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Recursive integration of synergised 
graph representations 
of multi‑omics data for cancer 
subtypes identification
Madhumita1,3, Archit Dwivedi1,3 & Sushmita Paul1,2*

Cancer subtypes identification is one of the critical steps toward advancing personalized anti-
cancerous therapies. Accumulation of a massive amount of multi-platform omics data measured 
across the same set of samples provides an opportunity to look into this deadly disease from several 
views simultaneously. Few integrative clustering approaches are developed to capture shared 
information from all the views to identify cancer subtypes. However, they have certain limitations. The 
challenge here is identifying the most relevant feature space from each omic view and systematically 
integrating them. Both the steps should lead toward a global clustering solution with biological 
significance. In this respect, a novel multi-omics clustering algorithm named RISynG (Recursive 
Integration of Synergised Graph-representations) is presented in this study. RISynG represents 
each omic view as two representation matrices that are Gramian and Laplacian. A parameterised 
combination function is defined to obtain a synergy matrix from these representation matrices. 
Then a recursive multi-kernel approach is applied to integrate the most relevant, shared, and 
complementary information captured via the respective synergy matrices. At last, clustering is applied 
to the integrated subspace. RISynG is benchmarked on five multi-omics cancer datasets taken from 
The Cancer Genome Atlas. The experimental results demonstrate RISynG’s efficiency over the other 
approaches in this domain.

Cancer is a heterogeneous disease with diverse pathogeneses, and clinical features that can develop in different 
tissues and cell types1. A cancer subtype can be defined as a subcategory of specific cancer; for example, Cervi-
cal cancer can be further grouped into Adenocarcinomas and Squamous cell carcinomas. Multiple subtypes are 
distinguishable based on molecular profiles, histology, or sometimes specific mutation. In personalized medicine 
practices, patient-specific medicines are provided rather than generic medicine. Therefore, for effective treatment 
of any cancer, it is crucial to identify the appropriate cancer subtype in order to provide an effective prognosis2.

Nowadays, with the advancement of technologies, it has become very easy to generate high-dimensional 
multi-omics data for an individual. Multi-omics data include miRNA and mRNA expressions, DNA methylation, 
reverse protein phase assays, and others. These datasets are publicly available in various databases like The Cancer 
Genome Atlas (TCGA)3. Accumulation of various omics data opens up the opportunity to develop novel com-
putational methods to integrate the tremendous amount of multi-view information available for cancer subtype 
identification. The usual practice of identifying cancer subtypes is by clustering cancer patient data. By grouping 
the cancer patients based on their genetic profiles, one can better understand the pathogenic mechanisms behind 
the disease. This will later help in the development of subtype-specific anticancer treatments. However, several 
challenges exist in grouping the cancer patients and integrating multi-omics data.

The multi-view omics data integration and clustering of cancer patients are considerably new research areas. 
Few algorithms are developed to address the challenges associated with it. A decade ago, researchers used single 
omics data to cluster cancer subtypes. Several studies are performed using only gene expression data4–6 or DNA 
methylation data7 or copy number data8 to identify cancer subtypes. These algorithms perform clustering across 
the samples to capture the homogeneity present within the patients based on expression levels of a specific 
biomarker. Since acquiring cancer hallmarks requires multiple molecular alterations at multiple levels, these 
algorithms fail to establish the causal relationship between molecular signatures. This biological phenomenon 
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indicates the need for algorithms that integrates multi-omics data to identify cancer subtype. In this regard, inte-
grative clustering-based approaches are found helpful for capturing underlying molecular mechanisms working 
behind deadly cancer. Further, these algorithms can be categorized into two groups. The first group of algorithms 
identifies clusters from each omic data separately. Later, it combines these clustering results to obtain a global 
cluster that represents cancer subtypes9–12. These forms of algorithms are known as Consensus Clustering (CC). 
Mostly, the CC algorithms perform final clustering on individual clusters obtained from different omic datasets 
using a voting mechanism. Different voting mechanisms generate different clustering solutions. The second 
group of integrative clustering-based approaches first integrates the multi-view omics data and then applies 
clustering to obtain cancer subtypes13–16. Sometimes the multi-view data are concatenated or stacked together, 
and clustering identifies cancer subtypes. Data concatenation may lead to information loss and amplifies the 
curse of dimensionality16. On the other hand, to overcome the above mentioned limitations, a set of algorithms 
are developed to extract informative subspace from each of the omics datasets and then performs clustering on 
the integrated dataset14–19.

Clustering multi-view genomics data is a challenging task. One of the critical steps is selecting relevant 
information from all the available information sources and judiciously integrating them to obtain better clus-
tering solutions. The multi-view data from multi-omics studies vary in terms of variance, scale, and unit. If the 
integration step is not performed correctly, the fused information may be biased towards the most variant omic 
view. Therefore, it becomes essential to first capture the variations present in each view and then integrate them. 
There are some methods available that model the variation of each view first with the help of similarity graphs 
and integrate them to identify clusters13,19–21. The challenge here is finding the best possible way of integration 
to capture the essence of all the views from different types of genomic information available for the same set of 
samples. The research area devoted to this type of problem is multi-view learning22–27.

In this study, a novel algorithm named RISynG (Recursive Integration of Synergised Graph-representations) 
is presented. The proposed approach treats multi-omics data clustering as multi-view clustering, where informa-
tion from multiple omics platforms is integrated to identify clinically important sub-groups within cancer. In 
order to judiciously capture the variation present across the multi-omics dataset, the proposed approach works 
in three steps. At first, for each view, two sample similarity matrices are computed using graph representation 
matrices, namely, the Gramian matrix and the Laplacian matrix. This step acknowledges the statistical diversity 
in the multi-view omics data, which directly influences the quantification of similarity between the samples. 
Later, it involves the integration of representation matrices for the respective omic-view using a parameterized 
combination function to generate synergy matrices. In the second step, the variation captured through synergy 
matrices for each omic-view is fused. The proposed approach first arranges all the synergy matrices based on their 
relevance. Then, a recursive function is designed to merge each synergy matrix so that the less relevant matrix 
has only a slight influence on the final cluster structures. At the end of this process, the final accretive basis of 
the accretive subspace is obtained, whose first k eigenvectors hold the cluster structure. At last, k-means cluster-
ing is applied on the rows of the accretive basis matrix to generate cluster labels. The efficacy of the proposed 
algorithm is extensively studied on five multi-omics cancer datasets and compared with existing multi-view 
clustering approaches used for cancer subtypes identification.

Proposed approach for cancer‑subtypes identification
This section describes the novel algorithm designed in this study to integrate multi-omics data for cancer sub-
types identification. The proposed method integrates multi-view data using a recursive multi-kernel integration 
function. It uses the graphical representation to harness the best picture of sample similarities from each of the 
omic views and explores each view’s statistical property. The schematic workflow of RISynG is presented in Fig. 1. 
Before moving to the steps of the proposed algorithm, first, the required analytical formulations are discussed.

Gramian matrix and kernel trick.  Gramian matrix, G = [gij]n×n is a Hermitian matrix, in which each ele-
ment is a pairwise Hermitian inner product of the vectors in a Hausdorff pre-Hilbert space, V = {v1, v2, v3, . . . , vn}.

The Hermitian inner product space is accompanied by the geometric notions associated with the vectors, such 
as the length and the angle between two vectors. Since G is a Hermitian matrix, it inherits all the properties 
portrayed by a Hermitian matrix. A few of the relevant properties are enlisted below28.

Property 1  All the eigenvalues of G are real.

Proof  Eigenvalues of a matrix are the roots of its characteristic equation. The characteristic equation for matrix 
G is written as:

Let the root be some complex number � = a+ ib, a, b ∈ R, b �= 0 and I be the identity matrix of same order. Since, 
at this value of � , the characteristic equation has a non-empty kernel, there must exist a vector u = x + iy, x, y ∈ R 
such that:

G(v1, . . . , vn) =











< v1, v1 > . . . < v1, vn >

< v2, v1 > . . . < v2, vn >

...
. . .

...
< vn, v1 > . . . < vn, vn >











, vi ∈ R
d .

(1)det (�I − G) = 0.
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or,

Taking adjoint of this equation we get,

If x + iy and x − iy were two different eigenvectors of matrix G, then their inner product x2 + y2 would have 
been 0 because of the mutual orthogonality among the eigenvectors. That is not possible until x and y are 0, in 
which case, (3) and (4) would be indifferent. That is possible only if the initial assumption is contradicted and b 
is allowed to be 0 for all eigenvectors x. Hence, it is proved that all the eigenvalues of G are real. 	�  �

Property 2  G is symmetric and positive semi-definite matrix.

Proof  Pertaining to the fact that vi ∈ R
d , the following should hold for some set of vectors x.

According to the elementary property of inner products, 	�  �

�x + y, x + y� = �x, x� + �x, y� + �y, x� + �y, y� . It implies that the sum of inner products in (5) can be taken 
forward as,

Therefore, G is positive semi-definite matrix.

(2)Gu = �u,

(3)G(x + iy) = (a+ ib)(x + iy).

(4)G(x − iy) = (a− ib)(x − iy).

(5)xTGx =
∑

i,j

xixj
〈
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〉

=
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〈
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〉

.
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∥
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∥
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Figure 1.   Schematic flow diagram of the proposed approach for cancer subtypes identification.
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Property 3  All the eigenvalues of G are non-negative.

Proof  Property 2 implies xTGx ≥ 0 . Substituting the value of Gx from (2) into it,

Since xTx is positive for all eigenvectors, therefore, � ≥ 0 . Hence proved.
The previously described premise is often used in various methods of dimensionality reduction. Algorithms 

like Principal Component Analysis and its variants utilize kernel trick to map the observations into a higher 
dimension to make the data linearly separable. It is equivalent to projecting the mean-centered data onto a sub-
space on which its variance is maximum29. It is shown by Bernhard Scholkopf et al.30 that algorithms like KPCA 
use a kernel function κ to essentially learn a mapping function φ for the input space Rn into a high-dimensional 
Hilbert space F , which can be called as feature space. The process is demonstrated in (8) and (9).

Therefore, for a data point v = (x1, . . . , xn), xi ∈ R
d , mapping into a feature space Rn+k will be given by

where, the value of pi depends upon the kernel that has been used for the mapping; however, kernels do not 
explicitly project the data into that high dimensional feature space; rather, it generates a Gramian matrix G of 
the mapped data in the aforementioned feature space F . Generated Gramian matrix enables the input data to 
be operated in that high-dimensional feature space31. If X = (x1 . . . xn), xi ∈ R

d represent the input data. The 
corresponding Gramian matrix is given by

Let G = U�UT represent the eigen decomposition of G, where U is a matrix containing the eigenvectors of 
matrix G, arranged column-wise in descending order of their corresponding eigenvalues, which are present in 
the same fashion in the diagonal matrix � as shown in (11) and (12).

