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Abstract The ability to monitor fossil fuel carbon dioxide (FFCO2) emissions from subcontinental regions
using atmospheric CO2 observations remains an important but unrealized goal. Here we explore a necessary
but not sufficient component of this goal, namely, the basic question of the detectability of FFCO2 emissions
from subcontinental regions. Detectability is evaluated by examining the degree to which FFCO2 emissions
patterns from specific regions are needed to explain the variability observed in high-frequency atmospheric
CO2 observations. Analyses using a CO2 monitoring network of 35 continuous measurement towers over North
America show that FFCO2 emissions are difficult to detect during nonwinter months. We find that the
compounding effects of the seasonality of atmospheric transport patterns and the biospheric CO2 flux signal
dramatically hamper the detectability of FFCO2 emissions. Results from several synthetic data case studies
highlight the need for advancements in data coverage and transport model accuracy if the goal of atmospheric
measurement-based FFCO2 emissions detection and estimation is to be achieved beyond urban scales.

1. Introduction

Independent evaluation of bottom-up inventory-based estimates of fossil fuel carbon dioxide (FFCO2)
emissions remains a critical yet challenging endeavor. At the global level, inventory-based FFCO2 emissions
estimates have relatively low uncertainty (<10%) [Marland, 2008]. These uncertainties rise, however, with
increasing spatial and temporal resolution [Marland, 2008]. Uncertainties are also higher in regions with less
sophisticated accounting methods [e.g., Guan et al., 2012], which coincide with regions with the largest
projected growth in FFCO2 emissions. While increasingly sophisticated bottom-up methods have been
developed [e.g., Gurney et al., 2009, 2012; Rayner et al., 2010; Andres et al., 2011; Oda and Maksyutov, 2011;
Nassar et al., 2013], independent atmospheric observation-based evaluations of such approaches have not
been conducted at subcontinental or national scales.

Verifying the accuracy of bottom-up FFCO2 emissions estimates is critical both for constraining the behavior
of the natural (i.e., biospheric and oceanic) components of the carbon cycle and for evaluating compliance
with any agreements to manage FFCO2 emissions. Atmospheric observation-based methods used to
estimate the natural components of the carbon budget typically presubtract the FF component from the
atmospheric observations under the assumption that FFCO2 emissions estimates are well known. However,
such an approach aliases errors in FFCO2 emissions estimates onto the natural carbon cycle estimates
[Gurney et al., 2005; Peylin et al., 2011] and does not provide a way of updating the FFCO2 emissions estimates
themselves. Additionally, discussions focusing on limiting future emissions would benefit from independent
estimates of FFCO2 emissions as a means of evaluating and verifying self-reported progress toward emissions
reduction goals [Pacala et al., 2010].

One clear approach for providing such independent verification [Pacala et al., 2010] is atmospheric inverse
modeling, a top-down approach that uses atmospheric concentration measurements coupled with an
atmospheric transport model to infer fluxes from upwind locations. However, with current observational
networks focused on constraining natural CO2 fluxes, uncertainties in existing inverse modeling systems were
quoted as being too large (>100%) to constrain continental or nation level FFCO2 emissions [Pacala et al., 2010].
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Pacala et al. [2010] suggested several steps to reduce uncertainties in inverse estimates of FFCO2 emissions at
annual national levels to within 10–50%, including expanding remote sensing and in situ observations,
deploying measurement capabilities for the radiocarbon isotope 14C, and increasing the monitoring of large
local (i.e., urban) sources. A multitude of efforts in line with these suggestions are currently underway (e.g.,
Hestia Project [Gurney et al., 2012], Indianapolis Flux Experiment (http://influx.psu.edu/), Megacities Carbon
Project [Duren and Miller, 2012; Kort et al., 2012; Miller et al., 2012]) with a majority focusing on high-emitting
urban areas. The recent shift in focus toward monitoring large emitting urban areas offers the benefits, among
others, of reducing the interference of natural carbon fluxes and constraining ~75% of the global FFCO2 budget
[Duren and Miller, 2012]. However, scaling these efforts up from the urban scale to create subcontinental or
national level FFCO2 emissions estimates is likely not feasible.

