross-sectional SEM image of 43 wt % ZIF-67/6FDA-
DHTM-durene MMM; (F) gas permeation mechanism. Reproduced with permission from ref 60. Copyright 2020 the authors of ref 60, under
exclusive license to Springer Nature. (G−I) MMM with high-aspect-ratio nanosheet: (G) SEM image of MFI nanosheet; (H) cross-sectional SEM
image of 3 wt % MFI/Nafion MMM; (I) gas permeation mechanism. Reproduced with permission from ref 61. Copyright 2022 the authors of ref 61,
under exclusive license to SpringerNature. (J−L)MMMwith low-aspect-ratio nanoplate: (J) SEM image of ZIF-8 nanoplate; (K) cross-sectional SEM
image of 20 wt % ZIF-8 nanoplate/6FDA-DAM; (L) gas permeation mechanism. Reproduced with permission from ref 14 (copyright 2023 Elsevier)
and from ref 56 (CC BY-NC 4.0).
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line membranes exhibit remarkable separation efficiency, due to
their intrinsic structural characteristics that yield well-defined
and interconnected pore networks. However, preparing
continuous films over substantial areas, free from grain boundary
defects and inter/intracrystalline fissures, remains challenging,
as these imperfections serve as nonselective pathways,
compromising separation efficacy. Notably, these membranes
are comparatively facile to fabricate at thin thicknesses, typically
on the submicrometer scale. Figure 3A,B shows an example of a
ZIF-8 polycrystalline membrane. A 400 nm thick ZIF-8
membrane was fabricated on a PES polymer support with a
graphene oxide nanoribbon gutter layer.59 Using a selective
MOF or zeolite layer, gas molecules readily traverse the
membrane while relatively larger molecules encounter effective
obstruction, resulting in markedly enhanced selectivity (Figure
3C).
Despite their exceptional performance, polycrystalline mem-

branes are prone to brittleness and are predominantly
synthesized via hydrothermal reactions, limiting broader
industrial applications. Particularly in the case of zeolite
membranes, additional post-thermal treatment is required to
remove organic SDAs, further complicating the creation of large-
scale membranes with exceptionally thin selective layers. While
separators utilizing polycrystalline coatings find application in
separation processes, they also serve a significant role in
elucidating the gas permeation characteristics of crystalline
materials. The amalgamation of gas permeation data acquired
from polymers and that extracted from polycrystalline separators
facilitates the predictive determination of efficient composite
pairings, circumventing the need for direct experimental
validation. Notably, as the effectiveness of MMMs is
substantially governed by the properties of the filler component,
a profound comprehension of the separation efficacy intrinsic to
the filler becomes imperative for the advancement of high-
performance membranes.
Beyond the inherent pore structure of filler materials, the gas

separation mechanism in MMMs can notably diverge based on
the shape of the filler. Consequently, we have categorized
MMMs into three distinct groups: those incorporating isotropic
particles, those featuring high-aspect-ratio fillers (nanosheets),
and those containing low-aspect-ratio fillers (nanoplates).
MMMs involving isotropic particles have been extensively
investigated across various literature due to their straightforward
synthesis procedure. These particles are generally synthesized at
a scale of hundreds of nanometers or smaller and subsequently
integrated into a polymer solution, which is cast to form the
membrane. Figure 3D shows an isotropic ZIF-67 particle with a
size of 200 nm.60 Then, ZIF-67 particles were hybridized with
6FDA-DHTM-Durene polymer for C3H6/C3H8 separation
(Figure 3E). Their introduction into the membrane can induce
alterations in chain mobility and packing within the polymer
matrix. By creating additional fractional free volume, these
particles facilitate the movement of permeating molecules.
Importantly, molecular sieving predominantly occurs through
the apertures of these particles, leading to accelerated
permeation of smaller molecules. Consequently, MMMs
incorporating isotropic particles typically exhibit a moderate
enhancement in both permeability and selectivity (Figure 3F).
However, due to the tendency of fillers to aggregate, the filler
content is commonly limited to below 30 wt % to avert the
creation of nonselective paths.15,65 This limitation results in the
performance of MMMs with isotropic particles falling short of

the intrinsic capabilities of the fillers yet surpassing that of pure
polymer membranes.
Incorporating high-aspect-ratio nanosheet fillers offers the