Here, �1 ≥ · · · ≥ �n ≥ 0 (see Property 3 of Gramian matrix), uTi ui = 1 for i ∈ {1, 2, . . . , n} and Gui = �iui . Also 
note that in context of PCA Principal Components refers to the projection of the input data points onto the prin-
cipal direction where the variance of the data is maximum. For PCA, the projection is given by yi = UT

k xi for all 
i ∈ {1, 2, . . . , n} , where Uk is a matrix of first k eigenvectors of G. However, in case of KPCA, the spectrum of G 
itself gives the projection of X32. Note that when φ(v) = v , Gramian matrix transforms into covariance matrix. 
Generalising both, if Uk represent k principal axes, the algorithm finds a basis of an optimal low-dimensional 
subspace where the L2-norm of reconstruction error is minimum33. That is, for a test sample x

In addition to dimensionality reduction, principal component analysis can also be used for k-clustering using 
a heuristic based k-means algorithm. This is done by performing k-means clustering in the projected space, as 
shown in heuristic k-means algorithm described in34.	�  �

Graph Laplacian.  Any set of observations appear to have an emergent behaviour to evince the properties of 
a graph when operated in a clustering pipeline. Therefore, given a set of data points X = (x1, x2, . . . , xn) ∈ R

d×n 
and a notion of similarity between any two points xi,xj ∈ X , an undirected similarity graph S = (V ,E) can be 
constructed out of them such that each vertex vi ∈ V  represent a data point xi , and (vi , vj) ∈ E represent the edge 
between vertices vi and vj . With each edge, there is an associated edge weight eij that represent the similarity 
between the corresponding data points. Let the similarity matrix be W(i, j) = [eij]n×n . The degree d(vi) associ-
ated with each node vi is given by

The degrees of all the nodes/vertices can be wrapped in matrix form as shown in (15)

These matrices act as a precursor for constructing a matrix of algebraic importance, called Laplacian matrix. The 
data can be composed as a discrete graph form by making graph Laplacian of its continuous representations like 
vector space or Riemannian manifolds. Laplacian matrix has many variants, so much so, that depending on the 
problem and available data, authors device their own version of graph Laplacian matrix35. The simplest graph 

(7)xTGx = �xTx ≥ 0.

(8)φ : Rn → F.

(9)φ(v) = (x1, . . . , xn, p1, . . . , pk) ∈ R
n+k ,

(10)[G]ij = κ(xi , xj) = φ(xi)φ(xj)
T , xi , xj ∈ X.

(11)U =[u1, . . . , un],

(12)� =diag(�1, �2, . . . , �n).

(13)argmin
Uk

�φ(x)− UkU
T
k φ(x)�2.

(14)d(vi) = |{vj ∈ V |{vj , vi} ∈ E or {vi , vj} ∈ E}| =
n

∑

j=1

eij .

(15)D = diag(d1, d2, . . . , dn).
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Laplacian, is given by ( D −W  ). It is called unnormalise graph Laplacian matrix. However, in the proposed 
algorithm, the normalised graph Laplacian matrix has been used. That is,

where D−1/2 = diag(d
−1/2
1 , d

−1/2
2 , . . . , d

−1/2
n ) and I is the identity matrix of appropriate order. Considering the 

fact that similarity matrix is a Gramian matrix, it is apparent that Gramian and Laplacian are not much differ-
ent. Laplacian can be characterised as the Gramian normalised over the degree matrix. The distinction between 
unnormalised and normalised graph Laplacian is better apparent in light of spectral clustering. Consider a 
strongly connected graph S = (V ,E) . The purpose of clustering is to come up with the subsets of points according 
to their similarity, such that the similar points lie in the same subset. It is equivalent to finding the partitions of a 
graph such that the edge between different partitions has minimum weights. For two disjoint subsets A,B ⊂ V  
corresponding to two different partitions, the cut size is given by

Let there be k clusters in the data. The aim of clustering is to find k such partitions A = (A1,A2, . . . ,Ak) , such 
that the size of the cuts, as shown in (17), over all the partitions is minimum. That is

where Āi is the complement of Ai . This is called the mincut problem. However, solving (18) alone does not achieve 
reliable clustering results. For example, for k = 2 , partitioning one vertex from the rest of the graph can also be 
a valid solution as per mincut. In clustering, each cluster needs to accommodate a reasonably large partition to 
be considered credible. Therefore, the objective function is redefined in following two ways

where |Ai| represent the number of vertices in partition Ai and vol(Ai) =
∑

vj∈Ai
dj.

However, solving these minimisation problems is NP hard. Laplacian matrix is an utility that can be used to 
approximate these minimisation problem. Consequently, unnormalised Laplacian serves in the approximation 
of the minimization of RatioCut, while normalised Laplacian serves in the approximation of the minimization 
of NCut. Therefore, the approximated objective function using normalised Laplacian is given by (21).

The above expression is minimum when Uk ∈ R
n×k is a matrix containing eigenvectors corresponding to k 

smallest non-zero eigenvalues of matrix L . This matrix is used to embed the data into a k dimensional euclidean 
space spanned by the vectors in matrix U, in which grouping of the data points is arguably easy even with simpler 
techniques like k-means. The described practice is known as Laplacian embedding. The embedded data is then 
subjected to k-means clustering algorithm for cluster discovery, as shown in Normalised Spectral Clustering 
presented in Ref.36.For a strongly connected graph with single component, the eigenvector corresponding to 
the trivial solution (i.e. � = 0 ) of the eigenvalue problem of matrix L is a column vector of n ones. Therefore, 
L1n = 0 where 1n = (1, . . . , 1)T . If the graph happens to have more than one components, then the multiplic-
ity k of eigenvalue 0 if equal to the number of connected components in the graph. Nonetheless, with respect 
to clustering, the eigenvector(s) corresponding to eigenvalue 0 should be omitted while performing Laplacian 
embedding. It can be done by introducing a minor change in the matrix.

If the eigenpairs of L are given by

then, the eigenpairs of (22) are given by

Hence, the new eigenvalue problem becomes

(16)L = D−1/2(D −W)D−1/2 = I − D−1/2WD−1/2,

(17)cut(A,B) =
∑

i∈A,j∈B
eij .

(18)min
A1,...,Ak

cut(Ai : 0 ≥ i ≥ k) :=
k

∑

i=1

cut(Ai , Āi),

(19)min
A1,...,Ak

RatioCut(Ai : 1 ≥ i ≥ k) :=
k

∑

i=1

cut(Ai , Āi)

|Ai|
,

(20)min
A1,...,Ak

NCut(Ai : 1 ≥ i ≥ k) :=
k

∑

i=1

cut(Ai , Āi)

vol(Ai)
,

(21)min
Uk

tr(UT
k LUk), subjected to UT

k Uk = I .

(22)L = L + 2

n
(1n1

T
n ).

Ŵ(L ) = {(�1, f1), (�2, f2), . . . , (�n, fn)}

Ŵ(L) = {(�2, f2), (�3, f3), . . . , (�1 + 2, f1)}
where, 0 = �1 < �2 · · · ≤ �n ≤ 2 and f1 = 1n.
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By modifying the matrix to L, the initial k eigenvectors can be taken right away. This trick works because of the 
fact that for all the pairs in Ŵ(L ) except (�1, f1) , the matrix L gets reduced to L . Hence, set Ŵ(L) is going to have 
all the eigenpairs that are in Ŵ(L ) , except (�1, f1) . While at v = f1 = 1n,

Therefore, in the new set Ŵ(L) , the rank of all the eigenvalues greater than �1 gets reduced by one and 1n becomes 
the eigenvector corresponding to the largest eigenvalue. Laplacian matrix has certain properties which are 
exploited by many clustering techniques like the one shown above. Some of the relevant properties are as 
following.

Property 1  For every vector f ∈ R
n , L satisfies the following condition

Proof  By the definition of degree, di =
∑n

j=1 eij . Therefore,

Hence proved.	�  �

Property 2  L is symmetric and positive semi-definite matrix.

Proof  From (16), the symmetry of the matrix is fairly evident. Also, from the property 1, f ′L f ≥ 0 for all 
f ∈ R

n . Hence, it is provrd that L is symmetric and positive semi-definite matrix. 	�  �

Property 3  All eigenvalues of L are non-negative.

Proof  Property 1 implies f ′L f ≥ 0 . Substituting L f = �f  , we get f ′L f = �xTx ≥ 0 . Since f ′f  is positive for 
all eigenvectors, therefore, � ≥ 0 . Hence proved.	�  �

RISynG algorithm.  For grouping the cancer patients into clusters, each omic view is represented as a graph 
using two representation matrices, that is the Gramian matrix and the Laplacian matrix. Each of the representa-
tion matrices attributes the similarity network of the samples with a notion of similarity between the samples. 
Consider a view Xm = (x1, x2, . . . , xn) , xi ∈ R

dm corresponding to mth omic-source. If ρ(xi , xj) denotes the dis-
tance between xi and xj ∈ Xm , then the similarity w(xi , xj) between them is given by:

where σ is a free parameter adjusted as per the intrinsic properties of the data when subjected to clustering model. 
For the cancer data used in this study, the σ is given by σ = max(

ρ(xi ,xj))

2  for all xi , xj ∈ Xm . It has been assumed 
in the proposed method that multi-views may constitute different cluster manifolds when learnt on a particular 
similarity measure. Therefore, predicted clusters would be apparent, and in strong concordance with the clinical 
clusters if pairwise sample similarity is computed in data-dependent multi-kernel approach. It was found that 
in some views correlation distance was prominently reflecting cluster manifold that concurred with the natural 
clusters, while some of them showed proclivity towards Euclidean distance, and the rest seemed to accommodate 
parts of both. All things considered, two different graph representation matrices have been formulated, Gramian 
matrix and Laplacian matrix, both with different measures of similarity. Let for Xm , the correlation distance 

(23)Lv = L v + 2

n
(1n1

T
n )v = �v.

(24)L1n = L1n +
2

n
(1n1

T
n )1n = �11n + 21n = (�1 + 2)1n.

(25)f ′L f = 1

2

( n
∑

i,j=1

eij

(

fi√
di

− fj
√

dj

)2)

f ′L f = f ′(I − D−1/2WD−1/2)f

=
n

�

i=1

f 2i −
n

�

i,j=1

fi√
di

fj
�

dj
eij

= 1

2





n
�

i=1

f 2i
di
di +

n
�

j=1

f 2j

dj
dj − 2

n
�

i,j=1

fi√
di

fj
�

dj
eij





= 1

2





n
�

i,j=1

f 2i
di
eij +

f 2j

dj
eij − 2

fi√
di

fj
�

dj
eij





= 1

2





n
�

i,j=1

eij

�

fi√
di

− fj
�

dj

�2


.

(26)w(xi , xj) = exp

{

−ρ(xi , xj)

σ

}

,
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between xi and xj be given by ϕm(xi , xj) and the squared Euclidean distance be given by εm(xi , xj) . If ϕ̂m and ε̂m 
denotes the maximum pairwise correlation distance and squared Euclidean distance respectively, then Gramian 
matrix Gm and similarity matrix Wm are given by

The matrix articulated in (28) is a crucial precursor for the construction of Laplacian matrix. Laplacian matrix is 
constructed by normalising Wm by the degree matrix Dm of its associated graph as in Eqs. (15) and (16). Hence, 
required representation matrices for each view Xm , m ∈ {1, 2, . . . ,M} are given by (27) and (29).

So obtained laplacian matrix is then modified as described in Eq. (22)

It is apparent from the discussion presented under the heading Gramian Matrix and Kernel Trick and Graph 
laplacian that the matrix Uk from Gramian matrix has the same role as that from Laplacian matrix. Therefore, 
for combining the information encoded in these matrices, a parameterised combination function �(·, ·) can be 
used, hence obtaining a synergy matrix of representation matrices. If Gm is the Gramian matrix and Lm is the 
Laplacian matrix of omic-view Xm , then the synergy matrix is given by:

Consequently, the corresponding objective functions, (13) and (21) also combines to optimise over Uk ∈ R
n×k.