Thus, exploring the capabilities and limitations of existing CO2 monitoring networks in examining the FFCO2

signal is critical to identify viable pathways toward the goal of FFCO2 emissions quantification and
monitoring. Further examination is vital to answer key questions within the current FFCO2 monitoring
paradigm (e.g., where/when FFCO2 emissions are detectable and why/how is the detectability of FFCO2

emissions limited). While it is clear that current atmospheric CO2 monitoring networks were not designed to
monitor FFCO2 emissions, “the question of whether the amplitude of the greenhouse gas perturbations
caused by national emissions is large enough to detect with in situ networks or satellites” [Pacala et al., 2010]
remains to be answered. Although the ultimate goal is to quantify FFCO2 emissions using atmospheric
observations, it follows that if one cannot detect the FFCO2 emissions signal, the more difficult task of
quantification will likewise not be possible. In this study, we aim to investigate the detection of FFCO2

emissions as a baseline requirement for the quantification and monitoring of FFCO2 emissions.

Although “detectability” can have a variety of definitions, the notion as defined here focuses on the capacity
to distinguish a pattern of interest (FFCO2 emissions from a given region) amidst distracting or background
patterns (e.g., natural CO2 fluxes, atmospheric transport modeling errors, and aggregation errors) above a
certain threshold, given a set of observations. In the work presented here, the threshold is defined as a
statistical model selection problem, using the Bayesian Information Criterion (BIC) [Schwarz, 1978], a common
tool for statistical model selection in multiple linear regression [Ward, 2008], as the basis for selection. Hence,
detectability is analogous to the decision to include a given explanatory variable in a regression analysis,
based on the criterion that the variable itself explains a substantial portion of the variability observed in
available measurements. The central question in this work therefore focuses on the extent to which the
variations in the atmospheric data can be attributed to patterns arising from FFCO2 emissions (see section 2
and the supporting information for details).

North America (NA), with its expansion of continuous (high-frequency) in situ CO2 measurements and the
existence of two high-resolution FFCO2 emissions inventories, VULCAN [Gurney et al., 2009] and Open-source
Data Inventory for Anthropogenic CO2 (ODIAC) [Oda and Maksyutov, 2011], offers an ideal experimental
platform for this investigation. The in situ observations and the FFCO2 emissions inventories were coupled
with a high-resolution geostatistical inverse modeling framework [e.g., Michalak et al., 2004; Gourdji et al.,
2012] to investigate the detectability of FFCO2 emissions patterns in the observed CO2 concentration signal.

We also investigated the influence of “distracting or background patterns,” i.e., natural CO2 fluxes and errors
due to atmospheric transport modeling uncertainties, on detectability using several synthetic data
experiments. In the synthetic data experiments, natural fluxes and simulated atmospheric transport model
errors were “turned on” or “turned off” in order to characterize the specific causes for losses in detectability
and in so doing inform avenues for improving detectability.

2. Detecting the FFCO2 Signal

To investigate whether the spatiotemporal patterns of FFCO2 emissions can be observed in the total CO2

signal, zTotal (i.e., atmospheric observations), a realistic representation of FFCO2 emissions was needed. This
was created by merging two high-resolution FFCO2 emissions inventory data sets, VULCAN version 2.0
[Gurney et al., 2009] over the contiguous U.S. and the ODIAC product [Oda and Maksyutov, 2011] over Canada,
Mexico, and Alaska as in Gourdji et al. [2012]. The VULCAN-ODIAC merged inventory was then rescaled to
1° × 1° spatial resolution and a three hourly temporal resolution (see supporting information for details). The
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merged VULCAN-ODIAC product was
then transported forward to
observation locations using the
Stochastic Time-Inverted Lagrangian
Transport model [Lin et al., 2003], driven
by meteorological fields from the
Weather Research and Forecast (WRF)
model [Skamarock and Klemp, 2008].
Thus a 3 h temporal resolution
observation vector, zFF, was created
containing the atmospheric signature
resulting from the fine-scale
spatiotemporal behavior of FFCO2