potential for further enhancement of separation performance
while retaining the advantages associated with isotropic
particles. Nanosheets are typically synthesized or prepared at a
scale of a few nanometers thickness with a pronounced aspect
ratio, as evidenced by the SEM images of MFI nanosheets in
Figure 3G.61 The high-aspect-ratio structure provides a
substantial surface-to-volume ratio and allows high filler loading
when fabricating membranes (Figure 3H) because nanosheets
prefer to be aligned in the confined spacing.61,65 In cases where
nanosheets are well-aligned, they introduce intricate pathways
that impede the passage of larger molecules exceeding the
aperture size, thereby reducing the permeability (Figure 3I).
Simultaneously, the nanosheets permit the penetration of
smaller molecules through their pores, resulting in maximized
selectivity.
Remarkably, nanosheets are anticipated to enhance mem-

brane separation performance even with a minor addition of
filler. This attribute holds significance in practical applications,
as it avoids altering polymer properties due to filler
incorporation and helps reduce material costs. Nonetheless,
the synthesis process is commonly laborious with low yield.66

Moreover, it is still questionable whether the separation
performance of bulk crystals can be retained in nanosheets
with just a few unit-cell thicknesses. The prevalence of external
pores in these nanosheets might potentially result in pore
blocking by infiltrating polymer chains, raising questions about
their functionality.
Nanoplates, characterized by a relatively modest aspect ratio,

present an alternate filler material for preparing MMMs, offering
benefits akin to those of nanosheets. Unlike nanosheets, which
manifest as single-crystalline structures with a solitary
orientation, nanoplates adopt polycrystalline configurations
comprising densely assembled particles.56 Nanosheets are
typically obtained via direct synthesis or exfoliation from layered
bulk materials, accounting for their single-crystal attributes. In
contrast, nanoplates are commonly derived through the
conversion of precursor nanosheets or the growth of densely
packed nanoparticles on substrates like graphene oxide or other
2D materials.14,56,57 Consequently, nanoplates exhibit margin-
ally increased thicknesses alongside lower aspect ratios, as
exemplified by the ZIF-8 nanoplate prepared through the
conversion approach (Figure 3J).14,56

The prepared MMM displays a cross-sectional arrangement
wherein nanoplates are enveloped by polymer chains without
interfacial voids (Figure 3K). The gas permeation mechanism of
the MMM with nanoplates is depicted in Figure 3L. Given that
nanoplates possess a lower aspect ratio in comparison to
nanosheets, the influence of tortuous pathways is relatively
reduced, consequently yielding slightly reduced selectivity.
However, nanoplates can resemble the nanosheet effects
owing to their similar morphology, setting them apart from
isotropic particles. Furthermore, when the orientation of
nanoplates aligns vertically within the MMM, the structure
can provide fast and selective gas permeation pathways due to its
increased thickness, which is enough to provide a permeation
channel for permeable molecules.56
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■ MMMS WITH HIGH-ASPECT-RATIO NANOSHEETS
(ZEOLITE-TYPE)

Considering the cases of graphene/polymer composites and
nanoclay/polymer composites, it is well-known that 2D
materials can enhance polymer mechanical properties due to
several reasons, such as their high intrinsic strength and stiffness,
large surface area for improved interactions, barrier effects on
chain movement, reinforcement at the nanoscale, flexibility for
better bonding, fracture toughness improvement, and reduced
polymer chain mobility.70−72 Therefore, it is rational to expect
that zeolite or MOF nanosheets will also have similar effects on
polymers, while the degree of enhancement must be lower than
that with graphene due to the lower mechanical properties of
zeolites and MOFs compared with graphene.73,74 In addition,
the enhancement is highly dependent on the properties of the
polymer. For example, polyimide has much stronger mechanical
properties than rubbery polymers, while both polymers can be
used depending on the target gas pair.75

Figure 4 exemplifies the mechanical attributes of pure zeolites
and zeolite fillers integrated within MMMs. Zeolite was selected
because of its good mechanical properties compared with
MOFs. In Figure 4A, the bulk modulus (K) of zeolites is
portrayed, leveraging data from both the IZA framework
database and the silica zeolite database (PCOD2). The
density-related distribution of bulk modulus, as deduced
through machine learning assistance from the zeolite database,
is correlated with zeolite density.67 Notably, higher-density
zeolites exhibit lower bulk modulus values compared to their
lower-density counterparts. However, an appreciable segment of
estimated zeolite bulk moduli surpass 20 GPa, outperforming
the values characteristic of most polymer matrices. In further
support of zeolites’ exceptional mechanical traits, empirical
validation is furnished through microdeformation assessments
(Figure 4B,C).68 These examinations were conducted with
ZSM-5 crystals (MFI-type zeolite, approximately 0.5 mm in
size) subjected to mechanical testing. The stress−strain curve
derived from microdeformation analysis is presented in Figure

