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Abstract

Bayesian skyline plots (BSPs) are a useful tool for making inferences about demographic

history. For example, researchers typically apply BSPs to test hypotheses regarding how cli-

mate changes have influenced intraspecific genetic diversity over time. Like any method,

BSP has assumptions that may be violated in some empirical systems (e.g., the absence of

population genetic structure), and the naïve analysis of data collected from these systems

may lead to spurious results. To address these issues, we introduce P2C2M.Skyline, an R

package designed to assess model adequacy for BSPs using posterior predictive simula-

tion. P2C2M.Skyline uses a phylogenetic tree and the log file output from Bayesian Skyline

analyses to simulate posterior predictive datasets and then compares this null distribution to

statistics calculated from the empirical data to check for model violations. P2C2M.Skyline

was able to correctly identify model violations when simulated datasets were generated

assuming genetic structure, which is a clear violation of BSP model assumptions. Con-

versely, P2C2M.Skyline showed low rates of false positives when models were simulated

under the BSP model. We also evaluate the P2C2M.Skyline performance in empirical sys-

tems, where we detected model violations when DNA sequences from multiple populations

were lumped together. P2C2M.Skyline represents a user-friendly and computationally effi-

cient resource for researchers aiming to make inferences from BSP.

Introduction

Posterior predictive simulation (PPS) is a commonly used technique for assessing model ade-

quacy in a Bayesian framework [1]. PPS samples parameter values from the posterior distribu-

tion of an empirical analysis and simulates data that match the underlying assumptions of the

model used to analyze the data. The probability distribution of the simulated data given the

model is then compared to the actual data in order to assess model adequacy, either directly or
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via the use of proxy summary statistics. In either case, empirical data that are consistent with

the assumptions of the model used to analyze the data will have probabilities distribution that

are similar to the simulated data, and such a result would strengthen the confidence of the

researcher in the inferences that result from the analysis of the empirical data. On the other

hand, finding that the posterior distribution of the empirical data differs substantially from the

posterior predictive distribution provides strong evidence that one or more of the underlying

model assumptions has been violated. In sum, PPS may allow researchers to learn how a

model does not fit the data [2, 3] providing perhaps the best approach to evaluating model ade-

quacy for complex models [4].

Posterior predictive checks were introduced to molecular systematics by Huelsenbeck et al.

[5] in the context of assessing the adequacy of models of sequence evolution, which are essen-

tial to the calculation of the posterior distribution in Bayesian inference. Work on assessing

the fit of sequence evolution models has continued, with recent authors introducing posterior

predictive approaches to evaluating the fit of models of sequence evolution in Bayesian phylo-

genetic inference [6], and the development of new statistics for detecting cases where model

misspecification negatively influences phylogeny estimation [7]. PPS is gaining popularity for

analyses conducted at the species level; for example it has been implemented to show that two

common population genetic models perform poorly in describing the history of a duck species

[8], has been used to identify instances of introgressive hybridization [9], and has been used to

explore the accuracy of DNA barcoding efforts [10]. Recently, Duchene et al. [11] introduced a

new software to assess the adequacy of phylodynamic models in infectious diseases investiga-

tions. Thus, posterior predictive assessments of model adequacy have the potential to improve

investigations by verifying that the data collected from empirical systems are adequate to

address the research questions. This can be particularly important when data are recycled or

repurposed, that is, downloaded from public databases and used to address new questions

(e.g., [12–14]).

There are millions of sequences available from ‘first generation’ phylogeographic investiga-

tions (e.g., BOLD, GenBank). These mitochondrial or chloroplast phylogeographic data sets

are also still being collected by researchers, often as a first pass at data analysis in empirical sys-

tems (e.g., [15]). Such data are often used in multispecies comparative analyses, such as those

investigating simultaneous divergence (e.g., [16, 17]) or expansion [13, 18] using hierarchical

ABC. Similarly, these data can be used in automated phylogeography [19] and predictive phy-

logeography [20, 21]. However, each of these analyses makes certain assumptions about these

data that may be difficult to assess. Hence, a practical limit on the repurposing of phylogeo-

graphic data is present when researchers cannot easily assess model adequacy.

