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Abstract

Image processing algorithms are used to improve digital image representations in either

their appearance or storage efficiency. The merit of these algorithms depends, in part, on

visual perception by human observers. However, in practice, most are assessed numeri-

cally, and the perceptual metrics that do exist are criterion sensitive with several shortcom-

ings. Here we propose an objective performance-based perceptual measure of image

quality and demonstrate this by comparing the efficacy of a denoising algorithm for a variety

of filters. For baseline, we measured detection thresholds for a white noise signal added to

one of a pair of natural images in a two-alternative forced-choice (2AFC) paradigm where

each image was selected randomly from a set of n = 308 on each trial. In a series of experi-

mental conditions, the stimulus image pairs were passed through various configurations of a

denoising algorithm. The differences in noise detection thresholds with and without denois-

ing are objective perceptual measures of the ability of the algorithm to render noise invisible.

This was a factor of two (6dB) in our experiment and consistent across a range of filter band-

widths and types. We also found that thresholds in all conditions converged on a common

value of PSNR, offering support for this metric. We discuss how the 2AFC approach might

be used for other algorithms including compression, deblurring and edge-detection. Finally,

we provide a derivation for our Cartesian-separable log-Gabor filters, with polar parameters.

For the biological vision community this has some advantages over the more typical (i)

polar-separable variety and (ii) Cartesian-separable variety with Cartesian parameters.

1. Introduction

Quality is difficult to assess. Suppose you are handed a picture (a photograph, a print, or an

electronic image) and asked for your opinion about image quality. What do you judge? You

know the task is subjective, and you might have opinions about various aspects of the image:

saturation, contrast, lightness, shadows, blur, definition, image noise and other artefacts. But
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which are more important, how are you going to quantify these properties, how are you going

to combine them, and who is to say that your opinion is the one that counts?

These issues are well known in the image processing community, and several approaches

have been adopted, including automated numerical procedures [e.g. 1], some of which are

based on the properties of human vision [e.g. 2,3] (see [4] for a review). However, the general

view is that the “gold standard” is a human observer [5] which means that human judgements

are required. This is sometimes done using a rating scale. There are several variants including

moving a slider [6,7] and making numerical comparisons of a processed image against a stan-

dard one [7], but in many cases the reader is simply invited to judge an unsupported claim by

the author that the subjective quality of one particular method is the best [e.g. 8,9]. Even when

results from human ratings are provided, the subjective nature of the approach means the cri-

terion sensitive problems outlined above remain.

The problem we tackle here is how to derive an objective and quantifiable human quality

measure of image-processing algorithms. Taken literally of course, this cannot be done. Image

quality is inherently subjective—if it was quantifiable, it would be called image quantity. None-

theless, this has not prevented previous attempts to map subjective experience onto numbers

as described above. However, our approach is different. Instead of using criterion-sensitive

judgements as a proxy for quality, we use perceptual performance. Our logic is that if an

observer cannot discriminate one image from another, the images cannot differ in perceptual

quality. The signal level at which a change in image quality can be detected is sometimes called

the just noticeable difference (JND) and is not without precedent in the image processing liter-

ature [10,11]. In Section 1.2 we develop this idea for a denoising algorithm by way of illustrat-

ing the approach. In Section 4.4 of the Discussion, we consider possible developments for

testing other types of image-processing algorithms.

1.1 Denoising

The removal of unwanted noise from digital images is a task for which numerous algorithms

have been proposed (e.g., [12–14], see [15] for a recent review). Many denoising schemes

[12,13] take a multi-scale filtering approach [see 16], inspired by the architecture of the human

visual system [17]. These techniques work by decomposing the image into discrete bandpass

signals by filtering in the Fourier domain (or, equivalently, by convolution). Filters containing

large amounts of noise (typically those at the smallest spatial scales) are thresholded. For exam-

ple, filter responses with small amplitudes are likely to be noise and based on a threshold

amplitude, these are either reset to zero (hard thresholding) or attenuated (soft thresholding).

The image is then reconstructed from the remaining components, resulting in improved qual-

ity (see Fig 1).

Such image denoising techniques are not perfect. For large amounts of noise, the denoised

image will contain noticeable ringing artefacts from the filtering (see Fig 2). Essentially, these

are copies of the filter kernels that were driven above the algorithm’s cutoff threshold by the

noise. Furthermore, because of the thresholding at high spatial frequencies, legitimate image

information at fine spatial scales will be lost, so the denoised image might appear blurry (i.e.,

low pass filtered). This means there will be a limited range of noise levels over which denoising

produces acceptable images without noticeable distortions.

The success of a given algorithm and/or filter type is usually assessed numerically, by calcu-

lating the mean difference between pixels in the original and denoised images, often the peak

signal-to-noise ratio (PSNR). Although error statistics of this type permit direct comparisons

between algorithms, they have several drawbacks (as discussed more generally by [18]). First,

the original image is necessary for the calculation, limiting the usefulness of error statistics to
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Fig 1. Illustration of an image denoising technique. White noise (b) is added to an image (a) to produce a noisy

image (c). The image is then decomposed by convolution with a bank of filters (d) at different orientations and spatial

scales (only a subset of filters is shown here). High frequency responses are then thresholded to reduce the amplitude

of the noise, producing a final denoised image when the representation is transformed back to the spatial domain (e).

The process is shown for two levels of noise: Pixel standard deviations of 8% (left columns) and 22% (right columns).