Figure 4. (A) Bulk modulus distributions of zeolites predicted using machine learning-assisted calculation. Reproduced from ref 67. Copyright 2017
American Chemical Society. (B) Microdeformation tester and single zeolite crystal and (C) mechanical test result. Reproduced with permission from
ref 68. Copyright 2002 Elsevier. (D) Structure image of MEL-inserted MFI zeolite, (E) one-dimensional growth of MEL-inserted MFI zeolite
nanosheet depending on the MEL content, and (F) calculated elastic modulus depending on MEL content. Reproduced with permission from ref 34.
Copyright 2020 the authors of ref 34, under exclusive license to Springer Nature. (G) Cross-sectional SEM images of MMMwith 2D nanosheet filler
and (H) their mechanical stability test result. Reproduced with permission from ref 15. (I) Three-point bending test image showing the flexibility of
high 2D-zeolite-loadedMMM. Reproduced with permission from ref 69. Copyright 2022 the authors of ref 69, under exclusive license to the American
Association for the Advancement of Science.

ACS Materials Au pubs.acs.org/materialsau Perspective

https://doi.org/10.1021/acsmaterialsau.3c00072
ACS Mater. Au 2024, 4, 148−161

154

https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00072?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00072?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00072?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00072?fig=fig4&ref=pdf
pubs.acs.org/materialsau?ref=pdf
https://doi.org/10.1021/acsmaterialsau.3c00072?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


4C, revealing a notably elevated elastic modulus of 4 GPa. While
the mechanical properties of bulk-scale three-dimensional (3D)
zeolites are found to extend to 2D zeolites, it is acknowledged
that intergrowth of distinct zeolite types might instigate
mechanical property variations. For instance, Tsapatsis’s group
prepared MFI nanosheets,34 demonstrating that MEL-type
zeolites can propagate unidirectionally upon the manufactured
MFI zeolite nanosheets (Figure 4 D,E). Additionally, a
computational simulation (Figure 4F) portrayed the one-
dimensional advancement of zeolite MEL, potentially culminat-
ing in the reinforcement of the elastic modulus in a specific
direction (a axis).
Leveraging zeolites with superior mechanical traits relative to

polymer matrices underscores the alterations in mechanical
characteristics within zeolite-filler MMMs. In the context of
MMMs synthesized using PTMSP and MFI nanosheets (Figure
4G), cross-sectional SEM images affirm the successful creation
of the MMM, with fillers in the polymer matrix maintaining
orientation despite the substantial filler content.15 Conse-
quently, Figure 4H presents an enhancement in the mechanical
properties of MMMs as measured by increasing zeolite content.
Paradoxically, despite the augmented mechanical properties, the
composite films with substantial zeolite concentrations also
exhibit flexibility, even at elevated filler loads (Figure 4I). This
observation is different from typical behavior observed in
MMMs with isotropic fillers. Consequently, the utilization of
high-aspect-ratio fillers appears more promising in achieving the
dual objectives of enhancing durability and flexibility, which are
critical factors for the industrial implementation of membranes.

■ MMMS WITH HIGH-ASPECT-RATIO NANOSHEETS
(MOF-TYPE)

Rodenas et al. introduced a diffusion-mediated modulation
synthesis strategy for dispersible CuBDC MOF lamellae,
characterized by a layered crystalline structure conducive to
the selective adsorption of polar gas molecules (Figure 5A).46