Some of the relevant properties of synergy matrix Hm are:

Property 1  Hm is symmetric and positive semi-definite matrix.

Proof  Hm can be called a positive semi-definite matrix if and only if vTHmv ≥ 0 for all v ∈ R
n . Also, from the 

properties of the Graph Laplacian and the Gramian, it is evident that both L and G satisfies this condition. 
Therefore,

In addition to that, since Hm is a summation of symmetric matrices, it is also symmetric. Hence, it is proved that 
Hm is a symmetric and positive semi-definite matrix.	�  �

Given Property 1, rest of the properties are its direct consequence.

Property 2  All the eigenvalues of Hm are real.

Property 3  All the eigenvalues of Hm are non-negative.

Recursive multi‑kernel integration.  After generating synergy matrices for all the views of the dataset, the next 
step is to integrate the information obtained from each of them. However, before moving to the integration 
step, the proposed approach needs these matrices to be arranged based on their relative relevance for cluster 
discovery. It is apparent that the better views would encode the cluster structure better. As a consequence of that, 
they would depict better cluster validity indices as well. Therefore, the sorting of synergy matrices have been 
done based on cluster validity indices such as silhouette index. Suppose H = {H1, . . . ,HM} be the set of synergy 
matrices of a dataset with M views. Let the sorted set be H′ = {1H , . . . ,M H} , where the superscript i denotes 
the relevance of the corresponding synergy matrix iH , 1H being the most relevant. Additionally, let every iUk 
from the set U = {1Uk , . . . ,

M Uk} represent the basis of eigenspace corresponding to k smallest eigenvalues of 
matrix iH.

Next, a method for combination has been proposed which distills the cluster information from each of the 
synergy matrix one by one, in an iterative fashion. While doing that, it subtly takes care of enriching the informa-
tion coming from the relevant matrices. The way that the synergy matrices has been made, it is apparent that it 
is their basis of the eigenspace that brings out the latent cluster structure in the corresponding view. Therefore, 
the proposed method uses a recursive function to exploit this fact for integration as well as enrichment of the 
relevant views of the dataset. The recursive formula can be written as:

(27)[Gm]ij =wG(xi , xj) = exp

{

−ϕm(xi , xj)

ϕ̂m

}{

−ϕm(xi , xj)

ϕ̂m

}

, where i, j ∈ {1, 2, . . . , n},

(28)ij =wL(xi , xj) = exp

{

−εm(xi , xj)

ε̂m

}

, where i, j ∈ {1, 2, . . . , n}.

(29)Lm = D−1/2
m (Dm −Wm)D

−1/2
m = I − D−1/2

m WmD
−1/2
m .

(30)Lm = Lm + 2

n
(1n1

T
n ).

(31)�(Gm,Lm) = Hm = βG + (1− β)L, where 0 ≤ β ≤ 1.

(32)min
Uk

β�X − UkU
T
k X�F + (1− β)tr(UT

k LUk), subjected to UT
k Uk = I .

(33)vTHmv = βvTGv + (1− β)vTLv ≥ 0.
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Here kη is called accretive matrix of η th recursive step. Non-cumulative operator ⊗ signifies the integration 
operation. That is, for A ∈ R

n×n and U ∈ R
n×k , where A has its k smallest eigenvectors in V ∈ R

n×k , and U is a 
basis matrix, the expression A⊗ U evaluates to an accretive matrix A′ ∈ R

n×n with k smallest eigenvectors given 
by V + U  . Other eigenvectors of A are irrelevant for this discussion. Let the basis of eigenspace of A′ be known 
as accretive basis and associated subspace as accretive subspace. Also, let the accretive basis corresponding to k 
smallest eigenvectors of kη be given by bη.

In extension to that, for enriching relatively relevant views, the proposed method uses an orthogonalising-
normalising function N(·, ·) . To ensure the accumulation of only the essential cluster information, the pro-
posed approach acquires the basis of that projection of synergy matrix eigenspace which is orthogonal to the 
accretive subspace at that recursive step. The idea is similar to eigenspace updation for integrative clustering as 
performed in Ref.18. This function does not normalise the synergy matrix per se, rather, it normalises the basis 
of the described projection subspace. The computation starts by instantiating k1 = 1H so that bη becomes 1Uk . 
Therefore, at ( η + 1)th recursive step ( η ∈ {0, 1, . . . ,M} ), one should have accretive matrix kη and eigenspace 
basis (η+1)Uk of synergy matrix (η+1)H . Subsequently, processing within orthogonalising-normalising function 
N(kη ,

(η+1) Uk) renders the final basis matrix in four steps:
First, computing the basis P of the projection subspace, which is given by:

Second, computing the residual component of the synergy matrix eigenspace Q which is given by subtracting 
the above-mentioned projected component from (η+1)Uk as:

In the third step, Q is subjected to Gram-Schmidt orthogonalisation to yield the final basis R . This basis can-
not be integrated with the eigenspace of accretive matrix, therefore it needs to be normalised on the basis of its 
relevance. So, the fourth step of normalization is performed as:

Here the notation [·] denotes that the subsequent operations are done in element-wise fashion. The resultant V 
matrix is called as orthogonalised-normalised basis matrix. After the end of the process, the final accretive matrix 
kM is obtained whose first k eigenvectors in the matrix bM ∈ R

n×k holds the cluster structure. Hence, perform-
ing k-means on the rows of the matrix bM returns the cluster labels for each sample. The proposed algorithm is 
described in Algorithm 1.

(34)kη+1 := kη ⊗N(kη ,
(η+1) U), where k1 =1 H and η = 1, . . . ,M.

(35)P = bηb
T
η

(η+1)Uk .

(36)Q = (η+1)Uk −P .

(37)N(kη ,
(η+1) Uk) = V , where V = [diag(R R

T )−
1
2 (R )](η+1)
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Computational complexity.  For the proposed algorithm, given M similarity matrices and Gramian 
matrices with n samples under study, the computation starts with constructing degree matrix Dm for each of the 
M views. The complexity of this step is bounded by O(n2) for each view. In the next step, the Laplacian matrix is 
made with a complexity of O(n3) . Let the number of iterations (regulated through parameter β ) to learn the syn-
ergy matrix’s best composition in steps 12 to 16 be tβ . However, it has been found that for the datasets used in this 
study, the value of tβ = 10 suffices. Iterating β from 0 to 1 with an increment of 0.1 with each iteration can pro-
duce an optimal combination ratio for the representation matrices. However, here, the increment step has been 
referred to as α for consistency. Assuming tmax be the highest iteration by the k-means clustering algorithm the 
complexity of the aforesaid steps becomes O(tβn3 + tβ tmaxnk

2 + tβn) . Where tβn3 comes from the complexity 
of eigenvalue decomposition of synergy matrix, tβ tmaxnk

2 is for the step where k-means clustering is performed, 
and tβn is for the f-measure calculation. Therefore, the complexity of steps formulated from 12 to 16 turns out to 
be bounded by O(tβn3) . Steps 17 to 19 are doing the same processing as previously, just at the optimal value of 
β . Hence, they are also bounded by O(tβn3) . Summing up all the steps from 9 to 20 for M views, the complexity 
of O(Mn2 +Mn3 +Mtβn

3) reduces to O(Mtβn
3) . Sorting can be done at O(MlogM). After that, an accretive 

basis is constructed as defined in the function INTEGRATE(b, η ). Step 5 consists of the construction of P , Q 
and orthogonalized-normalized matrix V. In this step, two matrix multiplication operations are bounded under 
the complexity of O(n2k) . Gram-Schmidt orthogonalization and normalization step combined has a complexity 
of O(n2) . Therefore, step 5 has a complexity of O(n2k) . Step 6 is matrix addition with complexity O(nk), but step 
5 seem to dominate over that. In addition to that, since the function runs (M − 1) times, the complexity from 
steps 21 to 23 becomes O(MlogM +Mn2k) = O(Mn2k) . After the construction of the accretive basis, k-means is 
performed, which, as explained previously, has time complexity O(tmaxnk

2) . Considering everything, the overall 
complexity of RISynG comes out to be O(Mtβn

3 +Mn2k + tmaxnk
2) = O(Mtβn

3).

Significance of proposed algorithm.  There are some aspects of the proposed algorithm that enhance its 
performance and make it unique from the other algorithms designed to identify cancer subtypes. Although each 
omic-view in the cancer dataset has its distinct cluster structure, the knowledge of cancer biology suggests that 
no omics-source to which each view belongs can dictate the final cancer subtype alone. Instead, all the omics 
sources collectively manifest the cancer subtype in a sample. Therefore, multi-view integration is critical to a 
sensible and clinically relevant clustering. The proposed approach can be broken down into three operative steps: 
(1) construction of representation matrices for each view, (2) construction of synergy matrix for each view, and 
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(3) construction of accretive basis through recursive multi-kernel integration of synergy matrices. These steps 
make the proposed algorithm more effective in the following manner: 

1.	 Construction of representation matrices To group the cancer patients into clusters, each omic-view first has 
to be represented as similarity graphs. These similarity graphs can be interpreted through various repre-
sentation matrices like the Gramian, Laplacian, and Adjacency. Each representation matrix attributes the 
samples’ similarity network with a notion of similarity between the samples. The proposed method assumes 
that multiple information sources may constitute different cluster manifolds when learned on a particular 
similarity measure. Therefore, predicted clusters would be apparent and in strong concordance with the 
clinical clusters if pairwise sample similarity is computed in a data-dependent multi-kernel approach37. In 
some views, Correlation distance was prominently reflecting cluster manifold that concurred with the natural 
clusters. Whereas some of them showed proclivity towards Euclidean distance, the rest seemed to accom-
modate both. All things considered, two different graph representation matrices have been formulated, the 
Gramian matrix and Laplacian matrix, both with different measures of similarity.

2.	 Construction of synergy matrices Representation matrices so constructed have two noteworthy aspects: (1) 
Gm represents a similarity graph formed using correlation-based distance. In the correlation-based distance, 
two objects are considered similar if the trends among their elements are highly correlated. That means the 
correlation distance between two perfectly correlated samples will be 0, even though they are far apart in the 
euclidean space of their dimension. It is instinctive to assume the omics data to behave like that. (2) Laplacian, 
on the other hand, preserves the intrinsic manifold structure in the data casted on a low embedding space. 
To integrate these representation matrices, a combination function has been devised that takes a convex 
combination of both the matrices. This method of combining matrices rectifies any bias created by the dis-
similarity in distance measurement used while constructing the similarity graphs. The combination function 
defined in (31) utilises the parameter β ∈ [0, 1] to capture graphs constituted by the Gramian and Laplacian. 
Parameter β can only take a positive value, making the combination a convex combination of representation 
matrices. This parameter’s optimal value is learnt by iterating it from 0 to 1 at some incremental step size 
α ∈ (0, 1) . The datasets used in this study tend to pick up the optimal value of β at a step size of α = 0.1 . It 
is crucial to choose the incremental step size wisely as the number of iterations tβ is directly proportional to 
the algorithm’s time complexity. Because the synergy matrix will ultimately affect the cluster assignment, the 
best way to evaluate the appropriate value of β is to perform a provisional cluster validity test on the synergy 
matrix constructed with that β using a cluster validity index like silhouette index. Algorithm-1, steps 15 to 
19 formulate the described provisional cluster validity test using silhouette as a criterion.

