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Abstract

Background: The survival of overwintering ticks, is critical for their subsequent population dynamics in the spring,
and consequent transmission of tick-borne diseases. Survival is largely influenced by the severity of the winter
temperatures and their degree of cold hardiness at the overwintering stage. The bush tick Haemaphysalis longicornis, is
widely distributed in China, and can transmit various pathogens that pose serious medical/veterinary problems. In the
present study we investigated the effect of low temperature stress to tick survival, super-cooling point and body
content of water, glycerol and total protein.

Methods: After various temperature acclimations, the super-cooling point was measured by Ni/CrNi-thermocouples
with a precision temperature recorder. Water content was determined from weight loss of the sample exposed to 60°C
for 48 h. Glycerol content was determined using Free Glycerol Reagent as directed by the manufacturer, and total
protein was determined using the Bradford assay.

Results: The 50% mortality temperatures for the adults and nymphs were −13.7°C and −15.2°C, respectively; and the
discriminating temperatures for the adults and nymphs were −16.0°C and −17.0°C, respectively. The super-cooling
points of the adults and nymphs were −19.0°C and −22.7°C, respectively. The water content of adult H. longicornis
decreased substantially after acclimation at 0°C for 10 d, whereas the nymphs decreased after acclimation at 0°C for 20
d, and the glycerol and proteins of both nymphs and adults were significantly increased (p < 0.01) when stressed at 0°C
for 10 d.

Conclusions: In H. longicornis, low temperature stress can enhance its cold hardiness and trigger appropriate
responses, including reducing water content, and increasing glycerol and total protein content.
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Background
Many overwintering arthropods, including mites and ticks,
are threatened with death by the low temperatures that
occur during mid-winter in temperate and cold regions
[1,2]. Most of them employ various techniques to improve
their cold hardiness under low-temperature conditions
[3,4]. Some enter diapause, which may or may not increase
cold hardiness [5]. Ticks, as obligate blood sucking ecto-
parasites of terrestrial vertebrates, are widely distributed
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on every continent. They transmit a greater variety of
pathogens (viruses, bacteria, rickettsiae, helminths and
protozoa) than even mosquitoes [6]. However, the devel-
opment and survival of ticks are largely dependent on the
complex combination of environmental temperature and
other climate variables [7]. The survival of overwintering
ticks is obviously critical for their subsequent population
dynamics in the spring [8]. Before the arrival of winter,
ticks adopt behaviors and physiological adjustments to
promote overwintering. These include searching for suit-
able habitation sites under leaf litter or stones [9], entering
diapause, and increasing the concentration of cryprotec-
tants like sorbitol, glycerol and various antifreeze proteins
[10]. Previous investigations focused on the super-cooling
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capacity and cold hardiness of ticks [11-14] demonstrating
that most ticks if not all, were as freeze-intolerant as many
other arachnids. However, they did show a high potential
super-cooling, irrespective of their geographical origin
[12]. The bush tick Haemaphysalis longicornis, is the
major vector of Theileria spp., Coxiella burnetti [15,16],
Babesia sp. [17], Anaplasma phagocytophilum [18] and a
suspected vector of the notorious bunyavirus, which has
caused many deaths in China [19], Japan and Korea re-
cently [20]. H. longicornis is endemic to north China [21],
Australia, New Zealand, Korea and Japan [22,23], and can
cause severe damage to human health and livestock produc-
tion. In the field, H. longicornis completes one generation
per year with some population overlap between develop-
mental stages. Most survive the cold winter as nymphs
under the leaf litter, with a small overwintering population
of adults surviving on the host without feeding or under the
leaf litter [24]. However, little is known about the physio-
logical responses, and biochemical changes in unfed H.
longicornis when exposed to low temperatures in winter.
In this study, H. longicornis individuals were cold accli-

mated to a series of low temperatures, and the survival
rate, super-cooling capacity, and changes in water content,
glycerol content and total protein were determined.

Methods
Collection and rearing of ticks
All ticks used in this study originated from adult H.
longicornis collected from vegetation by blanket dragging
in Xiaowutai National Nature Reserve Area (39°50′ to
40°07′N, 114°47′ to 115°30′E) of Hebei province, north
China. Colonies of these ticks were fed on rabbits as de-
scribed by Liu et al. [25], and maintained in our labora-
tory incubator (26 ± 1°C, 85 ± 5%RH, 6:18 (L:D)). Wild
caught ticks were reared for two generations in the la-
boratory, with unfed nymphs (2 weeks after moulting)
and adults (8 weeks following moulting) that within nor-
mal body-weight ranges randomly selected for the assays
described in this study.

