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Abstract
The use of Disease progression models (DPMs) in Drug Development has been widely adopted across therapeutic 
areas as a method for integrating previously obtained disease knowledge to elucidate the impact of novel therapeutics 
or vaccines on disease course, thus quantifying the potential clinical benefit at different stages of drug development 
programs. This paper provides a brief overview of DPMs and the evolution in data types, analytic methods, and 
applications that have occurred in their use by Quantitive Clinical Pharmacologists. It also provides examples of 
how these models have informed decisions and clinical trial design across several therapeutic areas and at various 
stages of development. It briefly describes potential new applications of DPMs utilizing emerging data sources, 
and utilizing new analytic techniques, and discuss new challenges faced such as requiring description of multiple 
endpoints, rapid model development, application of machine learning-based analytics, and use of high dimensional 
and real-world data. Considerations for the continued evolution future of DPMs to serve as community-maintained 
expert systems are also provided.
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Introduction

A fundamental tenet of model-informed drug development 
(MIDD) is incorporation of available information to inform 
the development of a new medicine [1]. For many diseases, 
understanding the course of disease as a function of time, 
disease severity, and impact of treatment can aid in answer-
ing questions related to impact of a new medicine, and how 
it can be of greatest value to the patient. A model-informed 

approach offers an ideal solution to incorporate all the types 
of information available to the researcher across disparate 
sources. It serves as the framework to integrate knowledge, 
and to build and grow an expert understanding of both dis-
ease and treatment impacts that can inform the development 
and use of medicines.

Disease progression modeling (DPM) integrates math-
ematical functions and underlying scientific pathophysi-
ologic principles to quantitatively describe the time course 
of disease progression. The key concepts and develop-
ments leading to their increased use have been well-
described previously [2, 3]. Historically, these models 
have been empiric, but more recent examples include 
semi-mechanistic, systems biology, and systems pharma-
cology approaches [4].

Over time, the complexity of data types used, analytic 
approaches, and potential applications have continued 
to grow. However, irrespective of the underlying mod-
eling techniques, these models normally contain three 
elements essential for use in drug development (see 
Fig. 1). The three components of DPMs allow for use 
across a variety of applications at various stages in drug 
development.
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DPM Applications

During development, MIDD strategies encompass a vari-
ety of model types as tools to inform different decision 
points and problems, ideally in an integrated and com-
plimentary manner. Each model type offers a different 
approach and may be constructed on different data. They 
can inform different problems or may be used together 
to offer fidelity to a particular decision (assuming they 
make the same recommendation). Often, model types 
evolve in parallel and inform each other, and may be used 
interchangeably. DPMs have become an important tool in 
the Quantitive Clinical pharmacologist’s toolkit, and the 
application of DPMs to inform decision making has grown 
over time with the realization of their potential. They have 
become one of the most common applications for models 
in drug development.

The utility of connecting disease progression models 
with clinical trial simulations was identified early, dating 
back to the pivotal work of Nick Holford and others in 
Parkinson’s and Alzheimer’s Disease [5–7]. These early 
examples illustrated the approach and benefit to under-
standing disease progression linked to clinical outcomes 
and illustrated the potential of data sharing and meta-
analyses. These analyses provided insights int the nature 
of the drug effects within the clinical trials used as a data 
source. Since then, a diverse array of similar examples 
across multiple therapeutic areas have been completed and 
made available in the public domain [8–10].

An important learning from these initial clinical trial-
informed efforts was that data pooled solely from one or 
a few completed clinical trials rarely contained sufficient 
information to fully characterize disease progression (e.g., 
insufficient duration of observation). As investigators 
explored other applications of DPMs, it became neces-
sary to utilize a broader array of existing and emerging 

data sources, especially if the intent was to fully charac-
terize and link progression attributes and biomarkers to 
long-term disease outcomes or if accounting for real-world 
experience.

Over time, there have been significant advances in linking 
observed outcomes back to the underlying mechanisms of 
drug action, and to related biomarkers. Mechanistic-based 
models inform decisions related to pathway and target selec-
tion, candidate selection, biomarker strategy, patient selec-
tion and optimal study design for early signals of efficacy 
[2]. Mechanistic DPMs may identify patient populations 
most likely to respond to therapy. They can identify patient-
responder phenotypes that inform enrollment criteria and 
that aid in assessment of commercial value by determining 
the prevalence of the proposed target indication. They can 
answer the longitudinal design-related clinical study ques-
tions (duration of study, optimal timing of assessments). 
DPMs can assess impact of drug combinations, especially 
when combined with a Quantitive Systems Pharmacology 
(QSP) model. In more recent examples, QSP models form 
the basis for disease progression models themselves [11].