3.	 Construction of accretive basis After the similarity between the cancer patients is captured in a refined form 
with the help of synergy matrices, the next step is to integrate them. Property 1 of the synergy matrix proves 
that Hm is a positive semi-definite matrix. That makes the integration of synergy matrices a multi-kernel 
integration. The proposed algorithm does that by recursive multi-kernel integration by iteratively integrating 
each of the synergy matrices’ relevant subspace. Here, relevant subspace refers to that subspace of the matrix 
that purely encodes the cluster information, which in the case of synergy matrix is its eigenspace correspond-
ing to k eigenvalues. Finally, an accretive basis matrix is generated. This accretive matrix is required to have 
more cluster information coming from relevant views. Therefore, the orthogonalizing-normalizing function 
is made such that the accretive basis at each recursive step gets less influenced by the irrelevant matrix.

Description of datasets
For analysing the efficiency of the proposed algorithm for identifying cancer subtypes, it is applied to five cancer 
datasets taken from TCGA (https://​cance​rgeno​me.​nih.​gov/). The datasets used are Cervical cancer (CESC), 
Breast cancer (BRCA), Ovarian cancer (OV), Lower-grade glioma (LGG), and Stomach cancer (STAD). Different 
studies have identified 4 clinically important subtypes for BRCA​9 and STAD38, 3 for CESC39 and LGG40 and 2 
for OV41. The cancer genome is neither simple nor independent but is complicated and dysregulated by multiple 
levels in the biological system through genomic, epigenomic, transcriptomic, proteomic levels42. miRNA, as one 
of the important regulators of gene expression, can be integrated with gene expression to identify the selective 
inhibition of translation or selective degradation43–45. Furthermore, in terms of epigenetic regulation, histone 
modification or DNA methylation can serve to regulate gene expression in cancer46,47. Also, protein expres-
sion data can be utilized for the diagnostic prognosis of cancer patients48. Therefore, four omic views, namely, 
gene expression (mRNA), microRNA expression (miRNA), DNA methylation (metDNA), and reverse-phase 
protein assays (RPPA), are utilized for CESC, BRCA, and LGG datasets. For STAD and OV datasets, mRNA 
and miRNA expression are only considered because metDNA and RPPA information are not available for most 
samples. To avoid involving features with too many missing values, more than 5% of missing values in all of the 
omic views are removed, and the rest of the missing values are replaced with 0. Sequence-based expression data 
are log-transformed to make the data more or less normally distributed49. Therefore the 0 entries from miRNA 
and mRNA expression data are replaced with 1 and then log-transformed with base 10. For metDNA datasets, 
beta values are considered. At last, variance filtering is applied to mRNA and metDNA omic views for all cancer 
datasets, and 2000 most variable genes and CpG locations were only considered. Table 1 contains a description 
of the final processed data used for this study. The datasets selected for benchmarking cover a wide range of 
sample sizes from 124 in CESC to 474 in OV datasets. TCGA contains several platforms for individual data types, 
the platforms having the largest number of matching samples across the omics are selected in the present study. 
The proposed algorithm can be applied to other large-scale multi-omics datasets if available; the run time will 
increase with the increase in sample size or the number of omic views, as shown in Fig. 2. With the increase in 
sample size from 124 to 474, the runtime increases from 0.22 to 0.47 s. Even though the BRCA dataset has lesser 

https://cancergenome.nih.gov/
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samples (398) than the OV dataset (474), the runtime for BRCA (0.56 s) is more than OV (0.47 s) because of the 
number of omic-views involved, which is 4 for BRCA and 2 for OV.

Experimental results and discussion
The performance of the proposed approach is compared with eleven other algorithms available for cancer subtype 
identification. Both two-stage clustering approaches and integrative clustering approaches are considered for 
method comparison. The methods used for comparison are Similarity Network Fusion (SNF)13, Weighted Multi-
View Low Rank Representation (WMLRR)50, Consensus Clustering (CC)6,51, Multi-view clustering approach with 
enhanced consensus (ECMC)52, SNF.CC (SNF merged with CC)53, Cluster of Cluster Assignment (COCA)9,54, 
Consensus Non-negative Matrix Factorization (CNMF)55, Selective Update of Relevant Eigenspaces (SURE)18, 
Convex-combination of Approximate Laplacians (CoALa)19, iCluster14, and Multi-manifold Integrative Cluster-
ing (MiMIC)56.

Performance analysis on multi‑omics cancer datasets.  The proposed approach and the above-
described methods are applied to five cancer datasets, namely CESC, BRCA, OV, LGG, and STAD, taken from 
TCGA. The sample clusters identified by these methods are evaluated based on several internal and external 
cluster evaluation indices. The cancer subtypes identified by these methods are also evaluated for their biological 
relevance. Next, the detailed comparative analysis of the proposed algorithm is discussed.

Cluster evaluation.  The clusters (cancer subtypes) generated by all the methods are evaluated based on several 
internal and external cluster evaluation indices. These indices help get the idea of how well a method can group 
the samples into homogeneous clusters. Samples belonging to the same cluster should have higher similarity 
representing a cancer subtype, whereas samples belonging to different clusters should be highly dissimilar. How 
well an algorithm can capture the natural grouping present in the data can be quantified with internal validity 
indices. Following four internal evaluation indices are calculated in this study. Table 3, presents the internal 
evaluation indices for every method. 

1.	 Silhouette Index: It measures the consistency present in the clusters. The value lies in the range [−1, 1] . A 
value nearer to + 1 indicates a higher distance between the clusters, a value of 0 indicates that the sample is 
very close boundary between two neighboring clusters, and a negative value indicates misclassification57. 

(38)Sc =
1

c

c
∑

k=1

S(ϒk),

Table 1.   Datasets description.

Number of features

Datasets Number of samples mRNA miRNA metDNA RPPA Number of clusters

CESC 124 2000 311 2000 219 3

BRCA​ 398 2000 278 2000 212 4

OV 474 2000 591 – – 2

LGG 267 2000 333 2000 209 3

STAD 223 2000 524 – – 4

Figure 2.   Effect of sample size and number of omic-views on the runtime of the proposed algorithm. Values in 
the parentheses indicate the number of omic-views.
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 where, S(ϒk) represents silhouette width of the obtained clusters, ϒk(k = 1, . . . , c) which is calculated as: 
S(ϒk) = 1

nk

∑

xi∈ϒk
s(xi) where, nk is cardinality of ϒk and s(xi) is silhouette width of sample xi . For every 

sample, the silhouette width s(xi) is estimated as: s(xi) = b(i)−a(i)
max{a(i),b(i)} Here, a(i) = average dissimilarity of 

ith object to all other objects in the same cluster and b(i) = average dissimilarity of ith object with all objects 
in the closest cluster.

2.	 Dunn Index: A higher value represents better clustering solution58. It is defined as: 

 Here, δ(Ci ,Cj) = distance between cluster Ci and Cj and �(Ck) = intra-cluster distance within cluster Ck.
3.	 Davies–Bouldin Index: It is defined as the ratio of within cluster dispersion to between cluster dispersion59. 

A lower value indicates better clustering. 

 Here, Di = maxj �=i Ri,j and Ri,j = Si+Sj
Mij

 . Mi,j is the separation between the ith and the jth cluster. Si and Sj 
are the within cluster scatter for cluster i and j and C is the number of clusters.

4.	 Xie–Beni Index: The index for crisp clustering is estimated as: 

 Here, 1NWGSS represents the averaged-squared distance of all the points with respect to the barycenter of 
the cluster they belong to, and δ́ a measure of the between-cluster distance60.

The class distribution of the cancer datasets used in this study is presented in Table 2. Except for the CESC 
dataset, all the other cancers have an imbalanced class. When clustering is applied to these datasets, there are 
chances that most of the samples get clustered into one group leading to good values for internal indices. Still, 
in reality, the clustering is not efficient. If the ground truth is available, the partitions created in such imbalanced 
data can be efficiently evaluated with external evaluation indices. In this study, five external evaluation indices 
are calculated to compare the clustering efficiency of the different algorithms. Considering a set of n objects 
X = {X1,X2, . . . ,Xn} , suppose C = {C1,C2, . . . ,CR} represents a partition of X obtained by a clustering algo-
rithm and K = {K1,K2, . . . ,KC} represents the ground truth or the class information. A contingency table is 
created to look for the overlap between the clustering result and the ground truth, where nij = |Ci ∩Kj| is the 
common elements in cluster Ci and class Kj . ni is the number of elements in Ci and nj is the number of elements 
in Kj . The external indices are defined as: 

1.	 F-measure (FM): The idea of precision and recall from information retrieval is merged to obtain FM. It dis-
regards the unmatched portions of the clusters. It can attain values ranging between 0 and 1. A value nearer 
to 1 represents better clustering61. 

(39)DI = min
1≤i≤c

{

min
1≤i≤c

{ δ(Ci ,Cj)

max
1≤k≤c

{�(Ck)}
}}

(40)DB = 1

C

C
∑

i=1

(Di)

(41)Xie− Beni = 1

N

WGSS

min
k<

′
k
δ́(Ck ,Cḱ

)2

Table 2.   Cancer subtypes description: actual class distribution.

Datasets Subtypes Number of samples

CESC

Keratin low squamous 37

Keratin high squamous 58

Adenocarcinoma 29

Luminal A 80

BRCA​

Luminal B 49

Her-2 enriched 171

Triple negative/basal like 98

OV
Neoplasm histological grade 3 417

Neoplasm histological grade 2 57

LGG

IDH mutation without 1p/19q codeletion 134

IDH mutation with 1p/19q codeletion 84

Wild type IDH subtype 49

Microsatelite instability (MSI) 45

STAD

Epstein–Barr virus (EBV) 17

Chromosomal instability (CIN) 111

Genomically stable (GS) 50
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2.	 Adjusted Rand Index (ARI): A commonly used variations of the Rand index, and takes into account agree-
ments arising by chance given a hypergeometric distribution. In the case of ARI, the lower bound, −k , 
depends on the exact data partitioning62. Closer the value of ARI to 1, better is the clustering. 

3.	 Normalized Mutual Information (NMI): The inter-dependencies between cluster number and cluster quality 
can be quantified by NMI. It is estimated as: 

 Here, I is mutual information and H is entropy. The value ranges from 0 to 1, value nearer to 1 means 
better clustering63.

4.	 Jaccard Index: It is used to measure the similarity between two sets, that are clustering solution, and the class 
information. It is defined as: 

 Higher the value of this index better in the clustering.
5.	 Purity: For estimating Purity, the clusters are first allocated to that class which is present most frequently in 

the cluster. Later, the accuracy of this cluster-class allocation is obtained by dividing the number of correctly 
assigned objects to total number of objects63. The equation for calculating Purity is: 

 Purity ranges from 0 to 1, a value closer to 1, better is the clustering.
Based on these five external evaluation indices, it is observed that the proposed algorithm outperforms in CESC, 
BRCA, LGG, and STAD datasets. OV cancer is the only case where the proposed approach cannot work that well. 
Suppose all the datasets are considered together to rank the clustering efficiency of all the algorithms under study, 
considering all the external indices. In that case, the proposed method stands first by attaining a maximum value 
for 20 times out of 25. The execution times reported in Table 3 show that RISynG is faster than other algorithms.