Low temperature survival of unfed nymphs and adults
To determine the temperature resulting in 50% mortality
(LT50) and the discriminating temperature (the tempe-
rature resulting in ~15-20% survival), which is important
for testing the response of the rapid cold acclimation [26]
of the unfed nymphal and adult H. longicornis, the survival
of the ticks following a brief period of acclimation (2 h)
was recorded and calculated as follows. Unfed nymphs or
adults were randomly selected and placed in separate plas-
tic vials (each vial contained 20 ticks, and each experiment
was replicated 3 times) and used for each temperature
treatment. The vials were transferred from the colony in-
cubator (26 ± 1°C, 85 ± 5%RH, 6:18 (L:D)) to a series of
low temperature conditions (ranging from −6°C ~ −22°C,
1°C intervals, 6:18 (L:D)). After 2 h exposure to each low
temperature, each group of ticks was immediately
returned to the colony incubator. The percent survival at
each temperature was recorded after 24 h recovery in the
colony incubator, and the ticks that were able to coordin-
ate their movements were recognized as survivors. The
survival rate of ticks that were not exposed to low
temperature (i.e. those kept in the colony incubator)
served as the control.

Effects of short term acclimation of nymphs to various
temperatures
To determine the effects of rapid cold acclimation, unfed
nymphs (20 per group) were confined to plastic vials
covered with gauze, and transferred from the colony in-
cubator directly to an incubator set to −3°C, 0°C, 5°C,
10°C, 15°C or 20°C (85 ± 5% RH, 6 L:18D). Ticks were
held at the selected temperature for 1 h, 2 h, 3 h or 4 h,
respectively, and then transferred to their discriminating
temperature, which was determined in the section just
above, and chilled for 2 h. After this, all ticks were
returned to the colony incubator (26 ± 1°C, 85 ± 5%RH,
6:18 (L:D)) and held for 24 h. Survival rate was then
assessed as described above. Controls were ticks trans-
ferred directly from the colony incubator to their dis-
criminating temperature.

Cold hardiness of adult and nymphal H. longicornis
The cold hardiness of nymphal and adult H. longicornis
was evaluated by exposing the ticks to a range of tem-
peratures for 48 h and recording their survival. Each
sample consisted of 50 nymphs or adults (without sex
determination) kept in a glass tube with a cotton plug.
Groups of ticks were put into a freezer, or incubator,
and exposed to a constant temperature. All temperatures
between −20°C and +20°C were tested, at 5°C intervals.
Temperature fluctuations inside the test tubes did not
exceed ±0.5°C, as measured by Ni/CrNi-thermocouples
with a precision temperature recorder (Jiangsu Senyi
Developmental Company, China). After 48 h of expos-
ure, the ticks were returned to the colony incubator for
24 h, and then examined to determine survival. The ex-
periment was conducted in triplicate.

Determination of the super-cooling point for unfed
nymphs and adults
Short and long term acclimation was achieved as fol-
lows. For short term acclimation, randomly selected un-
fed nymphal and adult H. longicornis were transferred
from the colony incubator and exposed to fixed temper-
atures of 0°C or 5°C for 2 h to cold shock the ticks. For
the long term acclimation, both unfed nymphal and
adult ticks were exposed to 0°C for 10 d or 20 d. The
super-cooling point of the nymphal and adults ticks was
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Figure 1 Survival rate of nymphal and adult H. longicornis after
being cold shocked for 2 h at a series of low temperatures
from −6°C to −22°C.
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determined by attaching Ni/CrNi-thermocouples to their
dorsal surface using paraffin wax. The tick-thermocouple
arrangements were fixed inside polyethylene tubes, which
were then placed into an aluminum cooling block. The
cooling block was then transferred to a refrigerated circu-
lating bath (Thermo Scientific NESLAB RTE-740, USA).
The temperature was decreased at a rate of 0.5°C/min,
from an initial temperature of 26°C. The body tempera-
tures of the ticks were recorded at 1 s intervals using a
precision temperature recorder (Jiangsu Senyi Develop-
mental Company, China). The super-cooling point was
defined as the lowest body temperature reached prior to
the formation of ice crystals in the body. This point could
be seen as a small peak on a scatter plot graph of the
recoded data, which indicates the heat released during the
phase change and means of the emission of the exotherm
[27]. A minimum of 30 ticks were used in each group for
super-cooling point determination.