emissions. The resulting analyses are
based on the spatiotemporal patterns
from the VULCAN-ODIAC FFCO2

emissions product. For the synthetic
data experiments, the FF signal was

combined with a synthetic biospheric signal and simulated transport model errors, with the biospheric signal
also being based on fluxes defined at 1° × 1° spatial resolution and a three hourly temporal resolution
(see supporting information for details).

We were interested in investigating not only if, but where and when FFCO2 emissions patterns from
subcontinental regions are observable. To explore this, we subdivided the FFCO2 emissions from NA into 11
subcontinental regions: Mexico, Canada, and nine modified Environmental Protection Agency (EPA) regions
for the U.S. (Figure 1). We define these regions as such because they represent political/policy-relevant
domains and together encompass the entire NA continent. The 11 spatial regions were further subdivided by

month and used to produce the resulting atmospheric FFCO2 signals from these 132 region-months, ziFF. Note
that we did not aggregate or average FFCO2 emissions over these region-months but rather kept the fine-
scale spatiotemporal patterns of FFCO2 emissions intact within each of these space-time region-months. This
was done in order to examine the ability of the variations in the CO2 signal as seen by the atmospheric
observation network to be attributed to the fine-scale spatiotemporal patterns in FFCO2 emissions.

The detectability of each region-month was then assessed using a BIC-based model selection procedure that
has been previously adapted to account for correlated residuals [Mueller et al., 2010] and for use in an inverse
modeling system [Gourdji et al., 2012] (see supporting information for details). This BIC setup incorporates the
information used in a typical atmospheric trace gas inverse model, i.e. the sensitivity of the observations to
surface fluxes, the flux error covariances, and the model-data mismatch covariances, but we focused here
only on identifying region-months that are detectable from the atmospheric observations, rather than on
quantifying FFCO2 emissions per se. The goal was to create a model that explained the variability in zTotal
using a combination of ziFF, ensuring that each ziFF explains a sufficient portion of the variability in zTotal. We
used BIC as an objective metric/threshold to determine which region-months were detectable, as BIC
penalizes larger models and hence only considers FFCO2 emissions from given region-months detectable if
they sufficiently improve the model fit (equation (S1)). Because the FFCO2 signal explains only a small portion
of the total atmospheric CO2 signal (Table S3) BIC helps to identify only those region-months of FFCO2

emissions that substantially contribute to the variability observed in zTotal (see supporting information for

details). Thus, the FFCO2 emissions patterns from a given region-month are detected if the ziFF from that
region-month is included in the model with the lowest BIC value.

3. Case Studies

Accurate detection of the FFCO2 emissions signal from atmospheric measurements is hindered by several
factors or “distracting patterns,” including mixing of FFCO2 fluxes with biospheric CO2 fluxes, atmospheric
transport model errors (including but not limited to: representation and aggregation errors), the
heterogeneity and density of the measurement network, and errors in the spatiotemporal representation of

Figure 1. The 11 North American regions used in the model selection
analysis. The contiguous United States are divided by EPA region, with
“Northeast U.S.” region created by merging EPA regions 1, 2, and 3.
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the FFCO2 emissions signal. These factors are all inherently enmeshed in real atmospheric data but can be
isolated when using synthetic data. Thus, several synthetic case studies were explored to better understand
the factors that lead to diminishing detectability.

A real data (RD_BFE) case study was also explored, using atmospheric CO2 measurements from 2008. High-
frequency atmospheric CO2 concentration data were collected from 35 towers located in the U.S. and Canada
(Table S1). The four synthetic data (SD) case studies were developed to explore when, where, why, and how
FFCO2 emissions detectability diminished relative to an idealized case.