Importance of multi‑omics data integration.  The proposed algorithm RISynG iteratively integrates the relevant 
subspace of each of the synergy matrices. The relevant subspace corresponds to the k largest eigenvectors of the 
synergy matrices that hold the cluster structure. To exhibit the significance of this iterative integration and the 
effectiveness of RISynG, it is compared with Spectral clustering performed on individual omics datasets. The 
results presented in Table 4 show that the proposed algorithm outperforms the individual omic-views in CESC, 
BRCA, LGG, and STAD datasets for all the external clusters validity indices. In the OV dataset, RISynG outper-
forms for F-measure, Jaccard, and Purity. However, the miRNA view performs better for ARI and NMI indices. 
The performance of RISynG is significantly higher than the best individual view in the case of CESC, BRCA, and 
LGG datasets, irrespective of any indices.

To express the cluster holding capacity of the integrated subspace obtained by the proposed approach, scatter 
plots for the best k dimensions are plotted. The colours in the plots indicate the ground truth (cancer subtypes). 
Comparative plots are also presented in Figs. 3, 4, 5, 6, and 7 to show that the integrated subspace obtained 
by RISynG are more informative than other subspace-based integrative-clustering approaches (SNF, SURE, 
CoALa, iCluster, WMLRR, and MiMIC), for most of the datasets. Comparison with the best individual omic-
view (CESC: mRNA, BRCA: metDNA, OV: miRNA, LGG: metDNA, and STAD:miRNA) is also presented to 
establish the significance of multi-omics data integration performed by the proposed approach. Considering the 
proposed approach, the scatter plots show that the clusters are well separated in the case of CESC (Fig. 3) and 
LGG (Fig. 6) datasets. There is a slight overlap between the two groups in BRCA (Fig. 4), but it is better than the 
other methods. Whereas, for OV (Fig. 5) and STAD (Fig. 7) datasets, the overlap between subtypes is observed 
in the subspace obtained by all the methods.

Biological analysis.  Once the cancer subtypes are obtained, the patient clusters’ molecular characteristic fea-
ture is also evaluated to establish their biological relevance. To understand the varying expression of different 
biomarkers in different subtypes, differential expression analysis (DEA) of miRNAs and mRNAs is performed 
between the correctly identified groups of patients. A comparative analysis is performed between the true posi-
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Datasets Methods

Internal evaluation indices External evaluation indices

Time (s)Silhouette Dunn DB Xie-Beni F-measure ARI NMI Jaccard Purity

CESC

SNF 0.4009138 0.4454051 1.2271228 1.0368490 0.7258065 0.4066304 0.4872207 0.4482759 0.7258065 0.39

CC 0.6558044 0.2434998 0.3457636 0.8466638 0.6774194 0.3682621 0.3919370 0.4441509 0.6774194 31.61

CNMF 0.8849808 0.5815151 0.1346099 0.1404269 0.6693548 0.4280599 0.3887215 0.4761179 0.6693548 65.7

ECMC – – – – 0.5943548 0.4296452 0.4684325 0.4978563 0.549342 89.35

WMLRR 0.4174973 0.0279456 0.3756743 64.698374 0.5493742 0.4739754 0.4963865 0.3857491 0.5836492 72.46

COCA – – – – 0.6370968 0.2907653 0.3949373 0.3713777 0.6370968 2.26

SNF.CC 0.6820409 0.4747143 0.2514171 0.2487638 0.7258065 0.4059437 0.4792426 0.4467519 0.7258065 6.46

SURE 0.3533451 0.0643343 0.8705947 13.6558000 0.8387097 0.5969901 0.5731598 0.6027137 0.8387097 0.34

CoALa 0.4750780 0.0459589 1.0234149 36.8191400 0.4677419 0.0712289 0.0944394 0.2599910 0.4677419 98.44

iCluster 0.4133838 0.0248786 0.8147982 40.2522200 0.4435480 0.0270767 0.0364498 0.2436537 0.4435484 175.81

MiMIC 0.4064141 0.4064141 1.1487670 5.7334720 0.5243129 0.4891097 0.4952194 0.4196284 0.7741935 100.204

RISynG 0.4824000 0.0701205 0.6639514 14.5428100 0.8951612 0.7191808 0.6639029 0.6975966 0.8951613 0.22

BRCA​

SNF 0.4936198 0.3458074 1.2421657 1.7509710 0.6934673 0.4010266 0.4625550 0.3945632 0.6934673 7.88

CC 0.6653615 0.0702003 0.5397077 13.248510 0.4321608 0.2979244 0.3477434 0.3271579 0.5678392 239.52

CNMF 0.6428795 0.0423558 0.4194482 33.133060 0.4899497 0.3161555 0.3537982 0.3503934 0.5954774 344.58

ECMC – – – – 0.3857462 0.2846732 0.3285674 0.1846376 0.4695832 112.63

WMLRR 0.4783742 0.4593621 0.1496783 13.97465 0.5478943 0.2385643 0.3486532 0.2957483 0.4768392 94.32

COCA – – – – 0.4045226 0.2211292 0.3145460 0.2821191 0.4824121 12.58

SNF.CC 0.8923872 0.2021579 0.1871910 0.7428676 0.4271357 0.4281475 0.4732544 0.4150974 0.7160804 140.11

SURE 0.2966142 0.0417821 0.9317001 23.00041 0.7562814 0.4798912 0.5063654 0.4569119 0.7562814 2.2

CoALa 0.3363002 0.0304929 0.8465351 28.189170 0.3919598 0.3907137 0.4685283 0.3923870 0.6758794 737.92

iCluster 0.3673494 0.0202157 0.9099812 88.604970 0.4798990 0.2900248 0.3659365 0.3185041 0.5000000 145.61

MiMIC 0.3283235 0.0327848 1.0975070 28.99286 0.3783270 0.4108080 0.4855910 0.3764962 0.6984925 1521.87

RISynG 0.4296000 0.0459134 0.7135468 33.395980 0.7613065 0.4987076 0.5260974 0.4716932 0.7613065 0.56

OV

SNF 0.4378744 0.4301527 1.3849515 1.7023463 0.6877637 0.02818935 0.0038031 0.5263954 0.6877637 7.06

CC 0.5903129 0.1032681 0.4607749 7.9070535 0.6265823 –0.0323654 0.0081459 0.4892693 0.6265823 664.01

CNMF 0.3538763 0.1154637 0.8634937 435.7459476 0.7046413 0.0278468 0.0031328 0.5436891 0.7046414 263.46

ECMC – – – – 0.5694732 0.00047853 0.0001874 0.3857693 0.5849563 172.51

WMLRR 0.4867543 0.2275846 0.9859643 19.45342 0.5648932 0.0018593 0.0064382 0.4537682 0.6385932 132.12

COCA – – – – 0.6370968 − 0.0036014 0.0014148 0.7846563 0.8776371 4.03

SNF.CC 0.3957387 0.1673645 0.7284081 2.6021595 0.6793249 0.0141705 0.0010843 0.5211995 0.6793249 62.57

SURE 0.3222961 0.0111151 0.9517326 326.6007 0.5843258 − 0.0033712 0.0033794 0.440303 0.5063291 1.74

CoALa 0.3812581 0.0162638 0.9152212 144.9817 0.6540084 0.0078844 0.0004858 0.5005109 0.6540084 1189.76

iCluster 0.5366303 0.0023473 0.6248983 4335.3610 0.5253164 0.0004292 0.0169881 0.4408962 0.5253165 599.562

MiMIC 0.3542949 0.0119706 1.1338063 306.19587 0.8272251 0.0052532 0.0002227 0.4375362 0.6582278 1678.144

RISynG 0.6132400 0.0043105 0.6058482 877.900712 0.6708865 − 0.0386828 0.0079705 0.5168302 0.6624473 0.47

LGG

SNF 0.5552045 0.331413 1.2073461 1.954655 0.6853933 0.3025052 0.3251302 0.4082171 0.6853933 3

CC 0.6585338 0.2589659 0.3511019 0.7576893 0.8913858 0.6746313 0.6852894 0.6594185 0.8913858 101.73

CNMF 0.8583117 0.0420026 0.1764646 17.21837 0.5131086 0.1517872 0.2211501 0.3099572 0.5131086 187.31

ECMC – – – – 0.6467354 0.5785674 0.7637284 0.5563743 0.6845632 72.51

WMLRR 0.5648732 0.3365783 0.3486573 72.85743 0.4485673 0.6759743 0.6493754 0.5873549 0.5704737 89.85

COCA – – – – 0.6254682 0.2799432 0.3394982 0.4282438 0.6254682 6.31

SNF.CC 0.8796842 0.5938181 0.1291197 0.0976532 0.6853933 0.3025052 0.3251302 0.4082171 0.6853933 152.09

SURE 0.3834002 0.0950595 0.8558895 6.137831 0.6329588 0.2814732 0.4197476 0.3817919 0.6329588 1.06

CoALa 0.5106729 0.1025237 0.5474956 6.995131 0.6741573 0.3990866 0.5757631 0.5336079 0.6741573 330.52

iCluster 0.5840541 0.0145988 0.5850834 158.9932 0.5767790 0.0965103 0.0782154 0.3346215 0.5767790 341.17

MiMIC 0.5433994 0.0069822 0.7392175 119.9754 0.4472362 0.8460880 0.7071638 0.6392837 0.8812734 487.566

RISynG 0.4542000 0.1240071 0.7823224 4.904607 0.9513109 0.8752557 0.8179747 0.8562767 0.9513109 0.39

Continued
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tives and true negatives obtained by all the algorithms. As there are three subtypes in the case of LGG and 
CESC datasets; therefore, DEA is performed between three pairs (considering all possible pairs). Similarly, in 
the case of STAD and BRCA datasets, since there are four subtypes, DEA is performed for six pairs, and for the 
OV dataset, there are two subtypes; therefore, DEA is performed for one pair. R package Limma64 is used to 
perform DEA. miRNAs and mRNAs having Bejamini-Hochberg false discovery rate adjusted p-value < 0.05 are 
considered as differentially expressed. Number of differentially expressed biomarkers obtained from different 
groups in CESC, BRCA, OV, LGG, and STAD datasets are reported in Tables 5, 6, 7, 8, and 9 respectively. To 
further explore and highlight the biological knowledge and process-specific functioning of the identified sets of 

Datasets Methods

Internal evaluation indices External evaluation indices

Time (s)Silhouette Dunn DB Xie-Beni F-measure ARI NMI Jaccard Purity

STAD

SNF 0.4390147 0.4424347 1.2665290 1.2660670 0.3049327 0.0126031 0.0339522 0.2039706 0.3139013 0.94

CC 0.6517968 0.1587210 0.3735403 2.459431 0.3183857 0.0068337 0.0118838 0.1867525 0.3183857 49.97

CNMF 0.9261939 0.0751574 0.1297056 3.592156 0.3049327 0.0055038 0.0085026 0.1800452 0.2959641 124.65

ECMC – – – – 0.1847652 0.0018564 0.0035761 0.0174563 0.1785945 84.845

WMLRR 0.5873752 0.2857689 0.3285963 16.74563 0.1847563 0.0075843 0.0084754 0.0985647 0.1568347 69.213

COCA – – – – 0.2600897 0.0055526 0.0211873 0.1730754 0.3004484 3.48

SNF.CC 0.5330525 0.1745648 0.6411855 2.907296 0.3139013 − 0.0139222 0.0342102 0.1871362 0.3363229 3.33

SURE 0.3371392 0.0345696 0.7900013 53.22062 0.2825112 0.0250796 0.0243271 0.2243634 0.3991031 0.61

CoALa 0.3646726 0.0354464 0.7797201 24.92721 0.3318386 0.0080341 0.0319674 0.1969155 0.309417 126.12

iCluster 0.2700001 0.0551868 1.2110837 26.40223 0.2466360 0.0022785 0.0077143 0.1723892 0.3094170 111.22

MiMIC 0.3104935 0.0591516 0.9772476 19.93442 0.3854797 0.0096791 0.0101976 0.1493762 0.3766816 214.767

RISynG 0.3517051 0.0280232 0.7694432 54.50121 0.3901345 0.0260441 0.1230677 0.2267073 0.3901345 0.35

Table 3.   Comparative cluster analysis of proposed and existing approaches. The bold values indicate the best 
score as reported in the text.