This approach involves a liquid medium with three layers,
enabling the controlled diffusion of Cu2+ cations and BDCA
linker precursors to facilitate MOF growth in a localized, diluted
environment. Synthesized CuBDC nanosheets (ns-CuBDC)
displayed lateral dimensions of 0.5−4 μm and thicknesses
spanning 5−25 nm, exhibiting an aspect ratio exceeding 20
(Figure 5B). In contrast, conventional solvothermal synthesis
yielded isotropic cubic crystals (nc-CuBDC) (Figure 5C). Both
types of fillers were integrated into a polyimide (PI) matrix for
gas separation testing.
The internal structure of the resulting MMMs was scrutinized

using tomographic focused ion beam scanning electron
microscopy (FIB-SEM), generating 3D reconstructions (Figure
5D,E). Despite equal filler content, ns-CuBDC showed uniform
dispersion throughout the polymer matrix, whereas nc-CuBDC
left significant unoccupied polymer volume. In evaluating
MMMs and PI membranes as a reference for CO2 separation
from CO2/CH4 mixtures, different MMMs were tested under
varying pressure differences (Figure 5F). The incorporation of 8
wt % bulk-type CuBDC (b-CuBDC) and nc-CuBDC led to a
slight selectivity reduction compared to the neat PI membrane,
attributed to filler-induced disruption of polymer chains and
subsequent nonselective void formation. Conversely, ns-

Figure 5. (A) Crystal structure of CuBDC with views along different crystallographic axes. (B, C) SEM images of (B) CuBDC nanosheet and (C)
CuBDC nanocube. (D, E) Cross-sectional SEM images and surface-rendered views of FIB-SEM tomograms for 8 wt % (D) CuBDC nanosheet/
polyimide and (E) CuBDC nanocube/polyimide. Reproduced from ref 46. Copyright 2014 Springer Nature.
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CuBDC integration demonstrated superior performance due to
enhanced gas interaction resulting from its homogeneous
distribution. Notably, the selectivity increased with elevated
upstream pressure, demonstrating the potential of high-aspect-
ratio nanosheet fillers to mitigate polymer matrix swelling. In
summary, ultrathin high-aspect-ratio nanosheets decrease
membrane thickness, ensuring well-dispersed fillers that
enhance permeability, selectivity, and resistance to plasticization
effects.

■ MMMS WITH LOW-ASPECT-RATIO NANOPLATES
While ZIF-8 is one of the most widely used MOFs for gas
separation, synthesizing ZIF-8 nanosheets poses challenges due
to factors such as controlling nucleation and growth kinetics,
templating agents, crystal growth conditions, and scalability.
Figure 6 presents an alternative approach to preparing ZIF-8
nanoplates with an aspect ratio of 20, evaluated for C3H6/C3H8

separation.56 The ZIF-8 aperture size is 3.4 Å, which expands to
approximately 4.0 Å due to organic linker flexibility. Unlike
single-crystal nanosheets with planar surfaces aligned to specific
crystallographic orientations and atomic-scale thickness, ZIF-8
nanoplates are polycrystalline and exhibit a relatively lower
aspect ratio yet share structural benefits akin to nanosheets.
Synthesis of ZIF-8 nanoplates employed a template-assisted
conversion method (Figure 6A). Zn5(NO3)2OH8 nanosheets
were utilized as metal templates, and the injection rate and
appropriate solvent of 2-methylimidazole linkers were optimized
to facilitate phase conversion while retaining a sheetlike
morphology. The resultant ZIF-8 nanoplates displayed an
average lateral size of 4 μm and thickness around 200 nm,
yielding an aspect ratio of 20 (Figure 6B). To demonstrate the
influence of the sheetlike morphology, ZIF-8 nanoplates were
hybridized with the 6FDA-DAMpolymer matrix. Employing the
bar coating method with shear force achieved a highly aligned

Figure 6. (A) Conversion process of Zn5(NO3)2OH8 nanosheet to ZIF-8 nanoplate. (B) SEM image of synthesized ZIF-8 nanoplates. (C) Cross-
sectional SEM image of 40 wt % ZIF-8 nanoplate/6FDA-DAM and corresponding EDS mapping images of zinc and carbon. (D) C3H6/C3H8
separation performance of ZIF-8 nanoplate/6FDA-DAM membranes. From ref 56. CC BY-NC 4.0).
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filler distribution in membrane fabrication. Remarkably, ZIF-8
nanoplates were uniformly dispersed and aligned within the
polymer matrix, even at a substantial 40 wt % loading (Figure
6C). EDS mapping unveiled a predominant horizontal align-
ment of ZIF-8 nanoplates, evident through even carbon species
detection, while Zn species were confined to the nanoplate
locations. C3H6/C3H8 separation performance was gauged
across MMMs with varying filler loading under both single-gas
and mixed-gas conditions (Figure 6D). In both scenarios,
performance escalated with increased filler loading, surpassing
upper bounds. In single-gas separation testing, the C3H6
permeability registered 164 barrer with a C3H6/C3H8 selectivity