Ideally, any phylogeographic data should be assessed by scientists in a manner that consid-

ers the model assumptions of the analyses that they plan to conduct. One example is the

requirement of some analytical methods that the samples are free of population genetic struc-

ture, which can confound hierarchical tests of population expansion. To address this question,

researchers have applied a species delimitation approach to identify structure within nominal

species [18, 22]. Recently, Fonseca et al. [23] introduced a posterior predictive test of the data

given the Generalized Mixed Yule Coalescent (GMYC) model in order to assess model ade-

quacy, showing that large population sizes are likely to confound GMYC analysis. Here, we

develop a posterior predictive test of model adequacy for population size changes using PPS

on Bayesian Skyline plots (BSP; [24]).

Bayesian Skyline plots are a class of skyline-plot methods devised to infer the demographic

history from DNA sequences using coalescent theory and co-estimation of genealogies and

nucleotide substitution-parameters [25]. Introduced by Drummond et al. [24], BSPs are an

extension of earlier Skyline-plot methods [26, 27] that enable phylogenetic uncertainty to be
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incorporated. To reconstruct the effective population size through time, BSPs estimate gene

genealogies from a DNA alignment and simultaneously infer the demographic history from

the gene genealogies. The coalescent model used in BSPs contains inherent assumptions about

DNA sequences used in the analysis, notably that these were randomly sampled from a pan-

mictic population and that the sequences are orthologous, nonrecombining, and neutrally

evolving [25]. Because many datasets can potentially violate the first assumption (i.e., absence

of genetic structure), we built an R package to assess the model adequacy for BSPs using PPS

that can easily be incorporated into analysis pipelines.

Demographic history in empirical datasets

Duchene et al. [11] advocated that empiricists explore the model adequacy of the skyline plot

model as part of the inference process. To support this suggestion, we include an investigation

into two species of amphibians. Both species (Leptodactylus troglodytes and Rhinella granulosa)

occur throughout northeastern Brazil in the xeric Caatinga biome, which is bordered by savan-

nahs to the west (the Cerrado biome) and rainforest to the east (the Atlantic Forest biome).

While the individual distributions of these species differ slightly, with L. troglodytes widespread

across the Caatinga and enclaves of this vegetation within the Cerrado and R. granulosa span-

ning the Caatinga and the Atlantic Forest, both species have been the subject of recent investi-

gation with genomic data, with approximately 15,000 SNP for L. troglodytes [28] and

approximately 7,000 SNP for R. granulosa [29]. In both species demographic model selection

was used to detect changes in population sizes (either instantaneous or exponential) as an

important component of the demographic history of each species. These systems were chosen

because there are existing SNP data that provide evidence for the importance of population

size change in the demographic history of each species and because mitochondrial DNA were

not included in the original investigations. In addition to analyzing data from these species, we

include analysis of published data from eight other taxa.

Material and methods

P2C2M.Skyline package

P2C2M.Skyline is an open-source R package designed to assess the statistical fit of the BSP

model. The package is available at: https://github.com/P2C2M. User input to P2C2M.Skyline

includes a phylogenetic tree and the log file resulting from a BSP analysis. The package check

model fit to BSP model using PPS following Lewis et al. (2014). The general workflow is shown

in Fig 1.

1. P2C2M.Skyline requires two input from users:

a. A ultrametric phylogenetic tree

b. The log file resulting from a Bayesian Skyline analyzed in Tracer [30].

2. P2C2M.Skyline calculates a theta value from the phylogenetic tree using the function theta.

tree implemented in the pegas R package [31].

3. P2C2M.Skyline calculates the magnitude of the population size change by sampling a ran-

dom value for ancestral and current population size from the credible interval from the pos-

terior distribution of the Bayesian Skyline analysis (i.e., by choosing a value from the

confidence interval). While the ancestral population represents the value of population size

in the credible interval from the posterior distribution associate with the oldest coalescent

time, the current population represents the value associate with the most recent time. Then,
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by dividing the ancestral population size by the current population size, the package calcu-

lates the population size ratio. This value is used in downstream analyses to model the pop-

ulation size trajectory through time (i.e., constant, expansion, or bottleneck).

4. P2C2M. Skyline uses the software ms [32] to simulate gene trees under a coalescent model.

Three parameters are used to simulate the data: (i) the number of individuals from the

empirical dataset; (ii) the q value calculated in step 2; (iii) the magnitude of the population

size change calculated in step 3. The coalescent simulations are replicated “n” times, with

the default value set to 100.