Table 4.   Comparative performance analysis of proposed approach and individual omic-view. The bold values 
indicate the best score as reported in the text.

Datasets Indices metDNA miRNA mRNA RPPA RISynG

CESC

F-measure 0.5806452 0.5080645 0.8467742 0.4435484 0.8951612

ARI 0.3642175 0.3632153 0.6854734 0.4398544 0.7191808

NMI 0.5437217 0.5547632 0.6512983 0.6185463 0.6639029

Jaccard 0.6357324 0.5895432 0.6943272 0.6524353 0.6975966

Purity 0.4532324 0.4516432 0.8796542 0.4677554 0.8951613

BRCA​

F-measure 0.5326633 0.4497487 0.4271357 0.4572864 0.7613065

ARI 0.4297654 0.4197456 0.3458743 0.3982653 0.4987076

NMI 0.5197432 0.5165832 0.5194267 0.5227542 0.5260974

Jaccard 0.4674912 0.3569145 0.3389645 0.3971634 0.4716932

Purity 0.7597435 0.7164987 0.5839622 0.6497312 0.7613065

OV

F-measure * 0.6687764 0.6329114 * 0.670886

ARI * 0.0275463 − 0.0487653 * − 0.0386828

NMI * 0.0079834 0.0036542 * 0.0079705

Jaccard * 0.4763721 0.3657214 * 0.5168302

Purity * 0.6547632 0.6585342 * 0.6624473

LGG

F-measure 0.7677903 0.4269663 0.5917603 0.4119851 0.9513109

ARI 0.8575432 0.8574643 0.8573215 0.8496432 0.8752557

NMI 0.7589453 0.6965472 0.8143729 0.8054873 0.8179747

Jaccard 0.7565954 0.6986889 0.7548979 0.7765954 0.8562767

Purity 0.6974532 0.9064865 0.8607346 0.8830678 0.9513109

STAD

F-measure * 0.3587444 0.3049327 * 0.3901345

ARI * 0.0226743 0.0019457 * 0.0230441

NMI * 0.0224576 0.0219845 * 0.0230677

Jaccard * 0.1784963 0.2184653 * 0.2267073

Purity * 0.3794632 0.2845736 * 0.3901345
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differentially expressed biomarkers, different types of enrichment analyses are also performed, considering the 
hundred most differentially expressed biomarkers in each case.

Biological enrichment analyses.  The first analysis is Pathway enrichment analysis (PEA). It explores the mech-
anistic insight into the set of differentially expressed biomarkers. It helps identify those biological pathways 
enriched in a set of biomarkers more than expected by chance. The second one is Biological process enrichment 
analysis (BPEA). It helps characterize the relationship between genes or miRNAs by specifically annotating them 
to associated biological processes. It helps identify the over-represented biological processes in our list, which 

(a) Best Omic-view (b) SNF (c) iCluster (d) WMLRR

(e) SURE (f) CoALa (g) MiMIC (h) RISynG

Figure 3.   Comparative analysis of different integrative sub-spaces for CESC dataset.

(a) Best Omic-view (b) SNF (c) iCluster (d) WMLRR

(e) SURE (f) CoALa (g) MiMIC (h) RISynG

Figure 4.   Comparative analysis of different integrative sub-spaces for BRCA dataset.
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can help evaluate the biological significance of the obtained cancer subtypes. Furthermore, the third one is 
Disease ontology enrichment analysis (DOEA). Disease Ontology (DO) helps map the relevance of cancer sub-
types identified from high-throughput data to clinical relevance. In this study, the R package, clusterProfiler65 
and DIANA Tools mirPath v.366 are used for performing PEA and BPEA for genes and miRNAs, respectively, 
and R package DOSE67 is used to perform DOEA for the genes. The top 100 differentially expressed biomarkers 
are passed to these tools. In some cases, if the number of differentially expressed biomarkers is less than 100, 
then all of them are used. KEGG database is selected for PEA68. All the pathway terms associated with the set of 

(a) Best Omic-view (b) SNF (c) iCluster (d) WMLRR

(e) SURE (f) CoALa (g) MiMIC (h) RISynG

Figure 5.   Comparative analysis of different integrative sub-spaces on OV dataset.

(a) Best Omic-view (b) SNF (c) iCluster (d) WMLRR

(e) SURE (f) CoALa (g) MiMIC (h) RISynG

Figure 6.   Comparative analysis of different integrative sub-spaces for LGG dataset.
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biomarkers having false discovery rate adjusted p-value < 0.05 (significant pathway terms) are only considered. 
Suppose any differentially expressed biomarker sets are not associated with significant KEGG pathway terms. In 
that case, that set is said to be not biologically relevant with respect to KEGG pathway terms. Similarly, all the 
biological process (BP) terms associated with the set of biomarkers having a false discovery rate adjusted p-value 
< 0.05 (significant pathway terms) are only considered. If any of the differentially expressed biomarker sets are 
not associated with significant BP terms, that set is said to be not biologically relevant with respect to BP terms. 
In DOEA, semantic similarities between DO terms and genes are calculated that help explore the similarities of 
diseases and gene functions from a disease perspective. The output of DOES has associated disease terms. A gene 
set is said to be enriched with DO terms if the terms obtained by its DOEA have a false discovery rate corrected 
p-value < 0.05.

For the quantification of KPEA, BPEA, and DOEA, respective enrichment scores69, and annotation ratios69 
are calculated. The higher the value of these scores better is the enrichment; hence, the more biologically signifi-
cant the differentially expressed biomarkers are, the better the cancer sub-typing. Following are the equations 
for these scores:

Here, T denotes the number of significant pathway/BP/terms associated with a set of differentially expressed 
genes or miRNAs between two cancer subtypes identified by any clustering approaches. G denotes the total 
number of genes given to clusterProfiler for the enrichment analysis, and g denotes the gene count associated 
with a pathway/BP/DO term. Comparative analysis of the cancer subtypes obtained by the proposed approach 
and other existing algorithms are performed and the associated quantitative indices are reported in Tables 5, 6, 7, 
8, and 9. Some of the differentially expressed miRNAs or mRNAs have no associated significant terms; therefore, 
there is no scope for calculating the quantitative indices. Also, in some cases, there are no differentially expressed 
biomarkers. All these cases are represented by ∗ in the tables.

To compare the effectiveness of the proposed approach with the other algorithms in this study, the overall 
performance of all the methods is also evaluated. When all the five cancer datasets are considered together, the 
proposed approach outperforms concerning both cluster evaluation indices and biological enrichment analysis, 
as shown in Fig. 8. The analysis is performed by considering the success frequency (number of times a method 
scored the highest value for respective indices when all the cases in all the cancer types are considered). The 
success frequency shows that the proposed approach outperforms when cluster validity indices are considered 
by scoring maximum values for 21 times, followed by SNF.CC (7), SNF (6), CNMF (5), CC (2), COCA (2), and 

(47)BPES = 1

T

T
∑

t=1

−log10(p− valuet),

(48)AR = 1

T × G

T
∑

i=1

gi .

(a) Best Omic-view (b) SNF (c) iCluster (d) WMLRR

(e) SURE (f) CoALa (g) MiMIC (h) RISynG

Figure 7.   Comparative analysis of different integrative sub-spaces for STAD dataset.
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WMLRR (1). Similarly, suppose the methods are ranked considering the success frequency for quantitative 
indices calculated for biological enrichment analysis. In that case, the proposed approach will again stand first 
by scoring the maximum value 67 times, followed by SNF (21), SNF.CC (20), CC (12), CoALa (10), CNMF (9), 
MiMIC (7), SURE (5), WMLFF (5), COCA (4), and iCluster (1). If the cluster validity indices are looked upon 
individually, the proposed approach also outperforms with respect to F-measure, ARI, NMI, Jaccard index, and 
Purity. Considering the indices for biological enrichment individually, the proposed algorithm again outperforms 
with respect to all the indices except for AR for BPES for mRNA enrichment, where it stands second.

Overlap analysis.  The hundred most differentially expressed genes between all the subtypes-pairs in cervical 
cancer that RISynG and the other methods identified are explored further for experimental support. The genes 
are analyzed based on the degree of overlap with known cervical cancer genes that are experimentally validated. 

Figure 8.   Method comparison.
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The Cervical Cancer Gene Database (CCDB)70 is used for finding the overlap. It is a manually curated catalog of 
experimentally validated genes involved in the different stages of cervical carcinogenesis. All the up-regulated 
and down-regulated genes in cervical cancer with evidence from the published literature available in CCDB are 
considered for this analysis. 367 genes are reported in CCDB that are differentially expressed in cervical cancer. 
This list contains 185 genes from a total number of 2000 genes that are used for cancer subtype identification in 
this study. The statistical significance of the overlap analysis is reported in Table 10. In total, 30 genes out of 222 
identified from the proposed approach overlap with cervical cancer-related genes. This is the maximum overlap 
when compared with the other methods. Fisher’s exact test is used here to find the statistical significance of the 
contingency table created from the overlap analysis in Table 10 for different algorithms. At 95% confidence, it is 
observed that only the genes identified by the proposed approach have significant overlap with experimentally 
validated genes curated from literature with a p-value of 0.026. Therefore, it indicates that the proposed approach 
has the potential to identify clinically important subtypes of cancer that have a characteristic molecular signa-
ture.

Table 5.   Comparative biological analysis of CESC dataset. The bold values indicate the best score as reported 
in the text.

