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Aquatic fecal contamination poses human health risks by introducing pathogens in
water that may be used for recreation, consumption, or agriculture. Identifying fecal
contaminant sources, as well as the factors that affect their transport, storage, and
decay, is essential for protecting human health. However, identifying these factors is
often difficult when using fecal indicator bacteria (FIB) because FIB levels in surface water
are often the product of multiple contaminant sources. In contrast, microbial source-
tracking (MST) techniques allow not only the identification of predominant contaminant
sources but also the quantification of factors affecting the transport, storage, and decay
of fecal contaminants from specific hosts. We visited 68 streams in the Finger Lakes
region of Upstate New York, United States, between April and October 2018 and
collected water quality data (i.e., Escherichia coli, MST markers, and physical–chemical
parameters) and weather and land-use data, as well as data on other stream features
(e.g., stream bed composition), to identify factors that were associated with fecal
contamination at a regional scale. We then applied both generalized linear mixed models
and conditional inference trees to identify factors and combinations of factors that were
significantly associated with human and ruminant fecal contamination. We found that
human contaminants were more likely to be identified when the developed area within
the 60 m stream buffer exceeded 3.4%, the total developed area in the watershed
exceeded 41%, or if stormwater outfalls were present immediately upstream of the
sampling site. When these features were not present, human MST markers were more
likely to be found when rainfall during the preceding day exceeded 1.5 cm. The presence
of upstream campgrounds was also significantly associated with human MST marker
detection. In addition to rainfall and water quality parameters associated with rainfall
(e.g., turbidity), the minimum distance to upstream cattle operations, the proportion of
the 60 m buffer used for cropland, and the presence of submerged aquatic vegetation
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at the sampling site were all associated based on univariable regression with elevated
levels of ruminant markers. The identification of specific features associated with host-
specific fecal contaminants may support the development of broader recommendations
or policies aimed at reducing levels of aquatic fecal contamination.

Keywords: microbial water quality, Escherichia coli, land use, Finger Lakes, microbial source-tracking

INTRODUCTION

Aquatic fecal contamination poses risks to human and
environmental health through the introduction of pathogens
(Craun et al., 2006; Arnone and Walling, 2007), nutrients
(Sharpley et al., 2003), antimicrobials (Chee-Sanford et al.,
2009; Karkman et al., 2019), and hormones (Boxall et al., 2003;
Hanselman et al., 2003; Combalbert and Hernandez-Raquet,
2010; Bartikova et al., 2016). From 1978 to 2014, contact with
contaminated untreated recreational water (e.g., lakes) resulted
in 184 outbreaks associated with acute gastrointestinal illness,
acute respiratory illness, and skin-related illness among other
symptoms (CDC, 2019). Food-borne outbreaks can also be
caused by using contaminated water for various agricultural
purposes, such as frost protection and irrigation during produce
production (FDA, 2018). Harmful algal blooms that pose both
human and environmental health risks are also caused by, at
least in part, phosphorus-rich runoff from fertilizer or manure
applied to agricultural fields (Kane et al., 2014; Vadas et al.,
2017; Kumaragamage and Akinremi, 2018). Therefore, the
identification of not only the origins of fecal contaminants but
also the factors that affect their transport, storage, and decay is
essential to protecting ambient water quality and human and
environmental health.

The protection and remediation of surface water quality often
begins with assessing potential hazards, including sources of
fecal contamination (WHO, 2016). A multitude of factors that
affect levels of observed aquatic fecal contamination have been
identified. Examples of well-known factors include, but are not
limited to, recent rainfall and stormwater runoff (VanWormer
et al., 2016), livestock density in the upstream catchment (Oliver
et al., 2018), and poorly maintained wastewater infrastructure
(Ahmed et al., 2018). However, many sources are diffuse and/or
intermittent and may be difficult to pinpoint. Previous studies
have assessed the association between the presence and levels
of fecal indicator bacteria (FIB), such as Escherichia coli or fecal
coliforms, and various factors thought to affect their distribution.
However, it is well-established that FIB are ubiquitous in
mammalian hosts, including some wildlife, and represent the
total level of fecal contamination in a water body (Dufour, 1984).
Therefore, it is difficult to gage the importance of the different
factors controlling the input of a single fecal type (e.g., human
and ruminant) using FIB as a response because measured FIB
levels are a composite of FIB from different sources that may have
different origins, routes of introduction, and other factors that
control their distribution.