5. P2C2M.Skyline calculates for each simulated gene tree and the user supplied ultrametric

tree a summary statistic: the sum of the cumulative coalescent interval divided by the

reverse number of elements:

Xn

i¼1

ti
i

ð1Þ

where n is the number of divergence events, i is ordered from the oldest (1) to youngest (n)

divergence event, and ti is the time of the ith divergence event. The summary statistic is cal-

culated from all simulated datasets to construct the null distribution. Next, the summary

statistic is calculated for the empirical dataset.

6. P2C2M.Skyline assesses the statistical fit of the Bayesian Skyline plot by calculating the

number of simulated summary statistic values falling above and below the empirical value

and then, multiplying the lesser value by two, which is equivalent to a two-tailed test. Next,

a p-value is calculated by dividing this number by the total number of elements in the null

distribution. A poor fit to the Bayesian Skyline is inferred if the p-value is lower than a user-

defined threshold α (see Results).

Fig 1. Workflow of the P2C2M.Skyline pipeline. Arrows represent the path of the data from step 1 to 6. See P2C2M.Skyline package section on Material and

Methods for more information.

https://doi.org/10.1371/journal.pone.0269438.g001
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Simulation testing

To evaluate the performance of our package, we simulated datasets under different demo-

graphic histories and sampling schemes. Specifically, we used ms to simulate five evolutionary

histories: (i) constant population size through time, (ii) population expansion, (ii) population

bottleneck, (iv) two populations with shallow divergence, and (v) two populations with deep

divergence. Because populations in (iv) and (v) are analyzed as a single population, these last

two evolutionary scenarios represent models that violate the assumptions of the Bayesian Sky-

line model. Each evolutionary scenario was simulated under two sampling schemes: (i) 10

individuals and (ii) 50 individuals. For the two-population model, the number of individuals

was equally distributed between the populations (i.e., each population had 5 or 25 individuals).

We assumed a generation time between 3–5 years and an effective population size between

10,000–100,000 individuals, which is in the range of that observed in empirical systems (e.g.,

[20]). For the two-population models, we assumed a divergence time of 4N (shallow) and 8N

(deep) generations in the past. We simulated datasets assuming a total of 200 segregating sites

on a gene 1,000 bp long, totaling 1,000 datasets (100 replicates for each model under two dis-

tinct sampling schemes). DNA sequences of 1,000 bp were generated for each gene tree using

Seq-Gen [33] under the HKY model. We reconstruct for each dataset changes in population

size through time using the Bayesian Skyline implemented in Beast2 (source code version;

[34]). We used a strict molecular clock and ran the chain for 107 generations, sampling every

103 generations. We evaluated convergence using Tracer v1.7.1, ensuring the effective sample

size was higher than 200 for all parameters. Then, Bayesian Skyline log files were analyzed

using Tracer [30]. Gene trees were summarized using the maximum clade credibility tree in

TreeAnnotator 1.8.0 [35]. Finally, we used P2C2M.Skyline assess the statistical fit of the BSP

model to each simulated dataset. We evaluated the performance of P2C2M.Skyline under four

significance values (1%, 2.5%, 5%, and 10%) using the Mathews Correlation Coefficient

(MCC; [36]) implemented in the R package mltools [37].

Summary statistics

We assessed the effectiveness of two additional summary statistics: (i) interval lengths [38] and

(ii) summed branching times. While the former summary statistic is defined as the summed

differences between time-interval lengths, the latter is the sum of the distance from each node

to the tips. We used the simulated datasets to test the performance of both summary statistics

in comparison to the summary statistic proposed previously.

Applying P2C2M.Skyline to empirical data

We further assessed the utility of P2C2M.Skyline in 10 empirical datasets, consisting of mito-

chondrial DNA (Anura (4), Squamata (2), Passeriformes (3), and Araneae (1)). While most of

the sequences were download from Genbank, we generated fragments of mitochondrial DNA

for two of these empirical systems: Rhinella granulosa and Leptodactylus troglodytes. All

sequences for both species are deposited in GenBank (accession numbers: numbers will be

included upon acceptance). For these species, we extracted total DNA from liver and muscle

preserved in ethanol using DNeasy Blood & Tissue kits (Qiagen, Venlo, Netherlands) and sam-

pled the mitochondrial genome by sequencing the cytochrome oxidase subunit one (CO1)

gene using the protocol and primers described in Lyra et al. [39]. Recent investigations

(Thomé et al., [28]; Thomé et al., [29]), using genomic data, detected two populations for R.

granulosa and three populations for L. troglodytes, respectively. Recent demographic changes

were also detected for populations of both species based on phylogeographic model selection.