A common application of DPMs in drug development 
is use of QSP-linked DPMs to design and interpret clini-
cal Proof of Concept, guide portfolio decisions including 
franchise ranking and DPM-linked clinical trial simulation 
models to evaluate design scenarios and judge the probabil-
ity of technical success (PTS) across various design options 
[1, 12]. The trial simulation application is particularly 
important given the stage and cost of development at this 
juncture (typically phase 2 or 3 but can also reflect post-
marketing efforts). Beyond clinical trial simulation, there 
are also applications in health economic and clinical out-
comes research supported by both academic and govern-
mental agencies that could inform both funding allocation 
and policy decisions respectively [13, 14] and amongst the 
provider and payer communities to support formulary and 
reimbursement policy and decisions [15].

At later stages of development this type of model frame-
work can be used to evaluate clinical study designs includ-
ing endpoints, substrata, and sample size as well as clinical 
operations including patient and site selection.

Data Sources and Requirements for DPMs

The extent to which modeling efforts are successful often 
depends upon the availability and appropriateness of the 
data used to construct them, development of analysis plans 
apriori, and alignment of MIDD deliverables with timing 
of decision points with the team responsible. Irrespective 
of the planned application, and given the increasing diver-
sity of DPM application [2], early investment and planning 
in data requirements is warranted to maximize a DPM’s 
value. Early development and planning also allows for model 

Disease Components

•Describes natural history of change or progression of disease in a 
popula�on
• May be a clinical outcome, biomarker rela�onship between the 
two, or mul�ple endpoints

•Includes pa�ent characteris�cs that influence progression: 
•Baseline severity, gene�c predisposi�on, and other known 
biologic factors

•Various disease courses  and stages possible (e.g.  Degenera�ve, 
flare, etc)

Treatment 
Components

•Describes treatment effects of interest
•Cura�ve, symptoma�c, or disease modifying effects possible
•Considers some measure of exposure (dose or concentra�on), 
•Includes rela�onship(s) between exposure and intended effect 
(linear, emax, etc.) and temporal elements of response (delayed 
responses, tolerance development, etc.)
• The response may refer to efficacy or safety

Trial Components

•Important for Trial Simula�on
•Determines impact of trial specific factors such as
•pa�ent popula�on characteris�cs, 
•compliance, impact of trial drop-out, and pa�ent adherence. 

Fig. 1  Components of a Disease Progression Model for Use in Drug 
Development.

1804 Pharmaceutical Research (2022) 39:1803–1815



1 3

enhancement over time, and to add data as it is generated and 
to answer emerging questions in a timely manner.

A fundamental concept in MIDD is that the systematic 
collection and quantification of results from all available 
sources is required to best inform decision making at every 
stage [1]. As such, data requirements for a DPM model may 
vary based on the intended context of use (COU). As model 
requirements change with stage of development, different 
data may be required to inform new COU as the utility of the 
model is challenged by later-stage development questions. 
An early-stage model may be informed by natural history 
data, patient registry data and preclinical data that describe 
mechanistic underpinnings of the relevant disease biology 
(like QSP model requirements). In later stages, the model 
may be augmented by earlier patient studies within the pro-
gram, advancements in understanding of the disease, or from 
patient data from previous programs in the same population. 
While providing flexibility in the types of information that 
can be incorporated, these disparate data types (large, sur-
vey-based, and often unstructured data with small, structured 
data or simply parameter estimates with distributional data 
or assumptions) can also create a challenge for assumptions 
around suitability for data integration and model definition.

In general, the data used to inform DPMs has evolved 
with the growing complexity of data sources available (see 
Fig. 2). Early DPM examples primarily were constructed 
using individual level data taken from within clinical trials 
and natural history studies used to inform the model. These 
individual level DPMs were based on clinical endpoints, 
incorporated linear progression of disease and potential 
symptomatic or disease modifying treatment effects [5, 
6], but the data itself was often not available outside of 
the organizations that generated it. When published, this 

information was typically aggregated to a set of sum-
mary statistics. As individual level data was not readily 
available to the larger group of quantitative scientists, 
aggregate literature data was used to characterize disease 
progression in longitudinal model based meta-analyses 
(MBMA) [7, 8]. These MBMA were able to incorporate 
more information across industrial and academic sources 
which were previously unavailable. Further evolution of 
DPM branched into combined individual and aggregate 
data derived longitudinal MBMA [7, 40].

As biomarker data (e.g., imaging, HbA1c concentra-
tions, etc.) became more prevalent in clinical trials, their 
use in DPMs also increased leading to more complex, 
semi-mechanistic models. Non-clinical sources were uti-
lized, leading to sets of physiological parameters which 
furthered the development of mechanistic DPM type mod-
els. In our current state, real world evidence is also being 
incorporated into different data types.