For the more severe noise, there are visible ringing artefacts from the filtering in the denoised image (right image in

part e). The example image used here was not part of the image set used in the experiments. Larger examples are

provided in S1 File.

https://doi.org/10.1371/journal.pone.0267056.g001

Fig 2. Example images to illustrate denoising. The left column shows a set of images used in the experiments with no noise added. The

middle column shows the same images with added white noise, and the final column shows the images output by a denoising algorithm.

Note that for the purposes of illustration, the noise level shown is substantially above the detection thresholds measured in the

experiments.

https://doi.org/10.1371/journal.pone.0267056.g002
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cases where noise is added artificially. In many applications, such as removing sensor noise

from a digital photograph, there is no noise-free original image with which to perform the cal-

culation. Second, this method does not measure human perceptions of images (e.g., the

salience of blurring or filter artefacts) and rankings of simple error statistics and human per-

ception can be inconsistent [2]. Third, because different algorithms and filters produce differ-

ent artefacts, it is possible for two denoised images with the same numerical quality score to

differ in their perceived quality. Fourth, we are unaware of any previous work to assess the

human perceptual quality of denoising algorithms. All this points to a need for a reliable

method of assessment to be developed.

1.2. Subjective perceptual measures and objective measures of performance

Wherever possible, experiments on visual perception avoid the vagaries of rating scales for the

reasons of criterion-sensitivity outlined at the beginning of this section. In fact, many experi-

ments in visual psychophysics fall into one of just two broad categories. 1. Measures of a point

of subjective equality. 2. Measures of performance. The first is subjective, by definition, and

involves making a comparison between two images where a property of one is adjusted until a

perceptual match is achieved along the dimension of interest. Could such an approach be used

to assess image quality? One problem here is in knowing what to ask observers to judge. Being

asked to compare ‘quality’ is fraught with problems as outlined already though it has been

tried, seemingly with some success [19]. Alternatively, one might pick a more concrete dimen-

sion—perceived global contrast for example [e.g. 20] but there are two obvious problems.

First, this misses every other image property that might be involved in the perception of qual-

ity. Second, in any case, it is not clear how finding the point where one image looks, in some

sense, like another along a dimension of interest, can tell the investigator anything valuable

about the image-processing algorithm under scrutiny unless one of the image sets is already

quantified for human perception, but this is precisely the problem being addressed.

Fortunately, the second approach above offers much more promise. A typical experiment

uses two-alternative, forced-choice, where observers are required to detect a target signal pres-

ent in one image but not in another. The experimenter then plots percent correct (for there is

ground truth) as a function of signal strength to derive the observer’s sensitivity to the signal

(the reciprocal of the signal strength corresponding with some criterion level of performance,

such as 75% correct). This approach provides a criterion-free measure of signal sensitivity. Or

put another way, it provides an objective tap on human perception, but avoids the subjectivity

inherent in the first approach (though see Section 4.2) and with the inherent vagaries of rating

scales.

Here, we develop and test a simple psychophysical forced-choice technique designed to

achieve the requirements above. It is inspired by masking experiments [e.g. 21] where an

observer’s ability to detect a target (here the added image noise) is impaired by some treatment

(typically a masking stimulus, but here, the application of a denoising algorithm). By measur-

ing detection thresholds for (i) noise added to the original image, and (ii) noise added to an

image that subsequently passes through a denoising algorithm, it is possible to determine the

points at which (i) added noise and (ii) filter artefacts become visually salient. (i.e. the point at

which degradation of image quality becomes detectable). Comparing these two thresholds

(expressed in common units of the added noise) indicates the amount of added noise an algo-

rithm conceals from the human visual system. To illustrate our method, we used a single

denoising algorithm [12] and compared two filter types that are relevant to the vision commu-

nity and described in the following section.
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1.3. Log-Gabor filter design

Log-Gabor filters are widely used in image processing applications [e.g. 22] including image

denoising [12,13]. First proposed by Field [23], they are defined in the Fourier domain, and

have a frequency response that is Gaussian on a log-spatial frequency axis. This is combined

with an orientation component typically defined in polar coordinates (e.g., the filter energy

falls off as a function of polar angle). In many applications, log-Gabor filters are preferred over

more traditional (linear) Gabor designs, because they have the property of being D.C.-bal-

anced for any phase of filter. This derives from the log spatial frequency tuning which prevents

the filter from including energy at zero frequency.

Example Fourier spectra for three polar-separable log-Gabor filters with different orienta-

tion bandwidths are shown in the upper row of Fig 3A, with their filter kernels shown by the

cosine-phase spatial transforms in the lower row. The filter kernels have a superficial similarity

to linear Gabor patches (the product of a sinusoidal carrier and a Gaussian envelope). Polar-

separable log-Gabor filters like these are used widely [e.g. 12,13], but are inconsistent with the

filter properties of human spatial vision [24,25]. Furthermore, a property of polar-separability

is that for narrow orientation bandwidths the spatial profile of the filter kernel splays outwards

(see Fig 3A, lower left). We have never seen any evidence for this in the biological vision litera-

ture and wondered whether the curious shapes of these filter kernels might produce particu-

larly salient artefacts when used with a denoising algorithm.

An alternative to polar-separable filters is to define the orientation component in Cartesian

coordinates instead [26]. Previous studies [e.g. 22] have expressed the bandwidths of such fil-

ters in terms of the orthogonal (u, v) axes of the Fourier plane. However, in the biological

vision literature at least, orientation and spatial frequency (polar) terms are usually preferred,

even if these are not the separable dimensions.

