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In 2018, we invited readers of Fluids and Barriers of the 
CNS to contribute to a Thematic Series on aspects of 
fluid and solute movement into, within, and out of the 
brain. This subject has important implications for neuro-
logical diseases such as stroke, Alzheimer’s disease (AD), 
idiopathic intracranial hypertension (IIH), normal pres-
sure hydrocephalus (NPH) and syringomyelia. It is also 
an important factor in the delivery and distribution of 
pharmaceutics for disease treatment.

The submitted papers covered a variety of themes. 
One focused on cerebrospinal fluid (CSF) secretion 
or flow within the ventricles and subarachnoid spaces 
(SAS). Another theme centred on the controversial sub-
ject of perivascular flow around penetrating blood ves-
sels using mathematical modelling. A third concerned 
movement of fluid and solutes through the brain intersti-
tial space: a topic of great interest but difficult to study 
experimentally.

Advances in imaging have provided new insights into 
fluid and solute movement in the CNS. Techniques 
for improved resolution in magnetic resonance imag-
ing (MRI) are enabling a better understanding of fac-
tors affecting CSF flow. For example in normal subjects, 
forced abdominal breathing had a larger effect on CSF 
flow than thoracic breathing especially in the spinal 
cord SAS, with inspiration resulting in upward flow [1]. 
Another study [2] demonstrated that in the cerebral 
aqueduct, the cardiac pulse had a larger effect on CSF 
velocity than the respiratory pulse, but the reverse was 
true for displacement volume. These studies in normal 
subjects can set the baseline for improved diagnosis of 

abnormal CSF dynamics in disease. For example, flow 
velocity and displacement volume were both increased 
in the aqueduct of a group of NPH patients but were 
reduced after shunt surgery [3]. Another study [4] found 
that both NPH and AD patients had similar but abnormal 
aqueduct CSF pressure gradients. However, the veloc-
ity was very variable in NPH patients and not abnormal 
in AD. After a series of consecutive lumbar drains, CSF 
compliance and cerebral perfusion pressure increased 
in IIH patients with raised intracranial pressure [5]. 
Although this invasive technique precludes a study with 
control subjects for comparison, it could be extended to 
predict treatment response. Another promising approach 
for modulating CSF dynamics in disease is to target 
secretory mechanisms in the choroid plexus, although 
this becomes very complex when considering the num-
ber of potential targets [6], especially when a large num-
ber of genes were shown to be altered in choroid plexus 
tissue from AD patients [7].

In vitro models of the CSF system are also being used 
increasingly to delineate CSF dynamics and to study 
pathological conditions. A 3D-model of the SAS was 
constructed from meningoepithelial cells and exposed 
to different flow conditions [8]. Abnormal CSF flow and 
hypoxia resulted in significant changes in expression of 
genes from the cultured cells involved in extracellular 
matrix composition, the endosome-lysosome system, 
and mitochondrial energy metabolism. A constructed 
model has been developed to investigate CSF flow and 
compliance during pathological disturbances [9], and 
a mathematical model was used to predict that jugu-
lar vein collapse reduces the fall in intracranial pressure 
when moving to upright posture and makes a significant 
contribution to mitigate the postural increase in intrac-
ranial compliance [10]. To assist research into diagnosis 
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and the administration of therapeutics, a 3D geometric 
and hydrodynamic model of the spinal subarachnoid CSF 
was constructed from high resolution MR images of the 
entire spine of a healthy subject and is available for reuse 
under license [11]. This model has been used to investi-
gate the dynamics of spinal CSF and potential for intrath-
ecal therapy in patients with amyotrophic lateral sclerosis 
[12].

The removal of metabolic products and toxic sub-
stances from the brain interstitial space is important for 
neuronal health and a subject of intense research. Small 
solutes, transporter substrates and lipid soluble sub-
stances can be eliminated across the blood–brain barrier/
neurovascular unit (BBB/NVU), whereas large polar mol-
ecules including amyloid-β may, at least in part, be elimi-
nated via the perivascular spaces (reviewed in [13]). It has 
long been known that tracers in the SAS may enter brain 
parenchyma around penetrating blood vessels, particu-
larly arteries/arterioles [14], although there were ques-
tions over the rate and significance of such movement 
[15]. Similarly, there has long been evidence that tracers 
placed in brain parenchyma may exit the brain to the CSF 
via the perivascular space [16]. Two different potential 
routes for fluid/solute movement around cerebral blood 
vessels have been identified, a space between the pia 
and astrocyte end feet (paravascular) and a route along 
the basement membranes of the smooth muscle layer 
(perivascular) [17–19]. This has raised many questions 
as to the physiological implications of these observa-
tions, not least because the movement of marker mole-
cules does not necessarily have to occur by bulk fluid flow 
(convective flow). One suggestion is that CSF entering 
the brain via paravascular channels moves through the 
brain parenchyma via an astrocyte aquaporin-4 depend-
ent pathway and clears the brain of waste products by 
exiting via paravenous channels (the glymphatic hypoth-
esis [20]). However, this is still the subject of much debate 
[21, 22].

