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ABSTRACT

COMPASS is a profile-based method for the
detection of remote sequence similarity and the
prediction of protein structure. Here we describe a
recently improved public web server of COMPASS,
http://prodata.swmed.edu/compass. The server
features three major developments: (i) improved sta-
tistical accuracy; (ii) increased speed from parallel
implementation; and (iii) new functional features
facilitating structure prediction. These features
include visualization tools that allow the user to
quickly and effectively analyze specific local struc-
tural region predictions suggested by COMPASS
alignments. As an application example, we describe
the structural, evolutionary and functional analysis
of a protein with unknown function that served as a
target in the recent CASP8 (Critical Assessment
of Techniques for Protein Structure Prediction
round 8). URL: http://prodata.swmed.edu/compass

INTRODUCTION

Comparison of multiple sequence alignments (MSA)
leads to a significant increase in the quality of detecting
relationships between remote protein homologs (1–3).
Analysis of MSAs of two protein families, in the form
of numerical profiles (4) or hidden Markov models (5),
can reveal similar sequence patterns that reflect the evolu-
tionary constraints dictated by common structural folds or
functions. These patterns often remain detectable long
after individual protein sequences diverge beyond recogni-
tion. In recent years, methods for profile–profile (2,6–11)
and HMM-HMM (1,3,12) comparison, often featured
on public web servers (13–17), have become a powerful
addition to other web-based tools for predicting protein
structure and function [e.g. (18–21)].
Suggested as a generalization of PSI-BLAST (22),

COMPASS is a method for remote homology detection
that generates numerical profiles, constructs optimal
profile–profile alignments and estimates the statistical

significance of the corresponding alignment scores (2).
COMPASS has been successfully used by our group and
other researchers for both prediction of protein structure
and function [e.g. (23,24)] and evolutionary analysis [e.g.
(12,25,26)].

The COMPASS web server has been publicly available
since 2007 (15). Based on user experiences, we have iden-
tified three major directions of further development in
methodology, implementation and user interface. First,
we improved the accuracy of statistical significance esti-
mates (E-values) and the corresponding ranking of
detected similarities by introducing a more realistic
random model of profile comparison (27). This model is
based on an accurate statistical description of MSA com-
parison that captures the essential features of protein
families, as opposed to traditional models originally
derived for the comparison of individual sequences.
Second, we increased the computational speed by devel-
oping a parallelized version of COMPASS that runs
on multiple processors. Third, we designed a new inter-
face for a more comprehensive analysis of produced
results. Unlike similar tools, the new COMPASS server
allows for a fast and easy mapping and inspection of the
specific regions of protein structure predicted by profile
alignments. As a result, the presented server is a more
accurate and fast tool for remote homology detection
and structure prediction, with improved output that facil-
itates manual analysis and discovery of intricate protein
relationships.

METHODS

Given a sequence or MSA, COMPASS generates
the query profile and compares it against a specified data-
base of protein family profiles. The server’s front page
(Figure 1A) allows the user to upload the query, select
the database [PFAM (28), COG, KOG (29), or PSI-
BLAST alignments produced from PDB70 (30) or
SCOP40 (31) representatives], and adjust the search
parameters and output options.

The output of the search includes a list of the
most significant hits and their corresponding optimal
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profile–profile alignments. According to comprehensive
evaluations by our group (32) and others (3,12,33),
COMPASS is among the top-performing methods for
sequence-based homology detection and local alignment

construction. The presented web server features several
major modifications to improve detection quality, speed
and availability of specific structure predictions for visual
analysis.

Figure 1. (A) Submission form (front page) of the COMPASS server. The main section allows the user to submit the query (as MSA or a single
sequence), choose the database, and enter the email address to receive results (optional). In the section of input processing, the user can require an
additional PSI-BLAST run enriching the query profile and define the parameters of profile construction. The sections of search and output options
contain controls of the main parameters of the search and of the output format. As a separate control, a choice of statistical models is available
(see text for details). A brief explanation of each option can be viewed by clicking on the option’s name. The links to more detailed documentation
and to a downloadable standalone package are on the bottom of the page. (B) Example of output alignment sections with matched structural
fragments displayed in Jmol, graphic schemas of alignments and additional links. Several sub-threshold SCOP hits for CASP target T0473 are shown.
Although these domains belong to different SCOP folds, they all share an HTH motif that becomes apparent when matched fragments are displayed.
(C) Ribbon diagram of CASP target T0473 (PDB ID 2k53, NMR model 1). The two C-terminal a-helices (yellow and orange-red) form the HTH
motif. (D) Ribbon diagram of the only full-length template of T0473 (PDB ID 2fi0A), protein SP0561 of unknown function classified in SCOP as a
unique SP0561-like fold.
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Improved accuracy of estimates of statistical significance