We therefore define Cartesian-separable filters by the equation:

logGab2Dðf ; yÞ ¼ logGab1Dðf ; yÞ � orthFuncðf ; yÞ; ð1Þ

where (f,θ) are polar coordinates in the Fourier plane (spatial frequency (in cycles per image or

cycles per degree) and orientation (in degrees)). The first function is defined as:

logGab1D f ; yð Þ ¼ exp
� log2

f jcosðy� y0Þj

f0

� �n o2

2ð0:424oÞ
2

2

6
4

3

7
5 ð2Þ

where f0 and θ0 are the centre (peak) spatial frequency and orientation of the filter, and ω is the

spatial frequency bandwidth (full-width at half-height) in octaves.

The second function is defined as:

orthFunc f ; yð Þ ¼ exp
� ffsinðy � y0Þg

2

2Z2

� �

; ð3Þ

where

Z ¼ f0sin hð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ln4 �
log2 jcosðhÞj

0:424o

� �2

s

; ð4Þ

and where h is the orientation bandwidth in degrees. The derivation of these equations is pre-

sented in Appendix A, with example Matlab code in Appendix C. For comparison, we also

used standard polar-separable filters. These are defined in a similar manner, with the two
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terms in Eq 1 given by:

logGab1D f ; yð Þ ¼ exp
� log2

f
f0

� �n o2

2log2ðoÞ
2

0

B
@

1

C
A; ð5Þ

where

orthFunc yð Þ ¼ exp
� jatan2fsindiff ; cosdiffgj2

2h2

� �

; ð6Þ

where sindiff = sin(θ)cos(θ0)–cos(θ)sin(θ0), cosdiff = cos(θ)cos(θ0) + sin(θ)sin(θ0) and all

terms retain their previous meanings. The term atan2 is a two-argument arctangent function,

which returns the angle between the origin and the x-axis.

Cartesian-separable filter kernels do not splay outwards at narrow orientation bandwidths,

giving them a more streamlined spatial profile (Fig 3B), but retaining the D.C.-balance of their

polar-separable cousins. We have used them successfully in several image processing models

[e.g. 26–29] and as a psychophysical stimulus [30]. They are also consistent with psychophysi-

cal masking studies [24,25] and single-cell physiology of the primary visual cortex [31].

However, there is one limitation in this filter design. As orientation bandwidth increases,

the ‘orthogonal’ Fourier profile becomes more elongated. This means

that unlike the polar filters (for which the spectrum eventually completes as a ring for a

fully isotropic filter), Cartesian-separable filters have a maximum possible orientation band-

width. Through numerical analysis (Appendix B) we determined that this upper bound

depends solely on the spatial frequency bandwidth, such that, to a close approximation, hMAX
= 15 log2(ω)+45 deg, for bandwidths of 0.7< ω< 5 octaves. Fortunately, it is unusual to

require orientation bandwidths outside this range in practice.

2. Materials and methods

2.1 Apparatus and stimuli

We used images (e.g., Figs 2 and 4A) from the Barcelona Calibrated Image Database (described

in [32], and downloaded from http://www.cvc.uab.es/color_calibration/). The database consists of

350 images of natural and man-made environments around Barcelona, taken with a single cam-

era. Crops of 256x256 pixels were extracted from the lower right corner of each image and con-

verted to greyscale (our choice of crop guaranteed that a grey sphere intended to aid colour

calibration was excluded from each image). We D.C.-balanced each image and reduced its con-

trast by a factor of two to permit noise to be added with no clipping (Fig 4B). We assessed the

spectral slope of each image by fitting a linear function to the binned amplitude spectrum across

100 equally spaced frequency bins, pooling over orientation. We rejected 42 images with exceed-

ingly steep or shallow slopes (often these were out of focus images). This left 308 images, with a

mean RMS contrast of 21dB and a mean spectral slope (see Fig 4C and 4D) of α = -1.45, within

the range reported previously for ensembles of natural images [23,33–36]. The grey level histo-

gram showed slight positive skew, as is typical of natural images [37].

Fig 3. Example log-Gabor filters of different orientation bandwidths for (a) polar-separable and (b) Cartesian-separable filters

(see text for details). In each panel, the upper row shows the Fourier amplitude spectra, and the lower row the cosine-phase spatial

transform (i.e. the filter kernel). All filters have a spatial frequency bandwidth of 1.43 octaves, and orientation bandwidths (h in Eq 4)

of (from left to right) ±11.25˚, ±22.5˚ and ±45˚. Note how the filter kernels of these narrowband polar filters (lower row, a) splay

outwards, whereas the equivalent Cartesian filter kernels do not (lower row, b).

https://doi.org/10.1371/journal.pone.0267056.g003
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Fig 4. Example image, and statistics of image set. Panel (a) is an example windowed image used in the experiment, shown here with no added noise. Panel (b) shows the

grey level histogram for the DC-balanced image set (308 images, each 256x256 pixels). The distribution shows slight positive skew, so the modal grey level (119) is below

the mean (128). Panel (c) is a histogram showing the frequency of different spectral slopes in the image set. The mean and median alpha values are around -1.45. In panel

(d), the effect on the spectral slope of adding white noise is shown. Values are averaged across all 308 images in the data set. Increasing amounts of white noise distort the

approximately linear (on log-log axes) slope obtained with no added noise (red curve). With large amounts of white noise, the spectrum is flat (a slope of 0) over a

substantial portion of the frequency range (e.g., for noise of 27dB, orange curve).

https://doi.org/10.1371/journal.pone.0267056.g004
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We added various amounts of 2D white pixel noise to the image stimuli, using a unique

noise sample for each image and noise level. The noise level was defined as the RMS contrast

(e.g., the standard deviation of pixel values) expressed in decibels (dB), such that CdB = 20

log10(CRMS), where CRMS is the RMS contrast expressed as a percentage. We then used a

denoising algorithm to remove the noise. The algorithm is described in detail by Fischer et al.