The synthetic data case studies used various combinations of biospheric fluxes (B) from CASA-GFEDv2
[Randerson et al., 1997; van der Werf et al., 2006], FFCO2 fluxes (F) from VULCAN-ODIAC and simulated
atmospheric transport model errors (E) optimized from the 2008 data (details of all components in the
supporting information). For all of the SD cases, the FFCO2 emissions used to create the FF component in the
atmospheric data are also used to represent the spatiotemporal FFCO2 emissions signal in the detectability
analysis. The SD_BFE case combined biospheric (B) and FF (F) fluxes as well as simulated atmospheric
transport model errors (E) to create the most realistic synthetic atmospheric data scenario. A comparison
between SD_BFE and RD_BFE results was used to assess the ability to represent the complexity of the real
data case, thus ensuring that subsequent deconstructed SD cases could be used to gain insights into
the system.

The SD_ØFØ case represents an ideal case where only the FFCO2 fluxes (F) are present, with no biospheric
fluxes (Ø) or simulated atmospheric transport model errors (Ø). This case represents an idealized scenario
where CO2 could be treated as a perfect tracer for FFCO2 emissions. To isolate the effects of the biospheric
CO2 signal on limiting detectability, the SD_BFØ case added only biospheric (B) fluxes to the ideal case.
Likewise, the SD_ØFE case added only simulated transport model errors, with no biospheric fluxes, enabling
an investigation into the effects of transport model errors on hindering detectability. The SD_BFE case was
ultimately used to investigate the combined effects of the biospheric CO2 signal and transport model errors
on limiting detectability. Realistic data choices (identical to 2008 actual data availability) were used for all
synthetic data cases.

4. Results of Detectability Analysis
4.1. FFCO2 Detectability

We first examine the detectability of the FFCO2 emissions signal over NA using the real data from 2008 (i.e.,
the RD_BFE case). The conceptual definition of detectability presented in section 1 is represented by the
methodology described in section 2 and the supporting information. For the discussion that follows, the term
“detected” specifies a region-month where the FFCO2 emissions were selected through BIC (i.e., included in
the model with the lowest BIC value).

We find that FFCO2 emissions detectability is better during winter (higher percentage of regions detected)
than spring, summer, and fall (Figure 2, first row). Alaska remains undetected throughout the year due to
a lack of measurement coverage (Figure S1) and a relatively small FFCO2 emissions signal. FFCO2 emissions
are detected during at least 6 months of the year in the Midwestern U.S., Northeastern U.S., and California
and Southwest U.S. regions. It is clear that even with the extensive network in 2008, the simple goal of
detecting, let alone quantifying, FFCO2 emissions is challenging for a large portion of the continent over
much of year. However, in certain regions (Midwestern U.S., Northeastern U.S., California, and Southwest U.S.
regions) and during certain times of the year (winter) the variability in the atmospheric observations can
be directly attributed to patterns consistent with FFCO2 emissions.

4.2. Information Content of Observations

The SD_BFE case is intended to be a scenario that offers a realistic representation of reality and one in which,
unlike the real data case, the FFCO2 emissions are perfectly known. SD_BFE is thus compared to RD_BFE
(Figure 2, first and second rows) to determine whether it realistically represents the complexity of a real data
scenario. The detectability results of these two cases are found to have several similarities: both exhibit
parallel spatial and seasonal patterns in FFCO2 emissions detectability. In both cases, winter represents the
only time when the detectability across much of the continent is possible, excluding Alaska and Mexico. In
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both cases, the regions detected during the summer months are the same: Mexico, South Central U.S.,
California and Southwest U.S., Southeast U.S., and North Central U.S. Several differences in the detectability
results also exist, for instance, while detectability deteriorates in the spring, fall, and summer for both cases,
the minimum detectability for the SD_BFE case occurs during the summer not spring as in the RD_BFE case.
This may be due to incorrect timing of the growing season in the modeled biosphere or stronger and more
variable biospheric activity in reality than in the model.