Over the last two decades, microbial source-tracking (MST)
methods that target host-specific bacteria (Bernhard and
Field, 2000; Mieszkin et al., 2010; Green et al., 2012) or

viruses (Zhang et al., 2005; Stachler et al., 2017) have been
used to distinguish and quantify levels of source-specific fecal
contaminants in water samples. MST has most often been used to
facilitate remediation of specific waterbodies, but could be used as
a model input to identify and rank the major factors controlling
different types of fecal contaminants. Such information could
inform site-specific, watershed-scale, or regional management
plans to help avoid sourcing or using water for agriculture or
recreation that presents a risk to human health, such as water
contaminated with human sewage or septage.

In this study, we visited 68 streams over a single growing
season in the Finger Lakes region of Upstate New York,
United States, and collected weather, land-use patterns, and water
quality data (e.g., E. coli, MST markers, and physical–chemical
parameters), as well as other stream features with the goal of
identifying factors that affect fecal contamination at a regional
scale. Our specific objectives were to (i) identify the associations
between levels of E. coli, the detection of MST markers (i.e., avian,
canid, human, and ruminant), and the presence of potential
sources of upstream fecal contamination, (ii) characterize the
relationship between E. coli levels and MST marker detection,
and (iii) identify key spatial, weather, and physical–chemical
water quality factors associated with an increased or decreased
likelihood of fecal contamination.

MATERIALS AND METHODS

Spatial Analysis
Land Cover Characterization
Inverse-distance weights (IDW) were used to characterize land
cover as described previously (Weller D.L. et al., 2020). Land
cover percentages were calculated for the following distance
intervals around each sampling site: 0–100, 100–250, 250–
500, 500–1,000, 1,000–2,000, 2,000–5,000, 5,000–10,000, 10,000–
20,000, and >20,000 m. The IDW proportion under each land
cover class was then calculated for the total watershed and stream
corridor (60 m buffer from the stream channel) using a modified
version of the equation from King et al. (2005) (example R code
available at https://github.com/wellerd2).

Feature Density
The presence, density, and flow path distance (minimum and
median) from the sampling site to features that could affect
measured water quality parameters were also determined. Flow
path distances were estimated by creating flow networks using
the National Hydrology Dataset (NHD) flow accumulation and
flow direction rasters, as well as NHD flowline data, and analyzed
using the riverdist package version 0.15.3 (Tyers, 2017) in R as
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done previously (Weller et al., 2019). Flowline data were used for
features that intersected streams (e.g., roads), while flow networks
were used for all other features. The only data available for septic
systems were aggregated to census tracts; therefore, septic density
in each watershed was interpolated based on the percentage
overlap between each census tract and the watershed as described
previously (Weller et al., 2019).

Sample Site Selection
Streams and possible access points were identified using
ArcGIS 10.2. Stream access points that represented an upstream
watershed area ≥10 km2 with streams adjacent (<400 m)
to fields used to grow produce covered by the Food Safety
Modernization Act over 4 of the past 8 years were identified as
candidate sampling sites. From the candidate sampling sites, 68
sampling sites were randomly selected to ensure that the sampled
watersheds did not overlap. While funding for this work was
contingent on the confidentiality of precise sampling locations, all
samples were collected near commercial farms from waterways
used for irrigation in the Great Lakes or Finger Lakes watersheds.
A map of approximate sampling locations is provided in a
previous publication (Weller et al., 2019).

Meteorological Data Acquisition
Meteorological data were obtained from the nearest Network
for Environment and Weather Applications (NEWA) weather
station.1 Total rainfall, average air temperature, and average solar
radiation were then calculated using non-overlapping periods
[i.e., 0–1, 1–2, 2–3, 3–4, 4–5, 5–10, 10–20, and 20–30 days before
sample collection (d BSC)] accounting for the precise time of day
the sample was collected.