Information flows from source, or observation, to 
developmental utility (Fig. 2). Differing data sources 
(Clinical Trials, Natural History studies, non-clinical 
experiments, and real-world evidence) provide the basis 
for data types (individual clinical endpoint, aggregated 
clinical endpoints, clinical biomarkers, [16–18] physi-
ological parameters). DPM types (individual, aggregate, 
and mechanistic) characterizing these data types, or com-
binations of such, are utilized for a range of development 
decisions. The DPM transforms the information into 
quantitative knowledge which is actionable. DPMs may 
incorporate information from different sources, and data 
types, and are constructed using a range of methodolo-
gies. Though different, an overlap in utility is apparent 
in which different types of DPM can address the same 

Source Types Model 
Type

Utility

Fig. 2  Flow of Information from Data Source to DPM Development Utilization*. *Information Propagates from Data Sources (light green 
nodes) to Utilization (brown, tan, lavender, and pink nodes) through Data Types (red nodes) and Model Types (light red, purple, and light purple 
nodes). The Evolution of DPMs is Depicted by Linkage Color. The light blue linkages are the earliest, which expanded to include natural history 
data sources (dark blue) and Aggregate Level Data Types (green). The Current State Includes Non-clinical Data Sources and Mechanistic DPM 
(peach). Real World Evidence (orange linkages) is Depicted as Potential Future State.
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development question (eg – the time course of a novel 
clinical trial).

The progression of a model can be thought of as part 
of a model development lifecycle (MDLC) in which model 
structures are evolved in an iterative fashion, each building 
on the previous work. Implicit to the concept of a MDLC is 
the addition of more information, thereby increasing preci-
sion of parameter estimates, or improved characterization 
of clinical endpoints or trajectory of disease [18]. A future 
state may be the merging of empirical and mechanistic 
approaches into holistic DPMs describing both pathophysi-
ology of the disease and the distribution of clinical endpoints 
supporting development utility ranging from the selection of 
mechanism to providing a Bayesian prior for more efficient 
study design.

The past decade has also seen significant advances in the 
regulatory science real-world data (RWD) and Real-World 
Evidence (RWE) framework. These advancements along 
with regulatory guidance [19] have driven the increased 
use of from electronic health records and claims databases 
to provide the basis for evidence in support of drug effec-
tiveness (RWE). The use of RWD has now also become 
an important data source for DPMs. RWD sources include 
electronic health records (EHRs), claims and billing activi-
ties, product and disease registries, patient-generated data 
including in home-use settings, and data gathered from other 
sources that can inform on health status, such as mobile 
devices. The addition of various RWD sources may also be 
relevant to incorporate the clinical signs and symptoms of 
clinical care into a DPM. Such data allows the evaluation of 
the existing standard of care and the performance of existing 
treatments to be considered and can be useful if the DPM is 
coupled with a clinical trial simulation model [20].

Analytic Methodologies

Initial approaches

Cook and Bies [2] describe three broad classes of DPMs: 
empirical, semi-mechanistic, and systems biology DPMs, 
with their application and subsequent appearance in the 
literature occurring in that order. With advancements in 
the types of DPM models used, and increased complexity 
of data types, there has also been an evolution in analytic 
methodologies that have developed. Initial empiric models 
describing subjective scoring utilized linear and non-linear 
mixed effects models. Subsequently more complex models 
such as asymptotic progress, physiological turnover, and 
growth and decay models have been utilized and have been 
well described [21]. The next section focuses on more recent 
advances in analytic techniques.

Latent Variable Disease Progression Models

In many cases, clinical endpoints are composites of prespeci-
fied observations (or assessments) which are combined as 
a single measure of disease state. Due to the way in which 
they are defined, these endpoints may be bounded at one or 
both ends which may cause complications when modeling 
near the boundaries. Additionally, each of the assessments, 
or subscales, can contribute different amount of information 
to the underlying understanding of disease state depending 
on severity. Empirical model approaches have been devel-
oped which characterize the progression of disease as a 
latent variable. In this methodology the disease is indirectly 
characterized based on information from a series of clinical 
endpoints. Applications range in complexity from a logit 
transformation in which the probability of an endpoint is 
characterized, to models utilizing item response which char-
acterize the probability for each of the endpoint components 
(subscales).