[12], and a Matlab implementation is available online (http://www.iv.optica.csic.es/resources/

Software-deployment/Denoising-Log-Gabor/log_gabors_deno.zip). Note that the algorithm

requires a threshold parameter to be set manually by the user. For a given filter bank, we deter-

mined optimal thresholds for each noise level based on fitting a polynomial function to the

mean PSNR statistic across images as a function of threshold. These threshold values were

then applied to all images with that noise level. This ensured that the algorithm performed as

well as was reasonably possible for a given set of images. For baseline conditions (no added

noise), we used the threshold consistent with an added noise contrast of 1% (0dB). This pro-

duced PSNR values far higher than the detection thresholds we subsequently measured, imply-

ing that any artefacts introduced by the denoising algorithm must be invisible for this

condition (which we verified by visual inspection).

Both Cartesian-separable and polar-separable log-Gabor filters (see above) were used in dif-

ferent experimental conditions. All filters had a spatial frequency bandwidth of 1.43 octaves,

and were generated at 6 spatial scales, in octave steps. We compared different orientation

bandwidths for the filters, with full-width-at-half-heights ranging from 11.25˚ (16 filters per

spatial scale) to 45˚ (4 filters per spatial scale). Finally, all stimuli were multiplied by a circular

raised cosine envelope (e.g., a central plateau with a blurred edge) with a full-width-at-half-

height of 240 pixels (see Fig 4A).

All stimuli were displayed on a Nokia MultiGraph 445x monitor which was Gamma corrected

using standard techniques and had a mean luminance of 60cd/m2. The monitor was viewed from

60cm, producing a resolution at the eye of 24 pixels per degree of visual angle, such that the win-

dowed stimuli had a full width at half height of 10 degrees. We used a ViSaGe framestore system

(Cambridge Research Systems Ltd., Kent, UK) to store the stimuli and control presentation.

2.2 Procedure

Observers were seated in a darkened room, with their head in a chin rest at the appropriate

viewing distance (60cm). A fixation dot was present throughout in the centre of the display.

On each trial two stimuli were presented sequentially at fixation for 100ms each, with an inter-

stimulus interval of 400ms. The stimuli were different images from the set, selected at random

with the restriction that any given image would appear only once during a block of trials.

We used different images in the pair to encourage global perceptual judgements of the two

images. This reflects our general view that image quality refers to the entire image and that this

is what should be judged. In contrast, if we had used the same images within each pair, then

observers might have locked onto local differences in the rendering of image features (for

example the shirt in the lower row of Fig 2). While this is a legitimate psychophysical task, it is

less clear (to us) that it pertains to the perception of image quality. However, such an approach

might be of value if, for example, local image processing was the object of enquiry. In pilot

work, we ran the experiment on one observer using this protocol. Thresholds were slightly

lower (1.8dB on average) than for the main experiment, but results were otherwise unchanged.

For the baseline condition, one image had noise added (but did not pass through the

denoising algorithm), and the observer’s task was to indicate which interval contained the

noise [e.g. 38] using the buttons on a mouse. Auditory feedback indicated correctness of

response.
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In the denoising conditions, a pair of images (one with added noise, the other without)

were passed through the denoising algorithm on each trial before being displayed. As before,

the task was to detect the image that contained the noise. The denoising algorithm had no visi-

ble effect on the no-noise image, and it attenuated noise in the other image. Thus, practically

speaking, the task in these conditions was to detect the distortions (filter artefacts and blurring)

caused by the denoising algorithm on the image with added noise (see Fig 2).

There was one baseline condition and six (2 filter types × 3 orientation bandwidths) denois-

ing conditions, each of which was repeated four times by each observer. The conditions were

run in separate blocks, carried out in random order, and taking around 3 minutes each to

complete. For each block, a pair of 3-down-1-up staircases [39] determined the level of noise

added on each trial, spaced in steps of 3dB (factors of
p

2). We fitted cumulative log-Gaussian

functions to the psychometric (% correct) data from each block to estimate thresholds in loga-

rithmic (dB) units of added noise contrast. These thresholds were averaged across repetitions.

2.3 Observers

Three observers completed the experiment. DHB and RJS were both authors and therefore

aware of the purpose of the experiments. Observer ASB was psychophysically experienced, but

naïve regarding the experimental hypotheses at the time he participated, and subsequently

became a co-author. Observers wore their normal optical correction if required and had no

known visual abnormalities. Observer DHB was tested at some additional intermediate filter

bandwidths not shown to the other observers.

2.4 Ethics statement

Procedures were approved by the ethics committee of the School of Life and Health Sciences at

Aston University (approval number #856). Participants were the first three authors of the

study, and provided written informed consent before participating.

2.5 Data availability statement

Raw psychophysical data from the experiment reported here are available at: http://doi.org/10.

17605/OSF.IO/EDTU7

3. Results

Example psychometric functions for two conditions and one observer are shown in Fig 5.

They show the proportion of correct responses at each noise contrast level. The psychometric

functions are monotonic and sigmoidal, typical for detection tasks. Their slopes are similar

across the baseline and denoising conditions. Cumulative log-Gaussian functions provide a

good fit to the results, and ‘threshold’ was taken to be the signal level corresponding with a per-

formance level of 75% correct. Each threshold was estimated from four repetitions of a condi-

tion, which took around 3 minutes each.