CESC classes Methods

mRNA enrichment analysis
miRNA enrichment 
analysis

Number of 
differentially 
expressed

KPES AR BPES AR DOES AR KPES BPES mRNAs miRNAs

Keratin low squamous vs keratin high 
squamous

SNF 2.253130 0.013174 2.124593 0.014242 1.492051 0.002597 * * 811 9

CC 3.688672 0.001579 2.227388 0.002396 1.533960 0.008514 * * 829 5

CNMF 1.533344 0.006379 2.021209 0.001684 1.383268 0.007361 * * 719 3

ECMC 1.658394 0.003756 0.002134 0.006945 0.385745 0.003684 * * 529 6

WMLRR * * * * * * * * 34 4

SNF.CC 2.253130 0.013174 2.124593 0.014242 1.492051 0.002597 * * 811 9

CoALa 1.650947 0.004808 2.381972 0.006842 1.397646 0.010533 * * 632 5

COCA 2.742077 0.010161 1.540280 0.010722 1.764804 0.000658 * * 529 1

SURE 10.322586 0.005417 4.595299 0.009796 1.656721 0.007143 * * 915 7

iCluster 6.456398 0.002674 3.564834  0.014240 1.465782 0.003657 3.459342 1.45698 939 92

MiMIC 5.739475 0.003295 2.593754 0.004743 1.285647 0.004738 * * 643 6

RISynG 19.023039 0.003559 4.483853 0.007835 1.993933 0.003492 4.730997 3.702912 924 13

Keratin low squamous vs adenocarci-
noma

SNF 2.228672 0.010167 2.060098 0.007604 1.586351 0.030129 2.839092 3.702912 748 23

CC 1.524904 0.004545 2.005994 0.003854 1.396591 0.011918 2.839092 3.510903 545 19

CNMF 1.837035 0.001731 * * 1.985854 0.001143 2.838999 3.510903 398 13

ECMC 0.568364 0.003956 2.967456 0.002756 1.486344 0.018934 1.459674 1.498264 544 54

WMLRR 1.486745 0.002758 1.584754 0.001845 * * * * 66 12

SNF.CC 2.228672 0.003585 2.060098 0.007604 1.586351 0.030129 2.838999 3.510903 748 23

CoALa * * 1.819866 0.004375 1.530370 0.029351 2.838999 3.702912 489 17

COCA 2.095093 0.005333 2.266488 0.006105 1.812902 0.011081 2.838999 3.702912 600 14

SURE 1.986232 0.002903 1.825145 0.007835 1.773099 0.021688 2.838999 4.853914 826 24

iCluster 1.657453 0.003746 2.567439 0.006345 * * 2.838998 3.675432 842 14

MiMIC 1.698345 0.003521 2.674931 0.005392 1.436284 0.016385 * * 819 2

RISynG 2.902596 0.010166 4.699835 0.000833 * * 2.186029 7.052373 966 34

Keratin high squamous vs adenocarci-
noma

SNF * * 3.405602 0.004409 * * 2.838998 7.034831 774 38

CC * * 2.306625 0.004421 1.580965 0.006619 2.838999 7.034831 652 27

CNMF * * 2.271344 0.003191 1.822238 0.004493 2.838998 7.034831 478 23

ECMC 0.568364 0.003956 2.967456 0.002756 1.486344 0.018934 1.459674 1.498264 544 54

WMLRR 1.385674 0.859432 1.674834 0.002856 1.495733 0.001745 * * 633 17

SNF.CC * * 1.701994 0.004409 * * 2.838998 7.034831 774 39

CoALa * * 2.934221 0.005957 1.505341 0.006575 * * 535 18

COCA * * 3.229027 0.004839 * * 2.838998 7.105402 553 20

SURE * * 2.931849 0.003871 1.432160 0.001884 2.838998 7.819319 790 52

iCluster * * 2.627392 0.005734 * * 1.645321 3.458233 637 96

MiMIC 2.564893  1.453983 2.845623 0.001634 * * * * 412 0

RISynG * * 3.405602 0.009148 * * 2.838998 7.819319 951 63
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BRCA classes Methods

mRNA enrichment analysis
miRNA enrichment 
analysis

Number of 
differentially 
expressed

KPES AR BPES AR DOES AR KPES BPES mRNAs miRNAs

Luminal A vs luminal B

SNF 1.461915 0.002553 1.385690 0.000306 2.477131 0.001970 2.372875 5.449253 1198 106

CC 1.478030 0.000755 1.365630 0.000306 * * 2.632318 4.086584 864 49

CNMF 1.959958 0.0024 * * 2.461538 0.003279 * 6.847070 367 3

ECMC * * * * * * * * 21 7

WMLRR * * * * * * * * 0 5

SNF.CC 1.613135 0.001379 2.372456 0.006186 2.135156 0.082714 3.676487 6.071079 236 45

CoALa 1.418795 0.001311 2.637358 0.006562 2.162850 0.089027 6.361579 5.144748 225 36

COCA * * * * * * * * 0 0

SURE * * * * * * * * 367 0

iCluster * * * * * * * * 1186 89

MiMIC * * 1.598348 0.0002643 * * * * 586 14

RISynG * * * * * * * * 0 0

Luminal A vs Her-2 enriched

SNF * * * * * * 2.143165 5.339598 1522 181

CC * * * * 1.679493 0.001791 1.975801 5.557729 1429 129

CNMF * * * * * * 2.316795 * 1501 181

SNF.CC 1.528961 0.003288 2.484664 0.007766 2.472259 0.081621 4.772078 5.635141 204 34

ECMC 1.645964 0.002194 0.763859 0.002856 * * * * 516 19

WMLRR 1.456983 0.0018465 1.678453 0.003956 1.649663 0.045843 3.856433 4.856377 1125 11

CoALa 2.053401 0.003889 1.352696 0.004352 2.418967 0.066857 5.981546 5.361591 175 39

COCA * * * * * * 2.182702 6.704499 1419 175

SURE * * * * * * 2.143102 5.339598 1501 179

iCluster * * * * * * 3.185943 4.675320 1486 177

MiMIC 1.957394 0.002845 1.749245 0.002945 1.849382 0.025383 2.795843 3.738291 1891 181

RISynG 2.069400 0.004285 2.552696 0.008152 * * 2.143165 5.339598 1555 181

Luminal A vs basal like

SNF * * 1.968809 0.001237 1.671238 0.014714 * 6.208960 1514 134

CC * * * * 2.650350 0.001944 2.099859 7.595675 1426 115

CNMF 1.527132 0.001176 * * 2.315198 0.002143 2.027684 4.551682 1420 111

ECMC * * * * * * * * 112 0

WMLRR * * 1.894784 0.001768 * * * * 253 16

SNF.CC 2.301212 0.001296 2.320499 0.011444 1.586312 0.004521 * * 155 5

CoALa * * * * * * * * 0 0

COCA * * 1.867577 0.001563 2.715869 0.001972 2.182702 6.704499 1255 115

SURE * * * * * * 2.463865 4.086584 1420 66

iCluster 1.567384 0.006354 * * * * 1.945638 5.639721 1530 133

MiMIC 1.563985 0.005932 1.486932 0.003285 1.748234 0.032863 0.638291 0.638294 512 110

RISynG 2.318606 0.02 * * 3.529331 0.035571 2.518622 4.086584 1153 61

Luminal B vs Her-2 enriched

SNF 1.556018 0.006964 1.895925 0.001087 1.711230 0.004521 2.702356 7.005326 1074 111

CC 1.848055 0.001961 * * 1.611678 0.043432 2.893976 2.140340 734 27

CNMF * * * * * * * * 32 0

SNF.CC 1.768648 0.001296 2.439050 0.004365 1.505375 0.037612 2.702356 7.005326 1173 119

ECMC 1.245874 0.001749 0.846396 0.002469 1.285749 0.0175635 2.489275 4.867463 972 94

WMLRR 2.485737 0.185483 1.946385 0.000174 0.946285 0.02857 1.674927 4.683956 1432 116

CoALa 1.516468 0.000806 2.296736 0.002857 1.422305 0.012857 2.702356 7.005326 1209 113

COCA * * * * * * * * 0 0

SURE * * * * * * * * 32 0

iCluster * * * * * * 2.567493 6.978346 135 90

MiMIC * * * * * * * * 65 4

RISynG * * * * * * * * 0 0

Continued
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BRCA classes Methods

mRNA enrichment analysis
miRNA enrichment 
analysis

Number of 
differentially 
expressed

KPES AR BPES AR DOES AR KPES BPES mRNAs miRNAs

Luminal B vs basal like

SNF 2.128049 0.0156 * * 1.819763 0.060895 1.838692 3.481747 1096 99

CC 1.658311 0.006875 1.370137 0.000313 1.705471 0.044328 * 2.140340 897 66

CNMF * * * * * * * * 15 0

SNF.CC 2.118175 0.008654 2.476302 0.013333 1.695800 0.009855 * * 158 0

ECMC * * * * * * * * 54 0

WMLRR 1.756342 0.001856 1.674834 0.002849 * * * * 856 0

CoALa * * * * * * * * 0 0

COCA * * * * * * * * 0 0

SURE * * * * * * * * 15 0

iCluster * * * * * * * * 1051 57

MiMIC * * * * * * * * 84 0

RISynG * * * * * * * * 0 0

Her-2 Enriched vs basal like

SNF 1.655414 0.003158 3.157786 0.002188 2.523476 0.110366 * * 1120 152

CC 1.920310 0.000714 2.702511 0.001505 1.800734 0.008451 * * 450 11

CNMF 2.143113 0.002097 3.196699 0.015612 2.245955 0.056154 2.749089 46.059107 1057 147

ECMC 1.658453 0.006856 1.475986 0.001845 1.678432 0.027923 1.48234 4.674983 943 89

WMLRR 1.287463 0.004738 2.476993 0.004845 1.283622 0.001745 1.945673 4.687384 1921 112

SNF.CC 2.558315 0.001212 3.033794 0.018085 1.774396 0.021528 * * 112 0

CoALa * * * * * * * * 0 0

COCA 1.830650 0.002623 1.691438 0.003438 * * 2.382039 4.804657 362 231

SURE * * * * * * 2.615351 4.166632 1057 49

iCluster 2.598346 0.002864 3.167489 0.017456 * * 2.498563 3.758943 1175 128

MiMIC 2.649362 0.003785 2.749734 0.001373 * * * * 278 0

RISynG 2.844053 0.013333 3.384443 0.024848 2.307443 0.125301 2.938526 6.524382 900 60

Table 6.   Comparative biological analysis of BRCA dataset. The bold values indicate the best score as reported 
in the text.

Table 7.   Comparative biological analysis of OV dataset. The bold values indicate the best score as reported in 
the text.

OV classes Methods

mRNA enrichment analysis
miRNA enrichment 
analysis

Number of 
differentially 
expressed

KPES AR BPES AR DOES AR KPES BPES mRNA miRNA

Vs
Neoplasm histological grade 3
Neoplasm histological grade 2

SNF 1.898710 0.002381 2.061189 0.001053 * * * 7.871558 268 230

CC * * * * * * * * 0 0

CNMF * * * * * * * * 0 0

ECMC * * * * * * * * 54 0

WMLRR * * 2.148563 0.000584 * * * * 123 11

CoALa 4.675430 0.003810 * * * * 2.156299 10.129178 214 178

SNF.CC 5.155090 0.003125 1.354431 0.000947 * * * * 331 203

COCA * * * * * * * * 0 0

SURE 1.640585 0.010000 * * * * 2.456219 5.679494 485 19

iCluster 5.864734 0.016740 1.256483 0.001030 * * 1.178456 7.457563 664 228

MiMIC 5.327456 0.014639 1.645294 0.000143 2.745934 0.763549 2.458396 7.935281 981 172

RISynG 7.004104 0.020000 * * * * 2.715358 13.354195 256 209
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Table 8.   Comparative biological analysis of LGG dataset. The bold values indicate the best score as reported in 
the text.

