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Abstract: An expeditious approach to the construction of spiroindenyl-2-oxindoles was developed
via a palladium-catalyzed spirocyclization reaction of 2-bromoarylamides with vinyl bromides.
The reaction formed spiropalladacycles as the intermediates via carbopalladation and the C–H
functionalization of 2-bromoarylamides. The spiropalladacycles reacted with vinyl bromides to form
spiroindenyl-2-oxindoles. A Heck process rather than vinylic C–H functionalization was involved in
the reaction.

Keywords: C–H functionalization; palladium catalysis; spiroindenyl-2-oxindoles; palladacycles;
cascade reaction

1. Introduction

Spirooxindoles are ubiquitous in bioactive natural products and have found extensive
applications in drug discovery [1–7]. On the other hand, spiroindenes have also gained
considerable interest in medicinal chemistry [8–13]. The investigation of biological and
pharmaceutical properties of spiroindenyl-2-oxindoles that contain both spiro-bridged
indene and oxindole moieties is highly intriguing [14,15]. To achieve this, it is essential to
develop efficient synthetic methods for the analysis of compounds of such a type. Currently,
the reactions for the synthesis of spiroindenyl-2-oxindoles are rare, and the majority of
them rely on the use of 3-substituted indoles as the starting materials (Figure 1a–f) [14–19].
It should be noted that Desrosiers and coworkers reported an elegant synthetic approach
for spiroindenyl-2-oxindoles through nickel-catalyzed intramolecular Heck cyclization
(Figure 1g) [20,21].

Over the past few years, domino Heck/C–H functionalization reactions have gained
considerable interest and made noticeable progress in organic synthesis [22,23]. By us-
ing alkene-tethered aryl halides as substrates, the reactions of such a type undergo the
oxidative addition of aryl halides to Pd0 and intramolecular carbopalladation of alkene
moieties to form alkylpalladiumII species. The alkylpalladiumII species can cleave C–H
bonds of an aryl group tethered to the alkene moiety to generate C,C-palladacycles. The
palladacycles may undergo intramolecular cyclization [24–35] or be captured with external
reagents [36–55]. These types of reactions not only represent a novel strategy to activate
C–H bonds that are not in proximity to directing groups, but also provide easy access to
complex polycyclic compounds. Notably, the reactions also open a new avenue for the
synthesis of spirocyclic scaffolds. By the judicious design of alkene-tethered aryl halides
substrates, spiropalladacycles can be formed by a domino Heck/C–H functionalization
sequence. The resulting spiropalladacycles are very effective intermediates for the synthesis
of spirocyclic compounds. During recent years, quite a few reactions of this type have
been developed. Spiropalladacycles have undergone cyclization [30–35] and have been
trapped by a variety of external reagents including diaziridinone [44], benzynes [45–47], car-
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benoids [48,49], alkynes [50,51], CH2Br2 [52], alkyl chlorides [53], and aryl iodides [54,55],
affording various spirocyclic products.

Figure 1. Synthetic methods of spiroindenyl-2-oxindoles.

2. Results and Discussion
2.1. Optimization of the Reaction Conditions

Herein, we report a new approach for the synthesis of spiroindenyl-2-oxindoles
through domino Heck/C–H functionalization reactions. This work was inspired by the re-
action of C(sp2), C(sp3)-palladacycle derived from ortho-iodomethoxybenzenes with vinyl
bromides [56]. It should be mentioned that the reactions of 2-iodobiphenyls with vinyl bro-
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mides have also been reported [57,58]. The reactions also proceeded via C,C-palladacycle
intermediates, which were captured by vinyl bromides to form 9-fluorenylidene products.

The research was commenced by investigating the reaction of model substrates acry-
lamide (1a) and 1-bromoprop-1-ene (2a) (Table 1). After an extensive condition survey,
spiroindenyl-2-oxindoles 3aa was generated in a yield of 74% under the reaction conditions
shown in entry 1. The optimal yield was obtained by using 18-crown-6, which promoted
the reaction perhaps by enhancing the solubility of K2CO3 in THF (entry 2). Ligand s-phos
played a crucial role in the reaction since its absence led to a very low yield and other
phosphine ligands gave lower yields (entries 3–7). K2CO3 was an essential base, and only
a trace amount of the product was observed when other bases such as Na2CO3 and KOAc
were used (entries 8 and 9). Although 3aa was also formed when the reaction was carried
out in other solvents, the yields were much lower (entries 10–12).

Table 1. Optimization of the reaction conditions.