In particular, population 3 of L. troglodytes showed a recent bottleneck, and the remaining
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populations showed signals of recent expansions. Because of this dynamic evolutionary his-

tory, both species represent excellent candidates to test P2C2M.skyline.

For all empirical datasets, we first selected the best model of nucleotide substitution using

the Bayesian information criterion (BIC) implemented in JModelTest 2.0 [40]. Next, input

files for P2C2M.Skyline were generated running BSP analysis as described for the simulated

datasets. Empirical datasets were analyzed by grouping all the samples and by splitting them

into different lineages as recovered in the original papers. We used a α value of 5% (see the

Results of the simulations). We then compared the results of our analyses to those reported in

the papers that described these data, where applicable. Our goal here was to assess the extent to

which potentially misleading inferences result from cases of poor model fit.

Results

Simulation testing

When there were no model violations (constant, bottleneck, and expansion datasets), P2C2M.

Skyline failed to reject the Bayesian Skyline model for nearly all simulated datasets. (Fig 2 and

S1 Fig in S1 File for α = 0.025 and 0.1). In contrast, for the two-population model (shallow and

deep divergence), our package showed that many of the simulated datasets violate the Bayesian

Skyline model (Fig 2 and S1 Fig in S1 File). The Matthews correlation coefficient (MCC)

showed that the α value of 2.5% produced better results when compared to thresholds of 1%,

5%, and 10% (Table 1). However, this threshold also produced a high rate of false positives

(i.e., datasets simulated under the correct premises that P2C2M.Skyline classified as a model

violation). We advise users to use a threshold of 5% in their investigations because the lower

rate of false negatives and reasonable values of MCC.

Fig 2. Percentage of simulated datasets with a p-value of<1% and 5% across the five different diversification scenarios. In each chart, the Y-axis shows the

percentage of replicates where the statistical fit of the Bayesian Skyline model is rejected or not under two sampling schemes (10 and 50 individuals).

https://doi.org/10.1371/journal.pone.0269438.g002
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Summary statistics

We used MCC to assess the performance of interval lengths and summed branching times in

comparison to the summary statistic proposed in step 5 (see P2C2M.Skyline package section).

MCC under significance value of 5%, which showed to be the best significance value, showed

that both summary statistics performed poorly compared to our proposed summary statistic.

We recovered a MCC value of -0.14, 0.36, and 0.45 for interval lengths, summed branching

times, and our proposed summary statistic, respectively. Given these results, which show that

the proposed summary statistic maximizes true positive and true negative while minimizes

false positives and false negatives, only this summary statistic is discussed further in the text.

Information on each summary statistic is presented in S1–S3 Tables in S1 File.

Applying P2C2M.Skyline to empirical data

Overall, our package performed well when applied to empirical datasets. For example, we iden-

tified model violations in five of eight systems when all samples were considered to belong to a

single population (Table 2). In four of these cases, previous work identified population struc-

ture. This lumping of samples, which is a clear violation of the P2C2M.Skyline model, is obvi-

ous in retrospect in these cases due to other analyses conducted by the researchers, but since

the characterization of population genetic structure is often a goal of investigations into empir-

ical systems this may not be known during the initial stages of data analysis. For three of the

eight datasets, despite evidence of population structure based on other molecular markers in

previous studies, P2C2M.Skyline did not detect a model violation when all populations were

lumped together.

When data from systems were analyzed on a population basis, P2C2M.skyline was not able

to reject the Bayesian Skyline model for six of the eight of the datasets (Table 2). However,

some empirical datasets (e.g., population 1 of Pleurodema diplolister) violated the Bayesian

Skyline model even after samples were divided into populations (see Discussion for putative

explanations). Interestingly, while P2C2M.Skyline did not detect a model violation when data

from Sicarius cariri were analyzed as a single population, it did detect a model violation when

data were analyzed separately for the two populations. P2C2M.Skyline took less than 1 minute

to run in an average laptop (2.6 GHz Intel Core i5, 8 GB RAM) with a dataset composed of 100

Table 1. Results of the mathews correlation coefficient for the simulated datasets. False positives represent datasets simulated under the Bayesian Skyline model prem-

ises (i.e., constant, expansion, and bottleneck) that P2C2M.Skyline classified as a model violation. In contrast, false negatives represent datasets not simulated under Bayes-

ian Skyline model premises (i.e., two-population models) that P2C2M.Skyline classified as not a model violation.