Changes in water content, glycerol and total protein of
ticks after short and long term acclimation
To induce short and long term acclimation, groups of un-
fed ticks (100 nymphs or 50 adults) were selected such
that the initial mean weight did not differ statistically be-
tween the groups. They were exposed to 0°C for 2 h, 5°C
for 2 h, 0°C for 10 d or 0°C for 20 d before determining
the content of water, glycerol and total protein.
After short and long term acclimation, the ticks were

tested for survival, weighed, dried for 48 h at 60°C, and
their dry weights were recorded. Preliminary experiments
determined that no further weight loss occurred beyond
48 h. The water content was calculated for each tick based
on its weight loss. To determine the amount of glycerol
and proteins, adult and nymphal frozen ticks were crushed
and homogenized in 1 mL phosphate buffered saline (PBS,
0.01 mol/L, pH 7.4), and the homogenates were centrifuged
at 10, 000 rpm for 15 min in 4°C. The pelleted fraction was
cleaned using 0.5 mL PBS, re-centrifuged, and the super-
natant combined with that from the previous centrifu-
gation. Glycerol concentrations were assayed using Free
Glycerol Reagent (Sigma-Aldrich) according to the manu-
facturer’s protocol. Protein content was determined by
Bradford assay [28] with absorbance measured at 595 nm.

Statistical analysis
Statistical analysis was performed using STATISTICA
Version 6.0 (StatSoft, Inc., Tulsa, OK, U.S.A.). All para-
metric data comparisons were performed by one-way
analysis of variance (ANOVA) and probit analysis was
used to calculate the LT50.

Ethical approval
All the experiments were approved by the Animal Ethics
Committee of Hebei Normal University.
Results
Survival of ticks held at low temperatures
After cold shocking ticks for 2 h over a range of subzero
temperatures, the survival rate gradually declined, corre-
sponding to the decrease in temperature, beginning at −8°C
and −10°C for adults and nymphs respectively (Figure 1).
None of the adults survived at −20°C, and all the nymphs
died at −21°C. Nymphs held at −13°C, −15°C or −17°C had
survival rates of 91.5%, 58.2%, and 19.6%, respectively. Sur-
vival rate of the adults at −11°C, −14°C and −16°C was
85.8%, 50.8% and 18.3%, respectively (Figure 1). The 50%
mortality temperature calculated for the adults and nymphs
was −13.7°C and −15.2°C, respectively. The discriminating
temperature for the adults and nymphs was −16.0°C
and −17.0°C, respectively.

Effects of short term acclimation of nymphs to cold
temperatures
Short term acclimation in nymphs was induced by accli-
mating at temperatures ranging from −3°C to 20°C for a
certain time (1–4 h), and then stressed at the discriminat-
ing temperature for 2 h. The subsequent survival rate was
significantly increased following cold acclimation at −3°C
(p < 0.05), 0°C (p < 0.01), 5°C (p < 0.01) and 10°C (p < 0.05)
for a period of 1 h, 2 h, 3 h or 4 h, compared to the non-
acclimated control group (20.3 ± 2.9%) (Figure 2). Maximal
enhancement of cold tolerance was induced by acclima-
tion to 0°C and 5°C, while acclimation at 15°C (p < 0.05)
and 20°C (p < 0.05) for 3 h or 4 h could also enhance their
cold tolerance (Figure 2).

Cold hardiness of H. longicornis
The cold hardiness of H. longicornis was evaluated by
calculating the survival rate of the ticks treated at a
series of temperatures for 48 h. When exposed to tem-
peratures at or above 0°C, 100% of the acclimated adult
ticks survived, compared to 73% of nymphs. Nymphal
mortality increased gradually as temperatures decreased
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Figure 2 Survival rate of nymphal H. longicornis after being cold acclimated for a certain time and stressed at the discriminating
temperature. A: acclimate for 1 h; B: acclimate for 2 h; C: acclimate for 3 h; D: acclimate for 4 h. The different superscripts indicates statistical
difference, *p < 0.05, **p < 0.01. Ctrl: Control group.
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from 15°C to −10°C, whereas adult survival began to de-
crease at temperatures less than −5°C (Figure 3). The
survival of nymphs was higher than that of adults when
held at −15°C (p < 0.05). No ticks survived after being
held at −20°C.
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Figure 3 The survival rate of H. longicornis after direct exposure to a
Super-cooling capacity of H. longicornis
The super-cooling points of the nymphs and adults
were −22.7 ± 1.4°C and −19.0 ± 3.7°C, respectively. In
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nymphs that had been cold acclimated at 0°C (p < 0.05)
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or 5°C (p < 0.05) for 2 h, was significantly lower than that
of the control group (Table 1). There were no significant
differences between the groups acclimated at 0°C or 5°C
for 2 h (p > 0.05). For the long-term acclimation, nymphs
that had been cold acclimated at 0°C for 20 d had a signifi-
cantly lower super-cooling point compared to the control
group (p < 0.05). However, there was no difference be-
tween the control group and those nymphs acclimated for
only 10 d (p > 0.05; Table 1).
When compared to the controls, the super-cooling point