Entry Variation from the Standard Conditions Yield a

1 No 74% (71% b)

2 No 18-crown-6 55%

3 No s-phos 18%

4 x-phos instead of s-phos 53%

5 Ru-phos instead of s-phos 62%

6 (o-tolyl)3P instead of s-phos 60%

7 Ph3P instead of s-phos 63%

8 Na2CO3 instead of K2CO3 5%

9 KOAc instead of K2CO3 3%

10 DMF instead of THF 43%

11 toluene instead of THF 59%

12 CH3CN instead of THF 14%
a The yields were determined by 1H NMR analysis of crude reaction mixtures by using CH2Br2 as the internal
standard. b Isolated yield.

2.2. Substrate Scope for Acrylamides

Having developed an approach for the synthesis of spiroindenyl-2-oxindoles, we then
probed its substrate scope (Scheme 1). We first examined the performance of acrylamides
bearing different functionalities on the bromophenyl groups. The acrylamides containing
an electron-donating methyl or electron-withdrawing cyano group underwent the cascade
reaction (3ba and 3ca). Fluoro, chloro, and even bromo groups were well tolerated, and the
corresponding spiroindenyl-2-oxindoles were formed in moderate yields (3da–3fa). The
substituents on the other positions of the bromophenyl groups were also suitable (3ga–3ia).
Furthermore, substrates bearing a substituent on the phenyl groups linked to the double
bonds could also be transformed into spiroindenyl-2-oxindole products (3ja–3la). The
structure of 3ja was confirmed by single crystal X-ray crystallography.
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Scheme 1. Acrylamide scope. All the reactions were carried out in a Schlenk tube in the presence of
1a (0.2 mmol), 2a (0.8 mmol), Pd(OAc)2 (10 mol%), s-phos (10 mol%), 18-crown-6 (2.0 equiv), K2CO3

(6.0 equiv), and THF (2.0 mL) at 100 ◦C for 24 h under N2.

Next, the reactions of acrylamide bearing different N-substituents were probed. A
range of N-substituents, including the ethyl, benzyl 2-ethoxy-2-oxoethyl and 2-methylallyl
group, were compatible, and a variety of spiroindenyl-2-oxindole derivatives were afforded
(3ma–3qa). Finally, it should be noted that the substrate containing an ether linkage could
also form the desired spirocyclic product 3ra (Scheme 2).

Scheme 2. The reactions were carried out in a Schlenk tube in the presence of 1r (0.2 mmol),
2a (0.8 mmol), Pd(OAc)2 (10 mol%), s-phos (10 mol%), 18-crown-6 (2.0 equiv), K2CO3 (6.0 equiv),
and THF (2.0 mL) at 100 ◦C for 24 h under N2.
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2.3. Substrate Scope for Vinyl Bromides

The vinyl bromide scope was then explored (Scheme 3). When styryl bromide was
allowed to react with 1a under the slightly modified standard conditions, spiroindenyl-2-
oxindole 3ab and compound 3ab-I were obtained. The formation of 3ab-I should be due to
the stabilization of the exocyclic double bond by the phenyl group. As expected, styryl bro-
mide derivatives, such as trimethoxystyryl bromide and (E)-1-(2-bromovinyl)naphthalene,
also gave two isomers (3ac and 3ac-I). The structure of 3ac-I was confirmed by single-
crystal X-ray crystallography. It should be noted that the trimethoxyphenyl group was
on the same side as the benzene ring, and the double bond in compound 3ac-I had Z-
configuration. This structure provides crucial evidence regarding the mechanism of the
reaction. (E)-2-(2-bromovinyl)thiophene was also reactive, and only the exocyclic double
bond product (3ae-I) was obtained. Intriguingly, two products (3af and 3af-I) were also
obtained in the reaction of alkylvinyl bromide 2f. The structure of 3af was also confirmed
by single-crystal X-ray crystallography.

Scheme 3. Vinyl bromide scope. All the reactions were carried out in a Schlenk tube in the presence of 1a (0.2 mmol),
2 (0.6 mmol), Pd(OAc)2 (10 mol%), s-phos (20 mol%), 18-crown-6 (2.0 equiv), K2CO3 (5.0 equiv), and THF (2.0 mL) at 130 ◦C
for 24 h under N2. a 0.4 mmol vinyl bromide.

2.4. Mechanistic Studies

On the basis of the formation of the products and the previous reports [52,56–58], a
tentative mechanism was proposed as shown in Scheme 4. The catalytic cycle starts with
the oxidative addition of substrate 1 to Pd0 to form PdII species A, which is followed by
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intramolecular migratory insertion to give alkylPdII species B. The subsequent intramolec-
ular C–H functionalization affords palladacycle C. C undergoes oxidative addition with
2-bromoalkenyl derivatives to form PdIV species D. The reductive elimination of D yields
intermediate E. At this stage, E may undergo two pathways to form final product 3. Path I
involves intermediate 3-I, which is formed through intramolecular migratory insertion and
subsequent β-H elimination. Alternatively, the alkylPdII species of E may cleave the vinyl
C–H bond to yield palladacycle G. G forms product 3-I-I and Pd0 by reductive elimination
(path II). Both 3-I and 3-I-I can isomerize to yield final product 3. It is challenging to
distinguish these two pathways. Fortunately, the mechanism can be deciphered based
on the structure of intermediate 3ac-I. If the reaction undergoes path II, 3-I-I, which has
E-configuration, should be formed. On the contrary, compound 3-I with Z-configuration
should be generated for path I. The Z-configuration of 3ac-I indicates that the reaction
proceeds via path I.