Thresholds for three observers and their average are shown in Fig 6. In all cases, the baseline

thresholds (white circles) were substantially lower than the thresholds for denoised stimuli

(orange and purple symbols). This threshold elevation by the denoising algorithm means it

successfully ‘hid’ some of the added noise, rendering it undetectable. Averaging across differ-

ent observers and filter types, the denoising algorithm increased threshold by 6dB. In other

words, the algorithm concealed twice as much noise as could be detected by the human visual

system prior to denoising. To our knowledge, this is the first time a performance-based mea-

sure of denoising has been reported.
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Comparisons between filter orientation bandwidths, and between filter types do not reveal

significant effects at the group level (two-way ANOVA on thresholds, all p> 0.05). There are

some notable features within observers, such as greater threshold elevation for ASB at

Fig 5. Example psychometric functions for observer DHB. Data points represent the proportion of trials on which the observer correctly identified the

stimulus with added noise. The guess rate of 0.5 is given by the horizontal dashed line. Symbol size at each level is proportional to the number of trials.

Curves are fits of the cumulative log-Gaussians, with vertical grey lines indicating the noise contrast at threshold performance (75% correct). In the Baseline

condition (white symbols) the target was white pixel noise added to one of the images in the 2AFC pair. In the Denoised condition (purple symbols) the

stimuli were the from the same set as at baseline, but after being passed through the denoising algorithm.

https://doi.org/10.1371/journal.pone.0267056.g005
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intermediate filter bandwidths (Fig 6A), and a slight downward trend to the functions for

DHB (Fig 6B). However, these were not consistent across observers, and do not lead us to gen-

eral conclusions. On average (Fig 6D), our novel psychophysical analysis shows that this

Fig 6. Thresholds for individual observers (a-c) and their average (d). Each point is the average of four repetitions (a total of around 420 trials) of the experiment

(a-c) or three observers (d), with error bars giving ±1SE of the mean. White symbols are contrast thresholds for detecting which of a pair of images had white noise

added to it. Coloured symbols are thresholds for the same task, but after passing all images through a denoising algorithm. Thus, the difference between white and

coloured symbols indicates the amount of visible noise removed by the algorithm, which on average was around 6dB.

https://doi.org/10.1371/journal.pone.0267056.g006
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particular algorithm is robust to changes in filter bandwidth, and that both polar- and Carte-

sian-separable filters are equally effective for image denoising.

3.1. Comparison with error statistics

A more traditional method for evaluating denoising algorithms is to calculate an error statistic,

such as the mean squared error (MSE)

MSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðimage0 � imageNÞ

2

n

s

; ð7Þ

where imageO is the original image (scaled from 0–1), imageN is the image with noise added,

and n is the number of pixels.

From this, one can then calculate the peak signal-to-noise ratio (PSNR; e.g., [18])

PSNRdB ¼ 10� log10

L2

MSE

� �

; ð8Þ

where L is the dynamic range, with a value of 1 for our images (scaled 0–1). Notwithstanding

the problems with this statistic, as outlined in the Introduction (Section 1), we wondered how

well it would fare for the images used here and how it would compare with previous studies.

The PSNR can be calculated for images with added noise, and the same images after passing

through a denoising algorithm, where large PSNR values indicate little corruption of the origi-

nal image. We calculated this statistic across our set of 308 images at each level of added noise.

The results are shown in Fig 7 for added noise (solid black line) and denoised (circles) images

for the various filter bandwidths and types used in the experiment. The set of six different col-

oured circles (for the 2x3 filter conditions) superimpose (and can be barely distinguished),

supporting our experimental finding that the filter types and bandwidths tested were equally

effective.

As the noise contrast increased, PSNR reduced with a slope of -0.5 (in dB units; note that

we use different dB conversions on the x and y axes for consistency with the literature–the

PSNR values are scaled by a factor of 10 (see Eq 8), and the contrast values by a factor of 20

(see Methods). If the same scaling factor were used on both axes the slope would be -1) for

added noise, and a slope of around -0.25 for denoised images. We projected the empirical

thresholds (in units of noise contrast) onto the x-axis of Fig 7 to estimate the PSNR that corre-

sponds to detection thresholds from our 2AFC experiment. This is given for the baselines

(black dashed line) and the average of the denoised conditions (purple dashed line). It appears

that for both noisy and denoised images, human detection threshold occurred at a PSNR of

around 18dB. This equivalence might serve as a useful heuristic for future studies in which it is

not possible to perform behavioural experiments.

4. Discussion

We measured observers’ ability to detect noise added to an image, both before and after

denoising using a multiscale filtering technique. The denoising algorithm removed around

6dB of perceptually salient noise, indicating a perceptually meaningful improvement in visible

image quality. We also compared different filter bandwidths and filter types, but found no con-

sistent differences between the conditions tested, either using the detection paradigm, or by

calculating an error statistic (PSNR). This demonstrates that Cartesian-separable log-Gabor fil-

ters are as good as their polar-separable cousins for the present application.
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4.1 Limitations of denoising algorithms

Standard image denoising algorithms are effective only for noise with an approximately flat

(e.g., white) spectrum. This is because they reduce activity in the high spatial frequency filter

bands, which will contain a disproportionate amount of noise power, but very little image

information owing to the approximately 1/f spectrum of natural images. Noise with a

markedly different spectrum, such as pink (or fractal) noise which itself has a 1/f spectrum,

pose a much harder challenge to denoising techniques. However, most image noise, from digi-

tal camera CCD sensor noise or electromagnetic interference, for example, is approximately

white. This means that filter-based denoising algorithms are useful in a wide range of situa-

tions, including medical, security and space imaging, as well as consumer photo-manipulation

software.