of 33.4, and for mixed-gas separation, the C3H6 permeability was
measured as 118.2 Barrer with a C3H6/C3H8 selectivity of 26.2.
These accomplishments outperformed isotropic-particle-based
MMMs, indicating the importance of the filler shape because
their sieving properties can be maximized, as C3H6 molecules
permeate the crystals while C3H8 molecules are impeded due to
heightened in-plane tortuosity.
In addition, the composite membranes were tested for

hydrogen extraction with mechanical properties comparison.14

A 20 wt % ZIF-8 nanoplate/PI membrane exhibited high
mechanical properties of 0.282GPa for hardness and 3.5 GPa for
modulus, which are higher than those of ZIF-8 isotropic/PI

Figure 7. Prediction of separation performance calculated by the modified Cussler model. (A−D) Calculated results for MFI/PTMSP: (A) n-C4H10
permeability, (B) i-C4H10 permeability, (C) n-C4H10/i-C4H10 selectivity, and (D) separation performance of MFI/PTMSP with different aspect ratios
(ARs) of MFI zeolite. (E−H) Calculated results for ZIF-8/6FDA-DAM: (E) C3H6 permeability, (F) C3H8 permeability, (G) C3H6/C3H8 selectivity,
and (H) separation performance of ZIF-8/6FDA-DAM with different ARs of ZIF-8 nanosheets.
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membranes. Furthermore, high-aspect-ratio fillers allowed
significant enhancement in hydrogen separation performance,
showing a hydrogen permeability of around 1800 barrer with a
hydrogen/propane selectivity of 260 at 20 wt % ZIF-8 nanoplate
loading, which is much enhanced relative to the membrane with
isotropic ZIF-8 particles.

■ PREDICTION OF SEPARATION PERFORMANCE
WITH POLYMER TYPES AND NANOSHEET ASPECT
RATIO

Fabricating 2D materials with precisely controlled aspect ratios
is still challenging. However, it is possible to predict separation
performance with mathematical models to guide future
research.76,77 The modified Cussler model was introduced to
predict permeability and selectivity among various mathematical
models that predict separation performances of polymeric
membranesmixed with fillers.78 ThemodifiedCussler model is a
mathematical model considering diffusion through a well-
aligned array of two-dimensional fillers in the polymer matrix.
The calculation model predicts the permeability using the
following equation:
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where α is the aspect ratio of the filler,ϕ is the volume fraction of
the filler, Pi

C is the permeability of gas i through the mixed-matrix
membrane, Pi

M is the permeability of gas i through the pure
polymer matrix, and Pi

F is the permeability of gas i through the
filler.
The permeability and selectivity of MMMs incorporating

fillers with different aspect ratios were evaluated for rubbery and
glassy polymers. For rubbery-polymer-based MMMs targeting
butane isomer separation, MFI-type zeolite and PTMSP were
chosen. Calculations utilized single gas permeability values of
300 barrer for n-butane and 5 barrer for i-butane in MFI
nanosheets, while PTMSP’s single gas permeability values of
6200 barrer for n-butane and 1040 barrer for i-butane were
experimentally determined.37,79 Incorporating MFI nanosheets
led to decreased permeability for both isomers due to higher
tortuosity, which was especially pronounced with higher aspect
ratios (Figures 7A,B). Notably, MFI acted as a barrier for i-
butane while permitting n-butane passage through pores, though
at a lower rate than the pristine polymer. Consequently, i-butane
permeability reduction drove an increase in overall n-butane/i-
butane selectivity with rising MFI content (Figure 7C).
Remarkably, a high-aspect-ratio MFI at even modest loading
approached the intrinsic selectivity of the filler. In contrast, low-
aspect-ratio MFI, such as isotropic particles, required sub-
stantially higher loading to exceed the upper bound, as
illustrated in Figure 7D. This demonstrates that high-aspect-
ratio MFI achieves commercially attractive results with minimal
filler, while low-aspect-ratioMFI necessitates elevated loading to
attain comparable performance.
For glassy-polymer-based MMMs targeting propylene/