The results of the SD_BFE case demonstrate that the distracting patterns, rather than uncertainties in the
inventory used in RD_BFE, are the main drivers of the loss in detectability. This result supports the use of the
subsequent deconstructed synthetic data cases to investigate how various factors contribute to the lack
of detectability.

4.3. Effect of Biospheric Fluxes on Detectability

The difference between the detectability results of the SD_ØFØ and SD_BFØ case studies (Figure 2, fifth and
third rows) represents the impact of biospheric CO2 fluxes and their seasonality on the detectability of FFCO2

emissions. Because neither case includes simulated transport model errors, any loss in detectability from
SD_ØFØ to SD_BFØ is due to the influence of biospheric fluxes.

The detectability in SD_ØFØ is limited only by the sensitivity of the atmospheric measurements to the
underlying fluxes (Figure S1) and demonstrates that in the absence of any other confounding factors, FFCO2

emissions are detectable in all regions except Alaska andMexico throughout the year (Figure 2, fifth row). The

Figure 2. (first–fifth rows and first to fourth columns) Results of the model selection analysis by region and season. Colors
represent the number of months per season (0 to 3) for which the FF emissions from a region are detectable. Red stars
represent continuous observation locations for 2008. The percent of region-months detected per season (Number
detected/33 total region-months × 100%) is also shown.
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inclusion of the biospheric flux signal in SD_BFØ leads to a major loss in the detectability of FFCO2 emissions
during the summer (Figure 2, third row and third column). Detectability losses in the spring, fall, and winter are
smaller. This result indicates that even withoutmodel-datamismatch errors due in large part to transport model
uncertainties, the biospheric signal acts as a major confounding factor in the detection of the FFCO2 signal
during the summer months.

These results suggest that the use of additional tracers (e.g., radiocarbon isotope 14C, carbon monoxide)
[Turnbull et al., 2006, 2011; Miller et al., 2012] that help to isolate FFCO2 emissions from biospheric would
indeed help to improve detectability of FFCO2 at subcontinental scales. However, because FFCO2 tracers are
subject to the same atmospheric transport-related errors that hinder detectability (see next section), as well
as other elements (e.g., emissions factors andmeasurement errors), their use therefore requires further study.

4.4. Effect of Transport and Associated Uncertainties on Detectability

The impact of atmospheric transport-related errors is evaluated by comparing case studies with and without
simulated atmospheric transport model errors. By comparing SD_ØFØwith SD_ØFE (Figure 2, fourth and fifth
rows), simulated atmospheric transport model errors are introduced in the absence of biospheric fluxes and
detectability is found to diminish throughout the year. Atmospheric transport-related errors reduce
detectability in the fall and winter more severely than in the case where only biospheric fluxes are added
(section 4.3). When the confounding factors of biospheric fluxes and atmospheric transport-related errors are
combined, SD_BFE versus SD_BFØ (Figure 2, second and third rows), we see a compounding effect with
major losses in detectability in spring, summer, and fall. This result indicates that atmospheric transport-
related errors combined with the interference of biospheric fluxes act to amplify the losses in FFCO2

emissions detection.

As realistic errors will likely be more complex than the mean zero, independent, and normally distributed
errors added here, the SD_BFE case likely provides an approximate estimate of the impact of atmospheric
transport-related errors on detectability. The qualitative similarity between the SD_BFE and RD_BFE cases
(section 4.2) shows that the simplified representation of atmospheric transport model errors used here can
nevertheless provide information about the overall impact of atmospheric transport-related errors on
detectability. Looking ahead, therefore, reducing uncertainty associated with atmospheric transport
modeling will be critical to improving the ability to detect, and ultimately quantify, FFCO2 emissions for a
majority of the year across nearly all of North America.