Fig 7. PSNR values for noisy (black line) and denoised (circles) images, calculated using Eq 8. Differences between filter

types and bandwidths (different coloured circles) were negligible. The dashed lines project the mean baseline (black) and

mean denoised (purple) thresholds from Fig 6D onto the PSNR scale. Observers reached threshold at very similar PSNR

levels for the noisy and denoised images.

https://doi.org/10.1371/journal.pone.0267056.g007
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4.2 The human detection process

The details of our findings here might be specific to our experimental conditions. For example,

different stimulus durations, image sizes and resolutions would be expected to influence

human detection performance. However, the purpose of our study was more general than this.

Our aim was to show that psychophysical performance is applicable to the quality assessment

of image processing algorithms, exemplified here by a denoising algorithm. We have achieved

this aim.

One limitation of all psychophysical measures of performance is that while the experi-

menter learns what signal level can be detected reliably, the perceptual cues for doing this can-

not be inferred from the data. In our case, our results cannot tell us what image distortions

were being detected by the observer in the denoised images. Nonetheless, some comments are

worthwhile. The spatial frequency bandwidths of our filters increased with spatial frequency

(when expressed in linear units) and so it is the higher frequency filters that detect most of the

noise. This causes high spatial frequency filtering artefacts when the local noise levels exceed

the thresholding of the denoising algorithm, visible as distorted copies of the filter kernel

superimposed on the image. On the other hand, the thresholding in the denoising algorithm

can also cause a loss of legitimate image information, again at higher spatial frequencies, caus-

ing blurring. In principle, observers might use either or both these cues to perform the detec-

tion task and differences in strategy might explain some of the individual variation between

observers (see Fig 6).

Regardless of the cues used, it is likely that the ability to detect added noise will be greatest

at the fovea, with peripheral vision showing a greater tolerance (e.g., lower sensitivity) to both

added noise and denoising artefacts. The precise content of an image or image region will also

influence performance. For example, the upper right corner of the image in Fig 1E shows

more salient filter artefacts than the lower left corner. For this reason, thresholds measured

using the present technique are valid only for an ensemble of images and may not accurately

predict performance for a single specific image.

4.3 The forced-choice detection paradigm

Central to our approach is that forced-choice experiments have ground truth. This allows the

experimenter to learn about human ability to detect that objective truth. In the case of image

processing algorithms, the main challenge for experimental design is to identify a signal for

which the performance measure will pertain to image quality. We showcased the approach

here in the context of a denoising paradigm because this provided an obvious pointer to the

choice of external image noise as the signal. But how might the forced-choice approach be

extended to other image processing algorithms, such as image compression, deblurring and

edge-detection?

4.4 Using 2AFC to assess other types of image processing algorithm

For algorithms of the type introduced above, the removal of image noise is not the goal, so

image noise might not be an obvious choice of signal. (We come back to this in Section 4.5.)

Nonetheless, 2AFC performance measures are still applicable.

4.4.1 Compression algorithms. The most straightforward example, and one that pre-

ceded our own work, is the use of 2AFC detection of image compression artefacts where the

observer chooses between the original image and a compressed version of that image [10,11].

This provides a clean measure of the level of a particular type of compression that can be toler-

ated by the human visual system.
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4.4.2 Deblurring algorithms. Deblurring algorithms take a blurred image and attempt to

restore the original unblurred image [e.g. 9]. If the depth of restoration is too light, then blur

remains, if it is too heavy, then image artifacts are introduced. The approach we offer for

assessing the quality of such algorithms follows a similar logic to that we used for denoising

algorithms. Since denoising removes noise, we used added noise as a signal, and since deblur-

ring removes blur, we propose using added blur as a signal. Thus, the baseline condition

involves measuring a 2AFC psychometric function for the detection of blur (added to a library

of images at a range of levels), and the test condition does the same but after those same images

(blurred and unblurred) have been passed through the deblurring algorithm. This approach

will indicate the level of blur that the deblurring algorithm can hide before either algorithm

artefacts and/or blur become detectable.

4.4.3 Edge detection algorithms. Edge detection algorithms take an image as input and

produce an edge map of luminance boundaries as output. This is a classic example of where

readers are often left to judge for themselves which algorithm is best [e.g. 8]. How can this be

made into 2AFC? If an edge map is a high-quality representation of the original image, then

observers should be able to readily identify it with that image. On the face of it, this is a trivial

task, but observers can be pushed to the limits of their ability by superimposing ‘distractor

maps’ on the stimulus. To test a specific edge detection algorithm, we suggest applying it to a

library of images. A 2AFC trial would consist of a preliminary presentation of a randomly

selected target image followed by a stimulus pair of n superimposed edge maps, each randomly

selected from the library of the edge maps for other images. In one of those images, one of the

maps is replaced by the target edge map, the task being to detect which one. The number of

superimposed edge maps, n, is varied from trial-to-trial to generate a psychometric function

for detection of the correct edge map.

One potential problem here is that the edge maps produced by most edge detection algo-

rithms for natural (photographic) images are so similar that the experiment might not have

the required sensitivity (i.e., integer steps of distractors might be too coarse to resolve percep-

tual differences between algorithms). On this matter, we suggest two possible solutions. One is

to use cropped images where features are sparse and where different algorithms might perform

differently. Another approach is to use a library of synthetic images (made from superimposed

sine-wave gratings) designed to reveal the different mechanics of the algorithms under test

[40–42]. In practice, this might need some fine tuning to be effective; our aim here is to high-

light an empirical direction with potential.