Sampling Significance level True positives Tue negatives False negatives False positives Matthews correlation coefficient (MCC)

10 and 50 individuals combined < 0.01 588 50 350 12 0.21

< 0.025 583 99 301 17 0.33

< 0.05 567 139 261 33 0.38

< 0.1 523 245 155 77 0.50

10 individuals < 0.01 290 11 189 10 0.05

< 0.025 287 25 175 13 0.15

< 0.05 282 44 156 18 0.23

< 0.1 259 101 99 41 0.40

50 individuals < 0.01 298 39 161 2 0.33

< 0.025 296 74 126 4 0.48

< 0.05 285 95 105 15 0.50

< 0.1 264 144 56 36 0.61

https://doi.org/10.1371/journal.pone.0269438.t001
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DNA sequences. The skyline plots and the phylogenetic tree for each species are shown in S2–

S10 Figs in S1 File.

Discussion

P2C2M.Skyline as a useful tool for empiricists

Bayesian Skyline plots are a commonly applied method for inferring the demographic history

of populations. For example, they have been applied to characterize the trajectory of popula-

tion size change in phylogeographic investigations (e.g., Table 2) and are also commonly used

in epidemiology (e.g., [11, 46]). However, they make implicit assumptions about the condi-

tions under which the data were sampled, and previous results have demonstrated that the

inferences drawn from Bayesian Skyline plot analyses may be incorrect when the underlying

assumption of an idealized Wright-Fisher population is violated (e.g., [47]). We developed a

fast and friendly approach that applies PPS to evaluate model adequacy under the Bayesian

Skyline model. Because it uses information that is available to all researchers who conduct

Bayesian Skyline analyses, P2C2M.Skyline can be easily incorporated into the research pipeline

and provide some assurance in the inferences that are drawn from Bayesian Skyline analyses.

We follow Duchene et al. [11] in advocating that empiricists explore the model adequacy of

the skyline plot model as part of the inference process. P2C2M.Skyline is easily incorporated

Table 2. Results of the P2C2M.Skyline on empirical datasets. Asterisk indicates datasets with p-value< 0.05.

Order Species Population Number of samples Length (bp) p-value Skyline result Reference

Anura Leptodactylus troglodytes All samples 82 641 0.46 Expansion This study

Population 1 32 0.12 Constant

Population 2 27 0.46 Constant

Population 3 23 0.42 Constant

Anura Rhinella granulosa All samples 86 554 0.02� Constant This study

Population 1 23 0.22 Constant

Population 2 63 0.092 Constant

Anura Pleurodema alium All samples 25 603 0.044� Constant [41]

Anura Pleurodema diplolister All samples 165 603 0� Expansion [41]

Population 1 15 0.006� Constant

Population 2 140 0.968 Expansion

Population 3 10 0.074 Constant

Squamata Polychrus acutirostris All samples 68 837 0.986 Constant [18, 42]

Population 1 18 0.176 Constant

Population 2 32 0.774 Constant

Population 3 18 0.482 Constant

Squamata Lygodactylus klugei All samples 53 679 0.002� Expansion [18, 43]

Population 1 45 0.146 Constant

Population 2 8 0.196 Constant

Passeriformes Myrmeciza loricata All samples 44 1,041 0.07 Constant [44]

Passeriformes Myrmeciza squamosa All samples 40 1,041 0.088 Constant [44]

Passeriformes Myrmeciza loricate All samples 84 1,041 0.01� Expansion [44]

+

Myrmeciza squamosa
Araneae Sicarius cariri All samples 203 715 0.41 Expansion [45]

Population 1 162 0.028� Expansion

Population 2 41 0.036� Expansion

https://doi.org/10.1371/journal.pone.0269438.t002
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into R analytical pipelines, making it suitable for automated phylogeographic analyses of thou-

sands of datasets.

Our results demonstrate that P2C2M.Skyline is a powerful and fast tool for detecting model

violations in Bayesian Skyline analyses. In general, we observed low numbers of false positives

across various sample sizes and demographic histories. The ability to detect model violations

under population structure scenarios was dependent on both the divergence time between the

populations and the number of samples analyzed, with shallow divergence times and smaller

sample sizes leading to more false negatives. Since deeper levels of population divergence are

expected to have a larger effect on inferences drawn from Bayesian Skyline analyses [47], we

believe this result to be ideal; the more extreme the model violation, the more likely P2C2M.