Sample Collection
Between April and October 2018, streams were sampled either
two (n = 8 streams) or three (n = 60 streams) times each resulting
in a total of 196 1-liter samples. Samples were stored on ice during
transit and filtered within 6 h of sample collection. To create
split samples for MST and enumeration of fecal indicators, 1-
liter samples were shaken by hand before filtration of two separate
100 ml aliquots.

Microbiological Analysis and MST
Enumeration of E. coli
Escherichia coli were enumerated using the Colilert Quanti-Tray
2000 kit (IDEXX, Westbrook, ME, United States) following the
manufacturer’s instructions. Sample dilution was not performed
so the upper and lower limits of quantification were 2,419.6 Most
Probable Number (MPN)/100 ml and 1 MPN/100 ml.

Sample Processing for MST
One hundred milliliter subsamples were filtered using sterile,
pre-bagged, single-use vacuum filtration units with 0.45 µm
pore-size 47 mm diameter polyethersulfone filters. Filters were
transferred to Lysing Matrix E tubes (MPBio, Irvine, CA,
United States) and stored at −80◦C for between 55 and 218 days

1newa.cornell.edu

(mean = 197 days) until DNA extraction. Prior to extraction,
filters were allowed to thaw to room temperature, and a 29.2 µl
aliquot of prepared Caenorhabditis elegans lysate was added
to each tube as described previously (Kirtane et al., 2019).
Following thawing and lysate addition, filters were homogenized
on a FastPrep-24-5G (MPBio), and DNA was extracted with the
DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) with
a final elution volume of 100 µl. Eluted DNA was stored at
−20◦C for between 1 and 27 days (mean = 21 days) until qPCR.
Two DNA extraction blanks were included in each of the five
extraction batches by conducting extractions as described above,
but omitting the filters.

qPCR for MST
qPCR assays for human (HF183; Bernhard and Field, 2000;
Green et al., 2014a), ruminant (Rum2Bac; Mieszkin et al., 2010),
canine (DG3; Green et al., 2014b), avian (GFD; Green et al.,
2012; Weller et al., 2019), and internal control C. elegans (CG4;
Kirtane et al., 2019) molecular markers were performed as
described previously (Green et al., 2019; Weller et al., 2019).
Oligonucleotides were obtained from IDT (IA, United States),
except for MGB probes that were obtained from Applied
Biosystems (MA, United States). A version of the GFD assay
that was modified for probe-based detection and that detects
fecal contamination from gulls, geese, ducks, and chickens was
used as previously reported (Weller et al., 2019). Gulls, geese,
and ducks are common and are therefore likely sources of
fecal contamination in the study area. Duplicate 25 µl qPCR
reactions were prepared using 12.5 µl TaqMan Environmental
Master Mix (ThermoFisher, Waltham, MA, United States),
molecular grade water, primers and probes, and 2 µl DNA
template. Reactions were run under default cycling parameters
(50◦C for 2 min; 95◦C for 10 min; and 40 cycles of 95◦C
for 15 s, and 60◦C for 1 min) on either a QuantStudio3
or QuantStudio5 (ThermoFisher). Each 96-well qPCR plate
contained at least four no template control reactions (NTCs)
for which molecular grade water was substituted in place of
DNA template, as well as two wells of positive control consisting
of 103 copies/reaction of a custom designed gBlock (IDT).
The automatic baseline setting and a threshold value of 0.03
were used to estimate CT values. qPCR assays used in this
study and their performance metrics are reported elsewhere
(Weller et al., 2019).