LGG classes Methods

mRNA enrichment analysis
miRNA enrichment 
analysis

Number of 
differentially 
expressed

KPES AR BPES AR DOES AR KPES BPES mRNAs miRNAs

IDH mutation without 1p/19q codele-
tion vs IDH mutation with 1p/19q 
codeletion

SNF 2.216865 0.004390 1.712976 0.010313 1.518906 0.007586 2.623947 7.443965 1530 180

CC 2.060736 0.002167 1.828709 0.002371 * * 2.381158 5.218678 1394 185

CNMF 2.713893 0.004400 2.184500 0.023895 1.737469 0.003881 2.377525 6.805268 1475 197

ECMC 2.569342 0.017453 2.983657 0.011547 1.385943 0.004856 3.684935 6.956385 1632 87

WMLRR 2.957453 0.003758 2.567396 0.003854 0.946583 0.004867 2.956486 3.574869 943 114

SNF.CC 2.158081 0.001250 1.857196 0.012580 * * 2.433907 6.981976 1346 186

CoALa * * * * * * * * 0 0

COCA 1.868207 0.005893 1.445307 0.002021 * * 3.009416 8.168954 1091 209

SURE 1.667323 0.000862 2.918052 0.002421 * * 1.722047 2.988518 1022 46

iCluster 2.6547342 0.00345628 2.674538 0.0045638 1.265483 0.0034562 3.256437 3.756417 1445 180

MiMIC 2.983452 0.0352854 1.845372 0.011845 1.436956 0.004637 3.756281 5.342743 1223 124

RISynG 3.015521 0.047500 3.165604 0.000729 * * 5.831749 2.118806 1286 129

IDH mutation without 1p/19q codele-
tion vs wild type IDH subtype

SNF 5.334880 0.002250 2.177240 0.001848 * * 2.191319 4.547026 1380 151

CC 10.753373 0.002857 4.952588 0.002444 * * 3.276499 3.693358 1334 255

CNMF 3.828751 0.001905 1.827162 0.001739 * * 2.640297 6.127825 1410 152

ECMC * * * * * * * * 85 16

WMLRR 17.47594 0.028475 3.674834 0.017385 * * * * 323 35

SNF.CC 2.313690 0.030833 2.004395 0.030232 * * * * 1151 0

CoALa 2.308687 0.005500 1.676198 0.012824 1.835847 0.002712 2.134683 6.374528 995 120

COCA * * * * * * 2.191284 4.547026 1333 147

SURE 8.396959 0.003750 4.759305 0.003146 * * 2.598835 5.097597 1207 90

iCluster 7.753974 0.002634 3.378298 0.004573 * * 1.456382 4.634529 1476 203

MiMIC 5.437984 0.016453 4.863478 0.024537 0.562849 0.000174 * * 312 0

RISynG 16.665788 0.002553 6.554131 0.001868 * * 2.957544 7.361838 1299 162

IDH mutation with 1p/19q codeletion 
vs wild type IDH subtype

SNF 4.872952 0.001818 2.830515 0.003646 * * 2.433906 6.981966 1433 186

CC 1.770337 0.004118 1.845716 0.003118 2.150893 0.008475 2.532364 4.105869 1463 154

CNMF 4.479526 0.004310 2.153374 0.008229 * * 1.774068 5.301943 1299 177

ECMC * * 2.584763 0.028496 * * * * 122 5

WMLRR 5.968354 0.005846 1.956384 0.017485 1.956486 1.956738 1.745867 5.956385 1765 165

SNF.CC 2.669711 0.009000 2.035048 0.026484 1.985843 0.009483 2.623947 7.443965 888 180

CoALa * * * * * * * * 0 0

COCA 2.144910 0.007805 1.803831 0.020526 1.611270 0.006102 2.301836 7.175007 1320 195

SURE 1.456283 0.002459 2.830515 0.004409 2.543007 0.009483 2.532364 4.105869 1321 118

iCluster 1.456735 0.001645 1.456872 0.001674 * * 1.456380 4.764537 1172 148

MiMIC 3.956382 0.004281 2.459216 0.038294 2.453856 0.000352 1.463823 3.785645 1145 193

RISynG 1.761283 0.002683 2.835968 0.004409 2.866000 0.015172 2.355656 5.218530 1321 144
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STAD classes Methods

mRNA enrichment analysis
miRNA enrichment 
analysis

Number of 
differentially expressed

KPES AR BPES AR DOES AR KPES BPES mRNAs miRNAs

MSI vs EBV

SNF * * 2.947976 0.007778 * * 3.886525 5.339598 51 139

CC * * * * * * 3.475801 5.557729 0 117

CNMF * * * * * * 2.286346 5.274368 0 173

ECMC * * 1.486745 0.001754 * * * * 76 19

WMLRR * * * * * * * * 0 0

SNF.CC 1.641207 0.009500 1.808831 0.003590 * * 4.663422 5.635141 51 308

CoALa * * * * * * 2.167354 5.631591 0 130

COCA * * * * * * 4.182702 5.649816 0 130

SURE * * * * * * 2.143102 5.339598 1939 502

iCluster * * * * * * * * 0 3

MiMIC * * * * * * * * 0 0

RISynG * * * * * * 5.981546 6.704499 0 138

MSI vs CIN

SNF 3.206072 0.006809 1.919825 0.012532 2.101852 0.005965 2.640297 4.547026 88 213

CC 2.463472 0.004118 1.677523 0.014000 1.732361 0.004000 1.191319 3.593216 233 147

CNMF * * 1.412950 0.005217 * * 2.275633 3.547026 128 74

ECMC 3.867453 0.002756 1.584732 0.001748 1.093748 0.004856 0.083956 3.956483 954 99

WMLRR 1.856093 0.003756 2.256943 0.018463 2.056783 0.005734 1.756398 5.935744 432 118

SNF.CC 1.517881 0.001111 1.376410 0.001970 * * 1.337563 5.097597 88 388

CoALa 3.152809 0.006471 2.094399 0.013291 2.033564 0.004918 2.718835 5.127825 288 219

COCA 3.152809 0.006471 2.094399 0.013291 2.033564 0.004918 0.387436 4.447824 288 219

SURE 3.494658 0.005882 2.250916 0.013377 2.194897 0.002586 2.191284 5.376595 333 239

iCluster 3.679345 0.003785 1.764538 0.003856 1.456396 0.006742 1.645297 4.762394 130 260

MiMIC 4.678234 0.006453 1.845632 0.0267453 2.074592 0.005643 1.645372 4.756382 204 88

RISynG 5.672025 0.007447 2.361069 0.011270 1.859974 0.008033 2.957544 6.374528 168 216

MSI vs GS

SNF 1.625946 0.003333 0.013099 1.667743 0.013158 3.534893 2.140340 46 128

CC 4.408086 0.006061 1.929352 0.014853 2.178884 0.008039 2.674398 2.238740 297 108

CNMF 2.923027 0.001667 2.062190 0.016000 1.778082 0.015600 2.226550 2.347540 90 17

ECMC 4.756823 0.002745 0.587384 0.027485 1.748396 0.003856 2.567498 2.986482 543 164

WMLRR 3.056845 0.003856 0.574983 0.003758 2.489564 0.002745 1.859644 3.975844 643 219

SNF.CC 2.142436 0.007500 1.771466 0.000811 * * * * 46 284

CoALa 3.008414 0.007143 1.836751 0.015467 1.701261 0.014107 2.615463 4.376543 220 129

COCA 3.008414 0.007143 1.836751 0.015467 1.701261 0.014107 2.615463 4.376543 220 129

SURE 3.245879 0.004889 1.889092 0.013288 2.090617 0.010727 3.286473 2.238740 124 42

iCluster 3.651936 0.014563 0.674328 0.003549 1.845362 0.007453 3.254698 3.934657 27 112

MiMIC 2.145936 0.004563 1.434328 0.141283 1.732362 0.005453 * * 116 0

RISynG 5.266844 0.018500 1.960004 0.001935 * * 3.223198 3.674321 39 303

EBV vs CIN

SNF * * * * * * 1.481368 3.654953 0 237

CC * * * * * * 2.228647 4.578635 0 214

CNMF * * * * * * 2.193468 1.645390 0 35

ECMC * * * * * * * * 0 15

WMLRR 2.856748 0.947567 0.364867 0.001985 * * * * 156 65

SNF.CC * * * * * * * * 0 0

CoALa * * * * * * 1.774584 2.984563 33 236

COCA * * * * * * 2.193468 2.537548 33 236

SURE * * 1.375449 0.002295 * * 2.306584 2.756483 1939 502

iCluster * * * * * * * * 15 0

MiMIC * * * * * * * * 7 0

RISynG * * 1.643941 0.002857 * * 2.312785 2.865474 18 139

Continued
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STAD classes Methods

mRNA enrichment analysis
miRNA enrichment 
analysis

Number of 
differentially expressed

KPES AR BPES AR DOES AR KPES BPES mRNAs miRNAs

EBV vs GS

SNF * * * * * * 1.481368 3.654953 0 119

CC * * * * * * 2.228647 4.578635 0 102

CNMF * * * * * * 2.193468 1.645390 0 31

ECMC * * * * * * * * 17 6

WMLRR * * 0.678465 1.298456 * * * * 119 12

SNF.CC * * * * * * * * 0 42

CoALa * * * * * * 1.774584 2.984563 0 134

COCA * * * * * * 2.193468 2.537548 0 134

SURE * * 1.375449 0.002295 * * 2.306584 2.756483 1939 502

iCluster * * * * * * * * 70 0

MiMIC 1.274567 0.006543 1.274973 0.009451 1.374516 0.004373 2.264983 3.564832 110 67

RISynG 1.424199 0.010000 1.686765 0.008333 * * 2.312785 2.865474 6 60

CIN vs GS

SNF * * * * * * 2.546392 3.058563 0 255

CC 1.609349 0.007222 * * * * 2.964875 3.337658 247 39

CNMF 2.689639 0.004063 1.780668 0.007778 * * * * 229 17

ECMC 0.856377 0.003756 1.658499 0.004867 * * 2.568493 2.583993 132 213

WMLRR * * * * * * * * 0 32

SNF.CC * * * * * * 1.948756 2.354654 0 212

CoALa * * 1.637374 0.000625 * * 0.864563 2.904373 64 222

COCA * * 1.637374 0.000625 * * 1.084653 3.569463 64 222

SURE 1.967703 0.004737 1.455467 0.002667 * * 3.564875 4.724974 98 325

iCluster 2.645382 0.0037845 1.956734 0.000376 * * 1.567354 2.645983 69 14

MiMIC 2.534967 0.005378 1.432134 0.001453 * * 2.134975 2.195342 112 54

RISynG * * 2.947976 0.010656 * * 3.956474 4.765984 92 283

Table 9.   Comparative biological analysis of STAD dataset. The bold values indicate the best score as reported 
in the text.

Table 10.   Overlap with experimentally validated gene-list.

Methods Yes no Total p-value

SNF
Yes 22 202 224

0.715
No 163 1613 1776

CC
Yes 20 198 218

1.000
No 165 1617 1782

CNMF
Yes 26 197 223

0.219
No 159 1618 1777

ECMC
Yes 9 272 281

0.053
No 176 1543 1719

WMLRR
Yes 13 156 169

0.578
No 172 1659 1831

SNF.CC
Yes 22 202 224

0.715
No 163 1613 1776

CoALa
Yes 19 200 219

0.902
No 166 1615 1781

COCA
Yes 23 194 217

0.457
No 162 1621 1783

SURE
Yes 18 207 225

0.543
No 167 1608 1775

iCluster
Yes 17 205 222

0.460
No 168 1610 1778

MiMIC
Yes 19 216 235

0.631
No 166 1599 1765

RISynG
Yes 30 192 222

0.026No 155 1623 1778

Total 185 1815 2000
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Conclusion
The present study describes a method named RISynG that efficiently identifies cancer subtypes. Cancer subtypes 
identification can facilitate cancer diagnosis and therapy. It is one of the vital components of the precision medi-
cine framework. The main contributions of this study are: (1) Development of an integrative clustering method 
for multi-view omics data. (2) Demonstration of the effectiveness of the proposed method over other methods. 
(3) Establishing biological relevance for the obtained results.

Data availability
The python scripts for RISynG and the pre-processed sample-matched datasets are available at http://​home.​iitj.​
ac.​in/​~sushm​itapa​ul/​CBL/​code/​RISynG.​zip.
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