Skyline is to detect the violation. We recommend using a conservative α of 0.05 to reduce false

negatives, so that researchers are more likely to detect less-extreme model violations that may

nevertheless mislead inference, particularly if a small number of samples is available. When a

model violation is detected, we recommend that researchers analyze population structure and

subsequently divide their dataset by population before performing skyline analyses again. Our

empirical analyses show this to be an effective strategy for overcoming model violations

(Table 2). Of course, our method may detect violations other than population substructure

that were not evaluated here, such as migration. Thus, if dividing datasets into subpopulations

still results in model violations, users may want to consider using tools other than BSPs to

infer the demographic histories of populations. Overall, our results indicate that users of BSPs

would benefit from incorporating P2C2M.Skyline into their workflow due to its fast run times

and ability to detect model violations that may otherwise mislead inferences of population size

changes.

Our tests of the P2C2M.Skyline pipeline used the cumulative coalescent interval as the sum-

mary statistic to determine if empirical datasets significantly differed from simulated ones,

indicating model violations. This summary statistic is effective because it relies on distortions

in branch lengths caused by population structure. Although we only examined population

structure as a model violation, other model violations like selection or migration could also

result in distorted branch lengths. Therefore, it is possible that our method could detect model

violations other than just population structure. Further, other summary statistics may be pow-

erful at detecting other, untested, model violations. Future research examining other model

violations and other summary statistics could further improve the P2C2M.Skyline framework.

Demographic history in the empirical datasets

Our analysis of the empirical data sets illustrates how P2C2M.Skyline can be of use when

applied to empirical systems. For L. troglodytes, populations were analyzed individually by

Thomé et al. [28], and findings included two populations that expanded in the late Pleistocene,

and one population that endured an intense late Holocene bottleneck. Results from our BSP

differed from this previous work, which can be attributed in large part due ot the mitochon-

drial data having less signal than the SNPs used by the previous study. However, the results of

P2C2M.Skyline are clearly consistent with previous results, and had the mitochondrial data

been analyzed first these results would have served as a useful guide to additional data collec-

tion in this system. For R. granulosa, the P2C2M.Skyline results demonstrate that the underly-

ing model is not appropriate for the data when all samples are (incorrectly) combined into a

single population. When samples are analyzed in the populations used by Thomé et al. [29],

P2C2M.Skyline results are consistent with the findings from the analysis of SNP data, where

the best model included some variation in population sizes related to an (smaller) ancestral

population.
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Results from the analysis of empirical data collected for other species highlight the utility of

P2C2M.Skyline. As in Leptodactylus troglodytes, we did not detect a model violation when

populations of Polychrus acutirostris were analysed as a single population. In both cases, popu-

lation structure was determined based on nuclear and mitochondrial data, while the BSP anal-

ysis only considers mitochondrial data, perhaps explaining the inconsistencies. On the other

hand, for Pleurodema diplolister, population structure was determined based on nuclear DNA,

but our analyses still detected a model violation despite only considering mitochondrial data.

Although use of only a mitochondrial marker may reduce the ability to reconstruct complex

evolutionary scenarios because of the high stochastic variance associated with only one marker

[25, 48], mtDNA markers are still commonly applied as a first pass for inference into the driv-

ers of intraspecific diversification, especially if analyzed at the community-level [13, 18, 49].

Thus, attention should be drawn to population structure at this particular type of marker.

Finally, in two cases, we detect model violations even when population structure is taken

into account. First, in population 1 of P. diplolister, we detect a model violation. Thomé et al.

[41] did report P. alium mitochondria introgressing into population 1 of P. diplolister, which

could explain the violation of the BSP model in this case. Similarly, for Sicarius cariri, we did

not detect a model violation when populations were analyzed together but did detect model

violations when the two populations were analyzed separately. This could be another case in

which introgression from another population leads to a model violation and highlights the

nuances inherent to determining what units to use when performing BSP analyses as well as

the advantages of applying PPS to this problem.

Conclusions

Here we develop a R package for assessing model adequacy for Bayesian Skyline plots using

posterior predictive simulation. The package was successfully tested on simulated and empiri-

cal datasets. P2C2M.Skyline can be a useful tool for researchers interested in repurposing sin-

gle locus phylogeographic data to address new questions using hierarchical ABC [13, 18],

automated phylogeography (e.g., [20]), or predictive phylogeography (e.g., [21]).
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