of the adults acclimated at 0°C (p < 0.01) or 5°C (p < 0.01)
for 2 h was significantly lower. For the long-term acclima-
tion, the super-cooling point of the adults acclimated at
0°C for 10 d or 20 d was significantly lower compared to
the non-acclimated controls (Table 2).

Changes in water content, glycerol and total protein of
nymphal and adult H. longicornis
Changes in water content, glycerol and total protein of
nymphal H. longicornis were determined after a series of
cold temperature treatments, and results indicated that
the water content of nymphs increased significantly after
acclimation at 5°C for 2 h (p < 0.01), and significantly de-
creased in nymphs held at 0°C for 20 d (p < 0.01). There
were no significant changes in nymphs acclimated at 0°C
for 2 h (p > 0.05) or at 0°C for 10 d (p > 0.05) (Table 1).
The glycerol content of nymphs that were acclimated at
0°C for 10 d or 20 d was significantly increased com-
pared to both the non-acclimated control group and the
other low temperature treatments (p < 0.01; Table 1),
and no significant changes were observed when treated
at 0°C or 5°C for 2 h. The protein content of nymphs
significantly increased following acclimation at 0°C for
10 d when compared with that of the control group
(p < 0.01), but decreased significantly when acclimated at
0°C for 20 d (p < 0.01). There was no increase in the pro-
tein content of nymphs acclimated at 0°C or 5°C for 2 h
(p > 0.05) (Table 1).
As for the adults, water content increased significantly

in the nymphs following acclimation at 0°C (p < 0.01) or
5°C for 2 h (p < 0.01), but decreased significantly in
those ticks acclimated at 0°C for 10 d (p < 0.01) or 20 d
(p < 0.01) (Table 2). The glycerol content increased
Table 1 The physiological and biochemical responses of nym

Treatment
Physiological an

Survival rate (%) Super-cooling point (°C)

Control 100 ± 0.0 −22.7 ± 1.4

0°C 2 h 100 ± 0.0 −23.8 ± 0.9*

5°C 2 h 100 ± 0.0 −24.0 ± 1.4*

0°C 10d 62.4 ± 5.6 −23.3 ± 1.4

0°C 20d 54.3 ± 7.8 −23.7 ± 1.1*

*p < 0.05, **p < 0.01.
significantly after acclimation at 0°C for 10 d or for 20 d
compared to both the non-acclimated control group
and the other low temperature treatments (p < 0.01;
Table 2), and no significant changes were detected from
the adults held at 0°C or 5°C for 2 h when compared to
controls (p > 0.05) (Table 2). Adults acclimated at 0°C
for 10 d (p < 0.01) contained significantly more protein
than controls, but those adults acclimated at 0°C and 5°
C for 2 h exhibited decreased protein content (p < 0.05).
Acclimation at 0°C for 20 d had no effect on the protein
content of adults (p > 0.05) (Table 2).
Discussion
We demonstrate here that nymphal and adult H. longi-
cornis are freeze-susceptible [11,12,14,29,30]. Nymphal
H. longicornis are slightly more cold-hardy than the
adults, the LT50 being −15.2°C and −13.7°C, respectively
(Figure 1). Similarly, the discriminating temperature for
the adults and nymphs was −16.0°C and −17.0°C, re-
spectively, all indicating that nymphs have a slightly
broader range of tolerance. A possible explanation could
be related to the smaller body size of the nymphs, and
this was consistent with our previous work that nymphal
and adult H. longicornis are able to survive overwinter in
the field [24].
The super-cooling point of the nymphs (−22.7°C) was

lower than that of the adults (−19.0°C; Tables 1 and 2).
A similar situation pertains to several other tick species
[14,29-32]. Although the super-cooling point seems to
have no predictive value for any tick species in an eco-
logical context, it does represent the lower temperature
limit for survival [14]. In the current work, both short-
and long-term acclimation decreased the super-cooling
point, indicating that cold acclimation in the months
prior to the onset of winter may be adaptive for winter
survival in the field.
Low temperature acclimation lowers the super-cooling

point in many other arthropods like Pieris brassicae [33]
and Monochamus alternatus [34], and within a limited
range, the lower the temperature, the greater the result-
ing cold hardiness. In the current study, after cold accli-
mated at 0°C or 5°C for 2 h, the super-cooling point of
phal H. longicornis after low-temperature treatments

d biochemical response (nymph)