qPCR Quality Control and Data Analysis
Assay-specific standard curves generated using 100–106

copies/reaction of custom-designed gBlocks (IDT) were used
to convert CT values to copy number per reaction. Reactions
with CT values greater than the intercept of the standard curve
were considered below limits of detection (LOD). For each
assay, a sample was considered detectable for MST markers
only if both CT values were within the LOD. Amplification
was not detected in any of the NTC (n = 100) or extraction
blank reactions (n = 20). Recovery of spiked C. elegans DNA
estimated using the CG4 assay was used as a proxy for
total DNA recovery through the extraction process as done
previously (Kirtane et al., 2019). DNA recoveries ranged from
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unmeasurable due to no recovery of spike (one sample) to
>100% indicating a large variability in recovery (Supplementary
Figure 1). Because samples with low recoveries still provide
informative data (e.g., detection of MST markers), no samples
were removed from analysis based on their estimated recovery
values. Kinetic outlier detection for all CG4 reactions was used
to detect the possible effects of qPCR inhibition as reported
previously (Bar et al., 2011; Green and Field, 2012; Kirtane
et al., 2019). Briefly, a sigmoidal model was fit to each CG4
amplification curve from which the first and second derivative
maxima were calculated. A difference of ≥10 fractional cycle
values between the derivative maxima was considered a sign
of significant inhibition in the reaction well. Using these
methods, no samples displayed signs of qPCR inhibition;
therefore, no samples were excluded from analysis because of
qPCR inhibition.

Data Analysis
Generalized Linear Mixed Models
General or generalized linear mixed models (GLMMs) were
developed using the lme4 version 1.1 (Bates et al., 2015) and
censReg version 0.5 (Henningsen, 2017) packages in R. Model
outcomes were the presence or absence of the target MST marker
or the log10 MPN of E. coli/100 ml. For models where the
outcome was binary, a logit link was used. For models where
the outcome was E. coli concentration (or “level”), censored
regression was used to account for samples where the MPN
was above the range of quantification (2,419.6 CFU/100 ml). No
samples were below the limits of quantification. Week of the
year was included as a fixed effect in all models to account for
non-independence of samples due to the collection of samples
in the same week. While stream ID was not itself a factor of
interest, it was included as a random effect to account for pseudo-
replication in all GLMMs.

Conditional CART Model Development
Conditional CART models [conditional inference trees (CTrees)]
were included as an additional statistical technique that is
robust to correlation and missingness and inherently considers
hierarchical relationships within the data. CTrees were developed
using the partykit package version 1.2 (Hothorn et al.,
2006; Hothorn and Zeileis, 2015) using the following control
parameters: mincriterion = 0.80, minbucket = 5, minsplit = 15,
and maxsurrogate = 3. Separate models were developed for each
outcome: (i) the presence or absence of the target MST marker
or (ii) the log10 MPN of E. coli/100 ml. For models where E. coli
levels were the outcome, the nine samples that were above the
range of quantification maximum (2,419.6 CFU/100 ml) were
assigned a value of 2,500 when developing the CTrees.

RESULTS

FIB and MST Summary
Escherichia coli was detectable in all streams and samples
with a mean value of 212 MPN/100 ml (Standard Deviation
[SD] = 637 MPN/100 ml); nine samples were above the range

of quantification. MST markers were less prevalent than E. coli,
occurring in only 68% of streams and only 38% of samples.
HF183 (a human fecal marker) was the most prevalent MST
marker, followed by Rum2Bac (a ruminant fecal marker), GFD
(an avian fecal marker), and DG3 (a canid fecal marker; Table 1).
Rum2Bac marker concentrations were higher than HF183, GFD,
and DG3. GFD and DG3 marker levels were approximately one
and two orders of magnitude below HF183 and Rum2Bac marker
levels, respectively. The scarcity of GFD (found in only 4% of
samples) and DG3 (found in only 0.5% of samples) markers
greatly limited our ability to draw conclusions about drivers of
avian and canid contamination, respectively. GLMMs indicated
that the probability of finding both human (4.520, p < 0.001,
95% CI = 2.012–10.155) and ruminant (6.838, p < 0.001, 95%
CI = 2.406–19.433) markers increased with elevated E. coli levels.