Injection of a fluorescent tracer into rat spinal cord 
showed that radial spread occurred within the paren-
chyma from grey matter into white matter but not vice 
versa, and most importantly tracer was seen in the para-
vascular spaces of arteries, arterioles and venules and 
also in the arterial perivascular space [23]. In the opposite 
direction, constriction of the rat spinal cord SAS at the 
cervicothoracic junction followed by intracisternal injec-
tion of fluorescent ovalbumin resulted in fluorescence in 
the parenchyma and also around arterioles, venules and 
capillaries, effects seen in control and to a greater extent 
in constricted animals [24]. Using data from a previous 
study [25] in which MR contrast agent injected intrath-
ecally was localised in the CSF and brain by sequential 
imaging, convection and diffusion in the parenchyma was 

modelled using uncertainty quantification [26]. It was 
concluded that uncertainty in the diffusion coefficient 
was not sufficient to account for the tracer movement 
into white matter and that the addition of a convective 
velocity field (glymphatic?) may be needed to explain the 
data.

The evidence for fluid movement in spaces around 
brain vessels raises the question of the driving force, and 
potential mechanisms have been considered using math-
ematical modelling. The cardiac pulse in arterial vessels 
has been considered as a mechanism for propelling fluid 
and solutes in spaces around vessels. However, a hydrau-
lic network model using parameters from the literature 
concluded that oscillatory fluid motion does not result in 
perivascular net flow but that solute movement may be 
enhanced by dispersion [27]. The hydraulic resistance of 
periarterial, para-arterial and para-venous channels has 
also been estimated using a simplified model of the cer-
ebral vascular tree and it was concluded that the resist-
ance was too high to allow for pressure-driven flow in 
any of the potential routes [18]. However, another study 
has shown that the shape of the periarterial space (con-
centric and circular or elliptical) has a large effect on the 
estimated hydraulic resistance and may explain some 
discrepancies [28]. Shear-augmented dispersion of sol-
utes has been considered as an alternative a mechanism 
for solute movement using a mathematical model which 
takes into account the nature of the medium (porous or 
non-porous) and the pulsatile movement of fluids. It was 
concluded that such augmentation is unlikely in base-
ment membranes but could be important in 10 µm para-
arterial spaces and also in the spinal SAS [29]. Readers 
are also referred to recent reviews that have addressed 
these points [30, 31].

Mechanisms by which solutes move in the interstitium 
of the parenchyma are also a focus of much research (see 
recent review [32]). A hydraulic model predicted that in 
the parenchyma solute movement occurs largely by dif-
fusion [27]. A different approach to estimating interstitial 
flow was taken by Ray et  al. [33], using data from ion-
tophoretic infusion of a small ionic molecule with con-
centration measurement at a known distance from the 
infusion. From the simulations, they concluded that both 
diffusion and bulk flow may be important, with bulk flow 
more important for large molecules. However, the calcu-
lations for flow in this study have been questioned [34] 
(see [35] for response). While the movement of fluid and 
solutes within the interstitium is important for a more 
complete understanding of brain physiology and patho-
physiology, it may also impact drug delivery for neuro-
logical diseases. A review has considered a number of 
different published models for predicting drug distribu-
tion and concluded that they are incomplete. Transport 
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across the BBB/NVU, movement within the brain, and 
molecular binding all need to be taken into account to 
create a 3D model that predicts drug concentration in 
time and space [36].

Debates over the glymphatic system and CSF produc-
tion and flow have made brain fluid and solute dynamics 
an area of intense research. It is a very important topic 
influencing normal brain function and disease states, as 
well as drug delivery. The papers in this Thematic Series 
reflect that importance and the variety of approaches that 
are being used to address it.
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