Water (%) Glycerol (μg/mL) Protein (μg/mL)

57.6 ± 1.0 2.6 ± 0.1 68.2 ± 7.9

59.3 ± 1.6 2.9 ± 1.1 53.9 ± 12.7

64.8 ± 1.1** 2.9 ± 0.3 61.0 ± 8.6

54.7 ± 2.2 4.2 ± 0.1** 112.5 ± 4.6**

50.3 ± 1.6** 3.5 ± 0.3** 21.8 ± 6.6**



Table 2 The physiological and biochemical responses of adult H. longicornis after low-temperature treatments

Treatment
Physiological and biochemical response (adult)

Survival rate (%) Super-cooling point (°C) Water (%) Glycerol (μg/mL) Protein (μg/mL)

Control 100 ± 0.0 −19.0 ± 3.7 56.7 ± 0.6 1.1 ± 0.1 29.8 ± 2.3

0°C 2 h 100 ± 0.0 −19.8 ± 2. 7** 63.3 ± 1.4** 1.0 ± 0.1 11.8 ± 1.7*

5°C 2 h 100 ± 0.0 −20.3 ± 2.4** 62.2 ± 2.1** 1.1 ± 0.2 10.8 ± 4.8*

0°C 10d 98.2 ± 0.7 −20.7 ± 2.3** 49.6 ± 3.4** 3.1 ± 0.4** 59.3 ± 9.8**

0°C 20d 96.5 ± 1.2 −21.3 ± 1.8** 48.4 ± 1.0** 4.4 ± 0.6** 20.0 ± 4.8
*p < 0.05, **p < 0.01.
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the nymphal and adult H. longicornis was decreased
compared with the control group.
Although tick survival increased after short term accli-

mation, the changes in water, glycerol and total protein
content were observed only after long-term cold accli-
mation (Tables 1 and 2). The cold tolerance of many ar-
thropods results from an increase in various solutes
[35-37]. However, some insects increase their freeze tol-
erance by losing water, whereas the opposite occurs in
H. longicornis (Tables 1 and 2) and in D. variabilis and
A. americanum ticks [8]. This may be attributed to quick
water absorption just after the onset of low tempera-
tures, which will hamper the desiccation in the subse-
quent long winter [38], and the observed water loss in
the long time exposure of nymphal and adult H. longi-
cornis in the current study may support this hypothesis.
Additionally, glycerol and other low molecular weight
substances may also protect against both desiccation and
cold temperatures [39]. Although the water content of
both nymphal and adult H. longicornis substantially de-
creased (p < 0.01) after acclimation at 0°C for 10 d or 20
d, the increased levels of glycerol and protein content
may act to increase the cold hardiness and reduce water
loss in the overwintering stage.
Numerous proteins, including ice-nucleating agents and

the antifreeze/thermal hysteresis proteins, enhance the
cold hardiness of many arthropods [40]. However, not
much is known about the cryoprotectants in ticks, al-
though many stress response proteins have been identified
from transcriptomics and proteomics data [41]. In the
current study, short term acclimation had no effect on the
protein content in nymphs, whereas in adults, the protein
content declined slightly following rapid cold treatment.
However, the protein content in both nymphal and adult
H. longicornis increased significantly after acclimation at
0°C for 10 d (Tables 1 and 2), suggesting that cryoprotec-
tive proteins might be produced by this treatment. The
main objective of this study was to extend our knowledge
on the complexity of the physiological adjustments linked
to the cold hardiness in H. longicornis. Further investiga-
tions are required to confirm and characterize the proteins
produced during the acclimation phase.
Conclusions
The tick H. longicornis is freeze susceptible, and low
temperature stress can enhance its cold hardiness and
trigger a reduction in water content and increase in gly-
cerol and proteins, suggesting that these serve as
cryoprotectants.
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