An additional case study was designed to explore the impact of seasonal variations in the sensitivity of
measurements to underlying fluxes. A lower sensitivity of observations to underlying fluxes is found during
the summer relative to winter (Figures S1 and S2, Hdaily line), due to mixing in a deeper planetary boundary
layer and/or stronger convention. To examine the seasonal variation in measurement sensitivity, the
underlying fluxes were shifted by 6 months, and thus, summer fluxes occur under winter atmospheric
transport conditions and vice versa. Results indicate that the detectability of summertime FFCO2 emissions
increases when coupled with wintertime atmospheric transport patterns (results not shown). This suggests
that the lack of detectability seen in the summer is in fact due to the compounding effects of not only
biospheric fluxes and atmospheric transport-related errors, but also the reduced sensitivity of observations to
fluxes during the summer. Conceptually, this result confirms that increasing the sensitivity of the atmospheric
observations, through the addition of newmeasurement sites sensitive to areas with FFCO2 emissions, would
improve the detectability of FFCO2 emissions.

These results highlight how the confluence of transport-related issues, interference from the biospheric signal,
and reduced sensitivity and number of atmospheric observations (Figure S2) affect the spring, summer, and fall
months most strongly, making FFCO2 emissions detectability especially challenging during those seasons.

5. Conclusions and Steps Forward

This paper explores the ability to attribute the variability in high-frequency atmospheric observations to
patterns consistent with FFCO2 emissions from subcontinental regions. Results show that the detection of
FFCO2 emissions from these regions using in situ CO2 observations is quite difficult for large portions of the year
for NA, a relatively well-monitored continent. Consequently, the use of atmospheric measurements in an inverse
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modeling framework to quantify subcontinental andmonthly FFCO2 emissions will pose a significant challenge
during spring, summer, and fall months, especially if attempted in areas with less instrumentation than NA.

We identify the interference from biospheric fluxes as specifically hindering FFCO2 emissions detectability
during the height of the growing season, while transport-related errors hamper detectability throughout the
year. However, detectability of FFCO2 emissions patterns from subcontinental regions is most severely
hampered when transport-related errors are exacerbated by a strong biospheric signal. These findings
further highlight the need for improved transport model accuracy and an improved monitoring network for
FFCO2 emissions.

Nevertheless, we do find that even without the improvements suggested by Pacala et al. [2010], the patterns
in FFCO2 emissions are detectable for certain regions and certain times of the year. The winter months show
reasonable detectability for much of the continental U.S. using the 2008 measurement network. Additionally,
FFCO2 emissions are detectable more often in well-instrumented regions (Midwestern U.S., Northeastern U.S.,
and California and Southwest U.S. regions) in the spring and fall compared to other regions of NA. Well-
instrumented regions during nonsummer months offer the most promising opportunity for detecting and
subsequently estimating the FFCO2 emissions signal using independent atmospheric observation-
based approaches.

Monitoring network design studies [e.g., Shiga et al., 2013] tailored toward FFCO2 emissions, could inform the
requirements for a network to specifically monitor FFCO2 emissions for subcontinental regions. Providing
estimates of FFCO2 emissions based on an atmospheric CO2 data constraint will ultimately be a challenge
with a complex set of solutions. Examining FFCO2 emissions at finer-spatial resolutions by focusing on large
emitting urban areas will no doubt provide vital information toward that solution. Measurements of
coemitted tracers for FFCO2 [e.g., Miller et al., 2012] may also provide an additional observational constraint,
analogous to the SD_ØFE case; however, detectability may still be hindered by transport-related errors as well
as measurement errors (which can be large for isotopic measurements) and errors in estimating emissions
factors. There is also room for methodological improvements within the inverse modeling framework to
account for the unique spatiotemporal structure of FFCO2 emissions. Exploring a complementary suite of
approaches to the solution to the FFCO2 emissions estimation problem is therefore crucial.
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