Scheme 4. Proposed mechanism.

3. Materials and Methods
3.1. General Information

Pd(OAc)2 was purchased from Strem Chemicals (Newburyport, MA, USA). The 1H
NMR and 13C NMR spectra were recorded on a Bruker ARX400 instrument (400 MHz) or a
Bruker DRX-600 instrument (600 MHz). High-resolution mass spectra were measured on a
Bruker MicroTOF II ESI-TOF mass spectrometer. NMR spectra were recorded in CDCl3.
The 1H NMR spectra were referenced to residual CHCl3 at 7.26 ppm, and 13C NMR spectra
were referenced to the central peak of CDCl3 at 77.0 ppm. Chemical shifts (δ) are reported
in ppm and coupling constants (J) are in Hertz (Hz). Multiplicities are reported using the
following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet.

3.2. Experimental Procedures

Synthesis of Spiroindenyl-2-Oxindoles (Please see Supplementary Materials).

(a) A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a
magnetic stir bar was charged with Pd(OAc)2 (0.02 mmol, 4.4 mg, 0.1 equiv), s-phos
(0.02 mmol, 8.2 mg, 0.1 equiv), K2CO3 (1.2 mmol, 165.9 mg, 6.0 equiv), 18-crown-6
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(0.4 mmol, 105.7 mg, 2.0 equiv), acrylamide 1a (0.2 mmol, 63.2 mg, 1.0 equiv), 1-bromo-
1-propene 2a (0.8 mmol, 96.8 mg, 4.0 equiv), and THF (2.0 mL). The reaction mixture
was frozen with liquid nitrogen, and then, the tube was evacuated and backfilled
with nitrogen (6 times). The reaction tube was put into an oil bath and then heated to
100 ◦C. The reaction mixture was stirred at 100 ◦C for 24 h. After being cooled down
to room temperature, the reaction mixture was diluted with EtOAc (15 mL), washed
with brine (3 times), dried over Na2SO4, and concentrated in vacuo. The residue was
purified by preparative silica gel TLC with petroleum ether/ethyl acetate (ether/ethyl
acetate 25:1) to afford 3aa (71%, 39.0 mg).

(b) A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a
magnetic stir bar was charged with Pd(OAc)2 (0.02 mmol, 4.4 mg, 0.1 equiv), s-phos
(0.04 mmol, 16.4 mg, 0.2 equiv) K2CO3 (1.0 mmol, 138.2 mg, 5.0 equiv), 18-crown-
6 (0.4 mmol, 105.7 mg, 2.0 equiv), acrylamide 1a (0.2 mmol, 63.2 mg, 1.0 equiv),
β-bromostyrene 2b (0.6 mmol, 109.8 mg, 3.0 equiv), and THF (2.0 mL). The reac-
tion mixture was frozen with liquid nitrogen and then the tube was evacuated and
backfilled with nitrogen (6 times). The reaction tube was put into an oil bath and
then heated to 130 ◦C. The reaction mixture was stirred at 130 ◦C for 24 h. After
being cooled down to room temperature, the reaction mixture was diluted with
EtOAc (15 mL), washed with brine (3 times), dried over Na2SO4, and concentrated
in vacuo. The residue was purified by preparative silica gel TLC with petroleum
ether/ethyl acetate (ether/ethyl acetate 25:1) to afford 3ab (61%, 41.2 mg) and 3ab-l
(34%, 22.9 mg).

4. Conclusions

In summary, we developed a palladium-catalyzed spirocyclization reaction between
2-bromoarylamides and vinyl bromides via a cascade Heck/C–H functionalization process.
The reaction forms spiropalladacycles as the intermediate by carbopalladation and C–H
functionalization of 2-bromoarylamides. The resulting spiropalladacycles react with vinyl
bromides effectively and spiroindenyl-2-oxindoles are formed as the final products. The
Z-configuration of the precursor was identified, and it indicates that a Heck process instead
of a vinylic C–H functionalization is involved in the reaction. This reaction provides a
novel and effective strategy for the construction of spiroindenyl-2-oxindoles.

Supplementary Materials: The following are available online. Synthetic procedure of starting
materials, procedure and spectral data of products, copies of 1H-NMR, 13C-NMR spectra.
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