Factors Associated With E. coli
Concentration
GLMMs
Results from GLMMs indicated that the density of upstream pig
farms had a significant positive effect on E. coli concentrations
(1.868, p = 0.036, 95% CI = 0.121–3.615; Supplementary Table 1),
while the presence of upstream stormwater outfalls was also
associated with higher levels of E. coli (0.309, p = 0.008,
95% CI = 0.083–0.536). Interestingly, the presence of upstream
goat/sheep farms had a significant negative effect on E. coli
concentrations (−1.049, p = 0.018, 95% CI = −1.919 to −0.180).
Despite being one of the most common forms of livestock in the
study area, there was no clear association between dairy/cattle
farm density and E. coli concentrations (−0.161, p = 0.071, 95%
CI = −0.336 to 0.014). Increased dissolved oxygen (−0.155,
p < 0.001, 95% CI = −0.204 to −0.106) and pH (−0.468,
p < 0.001, 95% CI = −0.718 to −0.219) were associated with
lower levels of E. coli, while turbidity was associated with higher
levels (0.580, p < 0.001, 95% CI = 0.376–0.784). Average rainfall,
temperature, and solar radiation also had a significant effect on
E. coli levels. Total rainfall within 0–2 d BSC was associated
with higher levels of E. coli (0–1 d BSC, 0.375, p < 0.001, 95%
CI = 0.252–0.497; 1–2 d BSC, 0.194, p < 0.001, 95% CI = 0.099–
0.289), while total rainfall 5–10 d BSC was somewhat negatively
associated with E. coli levels (−0.077, p = 0.007, 95% CI =−0.132
to −0.021). Average temperature 5–10 days prior to sample
collection was more strongly associated with E. coli levels (0.046,
p < 0.001, 95% CI = 0.029–0.062) than average temperature
0–5 days prior to sample collection (0.019, p < 0.019, 95%
CI = 0.003–0.035). Average solar radiation 4–5 days prior to
sampling was positively associated with E. coli (0.455, p < 0.001,
95% CI = 0.189–0.721), while average solar radiation 0–2 days
prior was negatively associated with E. coli (0–1 day prior,−0.387,
p = 0.008, 95% CI = −0.674 to −0.101; 1–2 days prior, −0.399,
p = 0.008, 95% CI = −0.696 to −0.103). The presence of exposed
rock in the form of cobble, boulder, or bedrock in the streambed
was associated with lower levels of E. coli (−0.434, p < 0.001, 95%
CI = −0.641 to −0.228), while the presence of organic matter
was significantly associated with higher levels of E. coli (0.440,
p < 0.001, 95% CI = 0.225–0.656).
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TABLE 1 | Study-wide detection frequency and concentrations of molecular markers.

Number of
positive samples

(%)

Number of
positive streams

(%)

Geometric mean
concentration in
positive samples
(copies/100 ml)

Median
concentration in
positive samples
(copies/100 ml)

Minimum
concentration in
positive samples
(copies/100 ml)

Maximum
concentration in
positive samples
(copies/100 ml)

DG3 1 (0.5%) 1 (1%) 76 76 76 76

GFD 8 (4%) 7 (10%) 410.7 466.5 64 7,040

HF183 49 (25%) 31 (46%) 1,640.1 1,204 48 320,448

Rum2Bac 34 (17%) 26 (38%) 1,971.6 1,315.5 145 117,605

FIGURE 1 | Conditional inference tree (CTree) showing factors and combinations of factors predictive of log10 E. coli/100 ml. In Node 1, dissolved oxygen was
designated the primary split (p < 0.001), while pH (split = 8.26, p < 0.022) and turbidity (split = 0.50 log10 NTUs, p < 0.001) were designated surrogate splits that
split the data equally well. Turbidity was the only significant surrogate split for Node 2 (split = 0.86 log10 NTUs, p < 0.007). For Node 5, average 10-day
(split = 23.6◦C, p < 0.003) and 30-day (split = 24.6◦C, p < 0.002) temperatures were significant surrogates. Node 7 had no significant surrogates.