propane separation, ZIF-8 and 6FDA-DAM polyimide were
chosen. Calculations utilized ZIF-8 single gas permeabilities of
390 barrer for propylene and 2.9 barrer for propane, while the
6FDA-DAM membrane’s single gas permeability values were
experimentally determined as 44.8 barrer for propylene and 4.8
barrer for propane.56 Unlike the rubbery-polymer-based model,
various aspect ratios in the glassy-polymer-based model showed

minimal separation performance differences. The C3H6
permeability remained consistent even for aspect ratios between
5 and 1000 (Figure 7E). Slight variations in C3H8 permeability
were attributed to increased tortuosity yet remained negligible
(Figure 7F), as further evident in C3H6/C3H8 selectivity (Figure
7G). With increasing filler loading, both the permeability and
selectivity displayed similar trends for high and low aspect ratios
(Figure 7H), stemming from the inherently low permeability of
glassy polymers. This results in similar calculated separation
performances between the initial point (polymer) and the final
point (filler). In glassy-polymer-based MMMs, high filler
content proves more crucial than a high aspect ratio of the
filler. However, high aspect ratio remains beneficial, enhancing
filler dispersibility and compatibility within the polymer matrix
and facilitating defect-free fabrication of highly loaded MMMs.
This underscores that while a high aspect ratio may not
dramatically impact glassy-polymer-based MMM separation, its
influence on structural integrity and processability remains
valuable. In particular, with the orientation control of the filler,
the permeability of permeable gas molecules can be enhanced
significantly, which can be referred from the case of binary-phase
composite membranes or MMMs with phase separations.61

Of course, the model presumes flawless dispersion and
alignment of fillers within the polymer matrix, with no vacant
spaces between them. Hence, it necessitates validation against
real experimental data. Several papers convey disparities in
experimental results and theoretical predictions, mostly in
permeability.15,29,56 Shete et al.29 indicated that for certain types
of polymers, the model predictions were much lower than the
experimental values. Also, Kwon, Kim, and co-workers15,56

suggested that the reason for the difference is loosely aligned
fillers. Nonselective voids by inadequate adhesion between filler
and polymer can lead gases to bypass, which results in high
permeability. These inconsistencies become more severe at
elevated filler loadings due to filler aggregation. Choi et al.15

showed an excellent match between the calculation and
experimental data until 5 wt %, whereas great deviation
appeared at a higher filler ratio. Nonetheless, our calculations
provide insight into the design of the filler structure and
composite materials in addition to the selection of the
combination of filler materials and polymers.

■ CONCLUSIONS AND OUTLOOK
We have reviewed the recent research trend of MMMs for gas
separation applications, focusing on the integration of high-
aspect-ratio 2D MOFs and zeolites. Various methods for
preparing 2D materials have been outlined, providing the
application for the fabrication of composite membranes.
Membrane types are categorized ranging from polycrystalline
membranes to MMMs with different filler structures. This
exploration has revealed that composite membranes with high-
aspect-ratio fillers hold potential due to their ability to enhance
molecular sieving and gas transport. Considering polymer types
and nanosheet aspect ratios, composite membranes can provide
a clear path for optimizing separation performance. While
substantial progress has been made in understanding the
synergetic effects of 2D materials and polymers, several
opportunities and challenges remain. 2D MOFs and zeolites
are rarely reported for gas separation applications. To fabricate
high-functioning and high-loading MMMs, carefully choosing
an appropriate combination of filler and polymer and ensuring
compatibility and adhesion between these components are
essential. To create high-performance composite membranes, a
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large-area coating of a polymer and filler solution on a support
with a submicrometer thickness is required, followed by
modularization of the resulting membranes. Considering that
continuous coating processes of other 2D materials such as
graphene have been reported recently and that most MMMs are
reported as thick free-standing films with reported permeability,
a technology for forming ultrathin selective layers on a large area
by a method such as slow die coating should be developed for
practical applications.24,80 Furthermore, it is required to evaluate
membrane performance under harsh operating conditions. By
addressing stability and durability concerns, it is possible to
accelerate the adoption of 2D-material-based composite
membranes for practical applications at the industry level.
Insights gained from these studies could find relevance in diverse
areas, including proton exchange membrane fuel cells, batteries,
and water treatment, fostering innovation and sustainability
across multiple fields.
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