The server features our novel approach to statistical
modeling of MSA comparison (27) that provides a more
accurate discrimination between biologically meaningful
protein similarities and spurious hits.
The elegant theoretical model (34) developed for single

sequence comparison assumes an absence of correlation
between amino-acid content at individual positions. As a
result, the statistical significance can be estimated using
extreme value distribution (EVD) (35,36). This model cor-
responds to a randomization of profiles by shuffling posi-
tions, which allows for generation of potentially unlimited
statistical samples and, therefore, precise analysis of
resulting score distributions. However, this representation
of real alignments is overly simplistic. An alternative
empirical approach of comparing real unrelated proteins
(3,6,7,10,11) requires an additional calibration on a data-
base of diverse protein representatives, and can generate
only a limited random sample of similarity scores, which
hinders the precise analytical fitting of the empirical score
distribution. We developed a new modeling approach
that combines a realistic representation of essential pro-
tein features with a precise mathematical description.
This approach is based on (i) a biologically meaningful
modeling of the secondary structure and of the resulting
correlations between sequence positions and (ii) a precise
analytical description of the empirical statistics (27).
In particular, we found that the score distribution for

the comparison of unrelated profiles can be realistically
modeled by reproducing major classes of real proteins
(such as all a, all b, a/b and a+ b classes in the SCOP
classification) and by mimicking the types, lengths and
sequence diversity (thickness) of real profile fragments
corresponding to secondary structure elements (27).
Since the resulting simulated score distributions do not
follow EVD, we proposed a novel distribution, ‘power
EVD’ (27), that yields statistically perfect agreement
with the data. In an evaluation based on a set of existing
protein families with known structure, our model sur-
passed currently available models in the accuracy of
detecting remote protein similarities. In addition, this
model has a realistic statistical accuracy, i.e. the closeness
between predicted and actual numbers of false positives
that are assigned a given E-value (27).
The server uses the new statistical model by default;

however, the old model is also available. The type of
statistics is selected by switching the corresponding radio
button on the front page.

Faster parallelized implementation

To speed up the computationally costly process of
constructing profile–profile alignments, we developed
a parallelized version of COMPASS based on the MPI
platform. In brief, comparisons of the query to database
entries are distributed among multiple processors, so that
each processor works on a subset of the database profiles.
Data about the most significant hits are sent to the
manager node, which accumulates the hit list. When the
size of the growing list exceeds the user-defined number of
hits to display, the manager modifies the E-value cutoff

used by the worker nodes to decide whether the hit is
significant enough to be sent to the manager. This cutoff
is set to the worst E-value in the current hit list, so that
the worker nodes do not spend time on reporting hits that
will not be displayed. This implementation increases the
computational speed by approximately an order of mag-
nitude, so that a typical running time is within a minute.
This time may increase when the server is heavily loaded
or when the user requires generation of the query profile
by PSI-BLAST search, which may take longer for queries
with a large number of homologs in the sequence
database.

Improved interface to facilitate expert analysis of
structure predictions

In structure prediction, it is important to visualize the
exact structural region of the potential homolog that is
predicted to be similar to the query. In most currently
available public servers, the structure of the detected
homolog is not displayed at all; when it is displayed, the
full protein chain is shown. However, local sequence align-
ments often reveal similarity restricted to a single struc-
tural domain, subdomain, or even functional motif.
This information is especially important when a query
detects multiple homologs with highly divergent structures
that share only locally similar regions (see an example
below). In such cases, the consistency of structure predic-
tions would not be apparent if one views only full-chain
homolog structures.