4.5 Extending the 2AFC approach

Our approaches for denoising and deblurring above used signal level as an independent vari-

able for measuring a psychometric function. Needless to say, the depth of algorithmic treat-

ment could be controlled by the experimenter as a second independent variable (e.g., the

threshold parameter in the denoising algorithm we used here). This would help provide a

quantitative measure of when the algorithm’s artefacts exceed the benefits of what the algo-

rithm brings. This might be particularly valuable for algorithms that contain several critical

internal parameters.

The type of experiment we propose for edge detection algorithms above (Section 4.4.3)

prompts another approach that might be taken with denoising and deblurring algorithms.

Instead of using noise as the target, it could be used as a mask added to each image after the

application of the algorithm as appropriate. The task would be to detect which of two images

(clean versus corrupted plus algorithm) had been treated by the algorithm for variable levels of

(fractal) noise mask whose spectra match the original image (i.e., phase randomized versions
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of the original image). In this case, the lower the added noise that can be tolerated to a criterion

level of performance (e.g., 75% correct), the better the algorithm. This can be valuable for

assessing algorithms intended to deal with such heavy corruption (by noise or by blur) that

algorithm artefacts are expected but, for whatever reason, are preferred over the original cor-

ruption (see examples in Fig 8 of [12]). Note that this approach should work well for compari-

sons across algorithm since (i) severe artefacts will require high levels of fractal mask to hide

them and (ii) underperforming algorithms that do not remove the original corruption will

require high levels of fractal mask to hide (a) the high spatial frequency components of white

image noise in the case of denoising algorithms and (b) hide the absence of high spatial fre-

quency image components in the case of deblurring. However, once again, our aim is to high-

light an empirical approach with potential. In practice, no doubt, it would need some fine

tuning.

5. Conclusions

We have introduced and tested a new performance-based psychophysical method for assessing

the efficacy of image denoising algorithms. Performance methods do not suffer from the crite-

rion effects that undermine the subjective techniques presently found in the literature [1,43–

46]. We have also suggested ways to apply the approach to other types of image processing

algorithms. Finally, we provided a formal derivation of a Cartesian-separable version of the

log-Gabor filter with polar parameters which offers some advantages over the traditional

polar-separable version, particular for the biological vision community. This type of filter was

shown to have equal merit to its polar separable equivalent for the denoising algorithm used

here.

Appendix A: Derivation of the Cartesian separable 2D log Gabor function

Our log Gabor stimuli and filter kernels are Cartesian separable with polar parameters (f, θ)

and are defined in the Fourier domain. Spatial frequency bandwidth is defined as full-width at

half-height in octaves (ω) at the best orientation (θ0) and orientation bandwidth is defined as

the orientation half-width at half-height (h) at the best spatial frequency (f0). (This is common-

place in the biological vision literature.) In linear coordinates, the orthogonal 1D function

(orthFunc(f, θ)) is Gaussian with a full-width at half-height, y. On log coordinates, the 1D log

Gabor function (logGab1D(f, θ)) is Gaussian with a full-width at half-height, ω. (See Fig 7 for a

sketch of the geometry).

The two-dimensional Cartesian separable log Gabor function (logGab2D(f, θ)) is the prod-

uct of two 1D functions:

logGab2Dðf ; yÞ ¼ logGab1Dðf ; yÞ � orthFuncðf ; yÞ: ðA1Þ

Equations for the two 1D functions were presented without derivation in Meese [26]. We

report the derivation of a simpler form of those equations here. The standard equation for a

Gaussian function (in the frequency domain) with standard deviation σ is:

G sð Þ ¼ exp
� ðf � f0Þ

2

2s2

� �

:

Converting this to octaves we replace f—f0 with log2(f/f0), and allowing for a rotation of

coordinates to place the 1D function at any orientation in 2D Fourier space we replace f with f|
cos(θ - θ0)|. The full-width at half-height is related to the standard deviation by the standard
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conversion: ω = σ/0.424. Making each of these substitutions gives:

logGab1D f ; yð Þ ¼ exp
� log2

f jcosðy� y0Þj

f0

� �n o2

2ð0:424oÞ
2

0

B
@

1

C
A; ðA2Þ

Deriving the orthogonal 1D function is a little trickier. The orientation bandwidth (h) is

defined at the best frequency (f0) and so the width of the orthogonal Gaussian y (Fig 7) is not

straightforwardly derived from h.

Allowing for rotation of co-ordinates as before, the orthogonal function is given by:

orthFunc f ; yð Þ ¼ exp
� ffsinðy � y0Þg

2

2Z2

� �

; ðA3Þ

where η = 0.424y. But we want η in terms of h (and f0). To achieve this we observe that the

point (f0, θ0 + h) of the 2D function has a value of 0.5 (by definition). Thus, we have:

logGab2Dðf0; y0 þ hÞ ¼ logGab1Dðf0; y0 þ hÞ � orthFuncðf0; y0 þ hÞ ¼ 0:5;

from which we can write:

orthFuncðf0; y0 þ hÞ ¼ 0:5=logGab1Dðf0; y0 þ hÞ:

Expanding the l.h.s. gives:

exp
� ðf0sinðhÞÞ

2

2Z2

� �

¼
0:5

logGab1Dðf0; y0 þ hÞ
:

Taking natural logs and rearranging gives:

Z ¼ f0sin hð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2ln
0:5

logGab1Dðf0; y0 þ hÞ

� �� �� 1
s

; ðA4Þ

which reduces by substitution to,

Z ¼ f0sin hð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ln4 �
log2 jcosðhÞj

0:424o

� �2

s

: ðA5Þ

Thus, the Cartesian separable 2D log Gabor function is given by the product of Eq A2 and

Eq A3 (i.e. Eq 1), where the parameter η in Eq A3 is provided by Eq A4, which is in terms of f0
and h, as required. These equations produce only a single lobe of the filter in the amplitude

spectrum. The symmetrical lobe can be derived by rotation of 180˚ about the origin, as imple-

mented in the Matlab code in Appendix C. Furthermore, t he phase component is set directly

in the phase spectrum (the angular component of the Fourier transform) before inverse trans-

forming back into the spatial domain.

Note that the spatial frequency bandwidth puts a constraint on the range of orientation

bandwidths available. For example, as the point (f0, θ0 + h) is rotated further anticlockwise in

Fig 7 (increasing the orientation bandwidth) there comes a point where logGab1D(f, θ)

becomes less than 0.5. When this happens, there is no value of y that can lift logGab2D(f, θ) to

half-height at that point.
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Appendix B: Numerical analysis of maximum filter bandwidths

We determined the upper orientation bandwidth limit as a function of spatial frequency band-

width by numerical analysis. Cartesian-separable log-Gabor filters were generated across a

wide range of bandwidths. We assessed the point at which the area of the filter’s footprint in

the Fourier spectrum stopped increasing as a function of orientation bandwidth. This corre-

sponded to the point at which Eq A4 was undefined. These maximum bandwidths are linear as

a function of log spatial frequency bandwidth over a wide range (0.7 to 5 octaves) as shown in

Fig 8. We fitted a straight line to this portion of the curve, which is given by 15 log2(ω)+45. We

confirmed that these limits are constant across different centre spatial frequencies, image sizes

and resolutions.

Appendix C: Example Matlab code for generating log-Gabor functions

function imLG = makeloggabor(imSize,f0,theta0,omega,h,phi,logGabType)

% imLG = makeloggabor(imSize,f0,theta0,omega,h,logGabType)

% Produces either a Cartesian- or a polar-separable log-Gabor element.

% Input args: imSize = width and height of output image

% f0 = centre spatial frequency in cycles/image

% theta0 = centre orientation in degrees

% omega = spatial frequency bandwidth in octaves (FWHH)

% h = orientation bandwidth in degrees (HWHH)

% phi = phase angle in degrees

% logGabType = ‘c’ or ‘p’ for Cartesian/polar-separable

% Output: imLG = log Gabor filter element (imSize x imSize)

% See Baker, Summers, Baldwin & Meese (2022), PLoS ONE, doi: 10.1371/journal.pone.

0267056

% Distributed under the Creative Commons Attribution-ShareAlike 4.0 International

license

theta0 = theta0�pi/180; % convert all angular parameters to radians

h = h�pi/180;

phi = phi�pi/180;

u = meshgrid(1:imSize,1:imSize)—((imSize+2)/2); % set up coordinates

v = u’;

f = sqrt(u.^2 + v.^2); % radial (spatial frequency) coordinate

theta = atan2(v,u); % angular (orientation) coordinate

uft = f.� cos(theta-theta0);

switch logGabType

case ‘c’ % Cartesian-separable log Gabor

numer = -(log2((f.�abs(cos(theta-theta0)))./(f0)).^2);

denom = 2�(0.424�omega)^2;

logGab1D = exp(numer./denom); % Implementation of Eq 2

k = (log2(abs(cos(h)))/(0.424�omega))^2;

eta = f0�sin(h)�sqrt(1/(log(4)—k)); % Eq 4

orthFunc = exp((-(f.�sin(theta-theta0)).^2)./(2 � eta^2)); % Eq 3

case ‘p’ % polar-separable log Gabor

logGab1D = exp((-(log(f./f0)).^2)./(2�log(omega)^2)); % Eq 5

sinDiff = sin(theta)�cos(theta0)-cos(theta)�sin(theta0);

cosDiff = cos(theta)�cos(theta0)+sin(theta)�sin(theta0);

thetaDiff = abs(atan2(sinDiff,cosDiff));
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orthFunc = exp((-thetaDiff.^2)./(2�h^2)); % Eq 6

orthFunc = orthFunc + rot90(orthFunc,2);

end

logGab2D = logGab1D.� orthFunc; % combine the two filter components

cx1 = ones(imSize).� complex(0,0); % adjust the log-Gabor to be

cx2 = ones(imSize).� complex(0,0); % in the requested phase

cx1(uft>0) = complex(logGab2D(uft>0).�sin(phi),-logGab2D(uft>0).�cos(phi));

cx2(uft<0) = complex(logGab2D(uft<0).�sin(phi),logGab2D(uft<0).�cos(phi));

cxLogGab2D = cx1 + cx2;

Fig 8. Maximum orientation bandwidth as a function of spatial frequency bandwidth (ω). The straight dashed line is given by 15log2(ω) + 45.

https://doi.org/10.1371/journal.pone.0267056.g008
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realImage = fftshift(real(ifft2(fftshift(cxLogGab2D))));

imLG = realImage./ max(abs(realImage(:)));

% Filters are individually peak-normalised in this script. If generating

% multiple filters, you may wish to remove this line and rescale to the

% global peak of the filter bank, to balance power across all filters.

end
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