CTrees
Conditional inference trees indicated that elevated E. coli levels
were driven by physical–chemical water quality parameters (i.e.,
dissolved oxygen, turbidity, and pH) and precipitation 0–1 d BSC
(Figure 1). E. coli levels were lowest (mean = 5.5 MPN/100 ml,
SE = 12.5) when dissolved oxygen was above 9.16 mg/L and
the average temperature 20–30 days before sampling was below
6.3◦C (Figure 1, Node 6; p < 0.001). E. coli levels were highest
(mean = 496.6 MPN/100 ml, SE = 89.9) when dissolved oxygen

was less than 9.16 mg/L and total rainfall 0–1 d BSC was greater
than zero centimeters (Figure 1, Node 2; p = 0.006).

Factors Associated With Human MST
Markers
GLMMs
Somewhat surprisingly, rural features, such as the presence of
horse stables upstream of sampling points (3.409, p = 0.020,
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95% CI = 1.216–9.556; Supplementary Table 2) and IDW
% of pasture land use (0.968, p = 0.039, 95% CI = 0.938–
0.998), were significantly associated with the presence of human
markers. Also, as distance from upstream goat/sheep (1.065,
p = 0.038, 95% CI = 1.003–1.131) or pig farms (1.084, p = 0.024,
95% CI = 1.011–1.163) increased, so did the probability of
finding human markers, potentially reflecting rural to urban
transitions. Unsurprisingly, the presence of upstream stormwater
outfalls (5.297, p = 0.002, 95% CI = 1.879–14.929), wastewater
discharges (4.426, p = 0.003, 95% CI = 1.672–11.722), and
campgrounds (3.549, p = 0.024, 95% CI = 1.184–10.637)
was associated with the presence of human markers. Total
watershed area was also significantly associated with human
marker presence (1.041, p = 0.006, 95% CI = 1.012–1.071).
Rainfall 0–1 d BSC (3.412, p < 0.01, 95% CI = 1.729–6.732)
and average solar radiation 2–3 d BSC (0.097, p = 0.008, 95%
CI = 0.017–0.540) were also positively associated with human
marker presence.

CTrees
In areas where either the IDW developed area within a 60 m
stream buffer exceeded 3.4%, the IDW developed watershed area
exceeded 40.9%, or where there were stormwater outfalls present
upstream, 45% of samples contained detectable levels of human
markers (p < 0.05; Figure 2, Node 5). The probability of detecting
human markers was lowest (13.6%) when none of the above
conditions were met and rainfall 0–1 d BSC was less than 1.5 cm
(p < 0.05; Figure 2, Node 3).

Factors Associated With Ruminant MST
Markers
GLMMs
The minimum distance to upstream cattle operations (0.842,
p = 0.047, 95% CI = 0.710–0.997; Supplementary Table 3),
IDW % of cropland within the 60 m buffer (1.054, p = 0.019,
95% CI = 1.009–1.101), and IDW % of forest/wetland (1.040,
p = 0.036, 95% CI = 1.003–1.078) were all significantly associated
with the presence of ruminant markers. Water quality parameters
typically associated with poor water quality, such as high levels
of E. coli (6.838, p < 0.01, 95% CI = 2.406–19.433) and
turbidity (9.354, p < 0.01, 95% CI = 2.684–32.603), were also
associated with the detection of ruminant markers as were
average solar radiation 0–2 d BSC (0–1 d BSC, 0.041, p = 0.001,
95% CI = 0.007–0.261; 1–2 d BSC, 0.080, p = 0.005, 95%
CI = 0.014–0.466) and total rainfall 0–1 d BSC (4.387, p < 0.01,
95% CI = 2.140–8.991) and 3–4 d BSC (2.770, p = 0.025,
95% CI = 1.139–6.734). Interestingly, the presence of exposed
rock (0.257, p = 0.005, 95% CI = 0.099–0.669) and submerged
aquatic vegetation (SAV) were also significantly associated with
the presence of ruminant markers (0.278, p = 0.030, 95%
CI = 0.087–0.885).