In all current servers for homology detection, a
user wishing to visualize the actual region of predicted
structural similarity has to retrieve the full 3D structure
of the detected homolog and then manually map the
aligned sequence part on the structure. The improved
COMPASS server automates this important yet tedious
process. For the top significant hits in databases of pro-
teins with known 3D structure, an additional panel is dis-
played in the alignment section (Figure 1B). This section
includes several items. First, a Jmol (http://jmol.source
forge.net) panel is used to interactively display the
C-alpha trace of the structural fragment covered by the
COMPASS alignment. The user can rotate, move and
zoom this fragment; position numbers and residue
names can be viewed by moving the mouse over the resi-
dues. Second, the user can analyze the structure in more
detail, either by downloading the fragment as an all-atom
PDB file, or by clicking on the ‘PyMOL’ link, which gen-
erates and launches a PyMOL (http://pymol.source
forge.net) script to show, in a separate window, the full
structure of the potential homolog, with the aligned region
highlighted. In this window, the user can employ the full
functionality of PyMOL to view sidechains, ligands, pro-
tein surface, atom–atom distances, etc. Third, the addi-
tional links to databases allow viewing the information
about the protein structure in PDB, SCOP, CATH and
NCBI repository. Finally, a simple graphical schema
shows the location of aligned sequence regions with
respect to the full sequences of the query and subject.
Full query and subject MSAs can be viewed by clicking
on either the bars representing the profiles in the schema
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or the highlighted sequence names in the profile–profile
alignment.

The ability to view and compare ‘on the fly’ multiple
predicted regions of structural similarity simplifies the
manual analysis of search results. As shown in the exam-
ple below, this feature helps visualize important structural
and functional features of the query that could be missed
otherwise.

EXAMPLE OF STRUCTURE PREDICTION AND
EVOLUTIONARY ANALYSIS

As an illustration, we describe detection of distant
sequence similarities that leads to structure prediction
and reveals an evolutionarily conserved functional motif
in a target protein from the recent CASP8 (Critical
Assessment of Techniques for Protein Structure
Prediction). Target T0473, an all-alpha protein from
Clostridium thermocellum, is a member of a tight sequence
family with unknown function. PSI-BLAST, up to five
iterations, could not detect significant sequence similarities
to proteins with solved 3D structures. When a PSI-
BLAST alignment of T0473 was used as a query in
a COMPASS search against the database of SCOP
representatives, a domain of known structure (PDB ID
2fi0) was easily detected with a low E-value of 10�20

(Figure 1D). This homolog, aligned to the query over
the whole domain length, is a hypothetical protein
SP0561 of unknown function classified in SCOP as a
unique SP0561-like fold. This prediction was additionally
confirmed by other profile–profile comparison servers,
such as HHSearch (assigned a high probability of 99%).
After the structure of this CASP target was released (PDB
ID 2k53), it proved to be highly similar to the template
(Figure 1C).

Although this structure prediction is relatively straight-
forward, it does not provide much information about the
potential function and evolutionary history of this protein:
the only template covering the whole domain is a hypo-
thetical protein. However, this domain contains an impor-
tant functional motif that can be easily detected with the
new COMPASS feature of displaying precise structural
fragments that match the query in potential homologs.

The presence of the motif becomes apparent when
viewing multiple hits in the SCOP database with
E-values below and slightly above the significance cutoff
(Figure 1B). In these otherwise highly divergent domains
from different SCOP folds, the query consistently matches
a helix-turn-helix (HTH) motif that is easily recognized in
structure panels of the corresponding alignment sections
(Figure 1B). All structural fragments have the character-
istic helix orientation and positioning of the connecting
turn, and include conserved residues typical of HTH
(Figure 1B). Inspection of the query’s structure confirmed
that the last two a-helices (yellow and orange-red,
Figure 1C) form the HTH motif, readily recognizable by
an almost perpendicular orientation of the two helices and
a long extended ‘turn’ that positions the N-terminus of
the second helix close to the middle of the first helix.
The 49-Gly-Ile-Asp-51 in T0473 is a very typical sequence

for an HTH turn, and Ala44, four residues before Gly49,
is a conserved small residue to make room for packing of
the second HTH helix (37).
However, the similarity is restricted to only the HTH

part: the way it is completed is quite different among
more distant homologs. The rest of the structure is
unique and shared only with the closest homologs, the
detected full-chain template 2fi0 and another CASP8
target T0469 (PDB ID 2k5e). This N-terminal segment is
structured as three helices and completes the HTH core in
a manner similar to the packing of a single N-terminal
helix against the HTH in a classic three-helical bundle
fold.
Thus T0473 is an unusual helix-turn-helix (HTH)

containing protein, which suggests its functional role
in nucleic acid or protein binding. As another indication
of a potential regulatory function, COMPASS detects
profile similarity to COG2846 in the COG database
(not shown), which is predicted to be a ‘Regulator of
cell morphogenesis and NO signaling’.
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