CTrees
While CTree results for ruminant marker presence/absence
were more complex, they largely matched the results from
the GLMMs. Ruminant markers were most likely to be
found in samples with 0–1 d BSC precipitation greater

FIGURE 2 | Conditional inference tree (CTree) showing factors and
combinations of factors predictive of HF183 (human) marker presence. In
Node 1, IDW % developed area within 60 m buffer was designated the
primary split (p < 0.001), while developed watershed area (split = 41%,
p < 0.002) and the presence of stormwater outfalls (p < 0.012) were
designated surrogate splits that split the data equally well. Node 2 had no
significant surrogates.

than 1.17 cm (p < 0.001), E. coli levels greater than 631
MPN/100 ml (p = 0.008), average solar radiation greater than
0.43 MJ/m2 0–1 d BSC (p = 0.008), or turbidity greater
than 19.95 NTUs (p = 0.056; Figure 3, Node 7). When
none of these conditions were met, ruminant markers were
still more likely to be found if the pasture area within the
60 m buffer exceeded 35.8% (p < 0.001; Figure 3, Node
6). IDW % forested/wetland watershed area greater than
59.6% increased the probability of ruminant marker detection
from 6.8% (Figure 3, Node 4) to 36.8% (Figure 3, Node
5; p = 0.038).

DISCUSSION

In this study, we used data collected from 68 streams to
identify factors associated with fecal contamination across
the Finger Lakes region of Upstate New York. Few studies
have sampled this many streams multiple times to assess the
causes of fecal contamination. While location-specific regulatory
tools, such as total maximum daily loads (TMDLs) (U.S.
Environmental Protection Agency, 1991), may offer pathways
toward improved water quality for specific streams, they take
years to develop and implement, and it is often resource-
intensive to ensure compliance. On the other hand, federal
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FIGURE 3 | Conditional inference tree (CTree) showing factors and combinations of factors predictive of Rum2Bac (ruminant) marker presence. In Node 1, 0–1 d
BSC precipitation was designated the primary split (p < 0.001), while E. coli (split = 2.8 log10 MPN/100 ml, p < 0.008), average solar radiation in the 0–1 d BSC
(split = 0.43 MJ/m2, p < 0.008), and turbidity (split = 1.30 log10 NTUs, p < 0.056) were designated surrogate splits that split the data equally well. Nodes 2 and 3
had no significant surrogates.

standards for assessing human health hazard presence in
recreational water (US EPA, 2012) and surface water used
for produce production (Food and Drug Administration,
2015) may not fully account for spatiotemporal variation
in microbial water quality, or the heterogeneity inherent to
freshwater environments at local and regional scales (Truitt
et al., 2018; Weller D. et al., 2020). In contrast, and
intermediate in scale between the prior two approaches, the
identification of factors associated with elevated levels of
fecal contamination across a region may indicate effective
mitigation strategies with relatively low overhead (Grayson
et al., 1997; Verhougstraete et al., 2015). Although there were
practical limitations that prevented an assessment of year-to-
year variability on each of the 68 streams, follow-up studies
should be conducted that assess this variability over a smaller
number of streams.

Escherichia coli is an FIB and the target for existing agricultural
and many recreational water quality standards and monitoring
programs. In the present study, we primarily found associations
between E. coli levels and meteorological or physical–chemical
variables, although two land-use factors, upstream pig farm

density and stormwater outfall presence, were also associated
with elevated E. coli levels. More investigation is needed to
determine why E. coli levels were negatively associated with
goat/sheep farm density. It may be that goat/sheep farms
may contribute lower levels of E. coli than larger livestock
with higher amounts of waste, or that goat/sheep farms are
associated with unmeasured factors that are also associated
with low levels of E. coli. Rainfall is often associated with
poor water quality (Pandey et al., 2012; Francy et al., 2013;
Stocker et al., 2016; Weller et al., 2019) due to its propensity
to promote the transport of contaminants into streams via
stormwater runoff. The observed negative association between
rainfall 5–10 d BSC and E. coli levels could be attributable
to the rainfall-mediated removal of E. coli 5–10 BSC followed
by limited terrestrial loading and/or limited transport due
to little or no rainfall in the 0–5 d BSC window. The
extended persistence and even growth of E. coli in the
environment has been associated with elevated temperature
previously (Porter et al., 2019) that is further supported by
our observation of significant associations between E. coli and
average temperature 0–10 days prior to sample collection.
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Our observation that average solar radiation 4–10 days prior
to sampling had a positive effect on E. coli levels could
be explained by the strong correlation between sunlight
and warmer temperatures. In contrast, our observation that
higher levels of solar radiation 0–2 d BSC had a negative
effect on E. coli could be due to the fact that UV light
damages cells directly.

Human-derived aquatic fecal contamination is often
considered more dangerous than other sources because of its
association with a diverse range of human pathogens (Soller
et al., 2014). Human sources are often associated with point
sources, such as stormwater outfalls, and non-point sources,
such as failing septic tanks, and can be detected using a wide
range of source-tracking methods including bacterial, viral,
and chemical methods. Based on the occurrence of HF183
markers, we found that agricultural (e.g., presence of upstream
stables), engineered (e.g., stormwater outfalls), and residential
features (e.g., presence of upstream campgrounds), as well as
the amount of developed area in the watershed (IDW %) and
in the 60 m stream buffer area, were highly associated with
signs of human fecal contamination. While the associations
of HF183 markers with upstream campgrounds, stormwater
outfalls, and wastewater discharges were not surprising, the
associations of HF183 markers with upstream stable presence
and the proportion of pasture land (IDW %) in the watershed
were somewhat unexpected given that there is no clear source
of human contamination from stables or pasture land. It
is possible that stable presence may be associated with the
presence of septic systems that could serve as inputs, or that
the HF183 assay cross-reacted with equine or other non-
human fecal contaminants. Cross-reaction of other human
MST markers, but not HF183, with equine contaminants
has been observed previously (Feng et al., 2020). Further
investigation of the sites in question is needed to fully explain
these associations.

A number of factors associated with high levels of E. coli
were also significantly associated with the presence of ruminant
contaminants. The associations of Rum2Bac markers with
recent rainfall (GLMMs, 0–1 and 3–4 d BSC; CTree, 0–1 d
BSC) suggest that a major driver of transport of ruminant
contaminants to streams in the study region is stormwater
runoff. Based on CTree analysis, even when rainfall was low,
the probability of finding ruminant markers increased with
pasture area within the stream buffer or forested/wetland
area in the watershed (IDW %). It is currently unclear if
the associations between Rum2Bac markers and forests or
wetlands (both land-use types were collapsed in this study)
were due to bovine sources or to other ruminants (e.g.,
deer) that can also be detected by the Rum2Bac assay
(Mieszkin et al., 2010).

The observation that different factors are associated with
E. coli than human markers could not only be due to
the fact that E. coli is a composite measure of all fecal
inputs, but also could be due to the extended persistence
or resilience of molecular markers compared with cultivable
indicators (Green et al., 2011). For example, the presence
of upstream wastewater discharges was significantly associated

with human markers but not E. coli levels. We attribute this
to the observation that wastewater treatment processes are
usually much more effective at reducing levels of cultivable
E. coli than they are at reducing concentrations of DNA-
based molecular markers (Wu et al., 2020), which are relatively
stable. A similar situation may have occurred downstream of
campgrounds where molecular markers may have persisted
through the duration of transport from, presumably, septage,
whereas the rapid decay of E. coli may have limited its detection
in these areas. Human molecular markers may not be good
indicators of some pathogens in scenarios where contaminant
introduction to the waterbody is preceded by treatment or
storage processes.

CONCLUSION

The identification of a wide range of factors significantly
associated with fecal contamination in the Finger Lakes
region of Upstate New York streams points to the complex
dynamics of fecal loading of streams in this area. Our
observation that the presence of human contamination
may be driven in some cases by watershed land use and
specific features, such as stormwater outfalls, more so
than meteorological factors suggests that limiting human
fecal contamination of streams may be best confronted
by management actions that prioritize spatial aspects of
watersheds versus stream monitoring. However, the opposite
may be true for mitigating ruminant contamination that
appears to be highly associated with factors that are frequently
monitored for in-stream (e.g., E. coli, turbidity, conductivity,
temperature, and pH). Although the precise factors that control
fecal contamination vary within and between watersheds,
the factors identified herein could be useful for informing
regional best management practices for reducing fecal
contamination of waterbodies.
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