Latent variable disease progression modeling, character-
ing primary clinical endpoints, has been employed in myriad 
of indications. Selected examples can be seen in rheuma-
toid arthritis [22–25], psoriasis [26, 27], ulcerative colitis 
[24], and Alzheimer’s disease [28, 29] Applications of item 
response disease progression modeling have been applied to 
Alzheimer’s disease [30, 31], Parkinson’s disease [31, 32], 
and multiple sclerosis [33]. In these examples the bounded 
nature of the clinical endpoint has been appropriately 
described enabling the interpretation of underlying disease 
progression, and in some examples a treatment effect, to be 
established. This type of modeling has also shown utility in 
being able to simulate different response rates through clini-
cal trial simulation. The item response methodology, char-
acterizing the information for each of the subcomponents of 
a composite scale, enables clinical trial simulation into the 
subscales. A further benefit of the item response model is 
that it can be used to integrate different variants of a clini-
cal scale [32] and potentially future applications integrating 
multiple clinical scales which describe different levels of 
disease severity (ex—CDR-SOB, ADAS-COG, NPI, SIB).

Natural language Processing and Machine Learning

There has been significant progress in the availability of 
knowledge and data across biological and human scales, 
facilitated by advances in omics technologies, digital data 
platforms integrating clinical trial and patient registry data, 
and hospital or primary care data such as EHR, claims. For 
the Life Sciences industry, the question has become where 
these data can be systematically leveraged for advancing 
knowledge on human disease, and for developing innova-
tions in medical treatments or vaccines for disease eradi-
cation or management. This exponential increase in data 
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generation and availability is met with commensurate 
improvements in computer technology and advancement in 
computational models geared for handling big data science.

Take for example the problem of researching the lit-
erature for novel or historical insights on disease or drug 
mechanisms. With the increasing size of the PubMed cor-
pus (several million full text articles), it is increasingly dif-
ficult to research specific topics comprehensively without 
additional search tools and capabilities. Natural language 
processing (NLP) has been an evolving discipline, with deep 
roots in computer science and discrete mathematical mod-
eling among others, that is progressed to be an important 
tool for assimilating large amounts of knowledge, example 
from PubMed, and building knowledge graphs represent-
ing relationships across fields or variables of interest to the 
researcher [34]. These graph models can be quantitatively 
mined for specific information and surfacing the relevant 
data or knowledge the research is looking for in a systematic 
and data driven way. Given the extent and evolution of data 
and knowledge that DPMs rely on for both mechanistic and 
patient level information, NLP models can be an invaluable 
tool for integrating and assimilating the relevant knowledge 
and data from respective knowledge sources.

Advances in measurement technologies have also facili-
tated the interrogation of broad metabolic or proteomic scale 
characteristics of disease and drug action. These have over 
time played important roles in advancing our understand-
ing of disease [35, 36] One notable and timely example is 
host-virus interactions and how DNA or RNA based viruses 
can evade the immune system, or hijack cellular machin-
ery to reproduce and spread. Although these data have the 
potential to elucidate disease mechanisms or drug action, 
they also have brought forward computational and techni-
cal challenges due to the size of the data and complexity 
of potential interactions. Advancement in machine learn-
ing (ML) based models coupled with computing technology 
have allowed us to tackle increasingly larger data sets and 
derive biological or mechanistic while maintaining statistical 
rigor and soundness. As we apply ML models to big data 
derived from mechanistic data sets (e.g., omics data), we 
can advance specific biological mechanisms or biomarker 
strategies that can subsequently be represented in DPMs 
[37]. With larger scale data, and applications where causal-
ity or inference is less important, for example, medical out-
come of an imaging-based diagnostic, Artificial Intelligence 
based models, grounded in deep learning models such as 
large neural networks, have been the tool of choice. These 
AI based approaches have successfully alleviated the burden 
of manual readouts where machine readouts based on AI 
technology is validated and are also increasingly utilized as 
a platform [38] in early drug discovery to advance potential 
novel targets forward based on volumes of discovery biology 
and chemical libraries.

Regulatory Considerations for DPM use

Often, DPMs are developed de novo for use within a devel-
opment program and used to describe the data contained 
within an individual submission. In some cases, the model 
is subsequently published. This approach is inefficient and 
limits the potential for models to evolve.

Regulatory Path to model qualification and COU

A longstanding interest of the global regulatory community 
as potentially enabling significant progress in drug develop-
ment has been the application of scientific advances as new 
tools to aid the development process. Such tools have been 
shown to speed up the availability of new products that may 
be safer and more effective. The Center for Drug Evalua-
tion and Research (CDER) of the US FDA has undertaken 
multiple initiatives to support the development of new drug 
development tools (DDTs). Among these efforts has been 
the creation of a formal qualification process, described in 
a formal guidance [9] that CDER can use when working 
with submitters of DDTs to guide development as submit-
ters refine the tools and rigorously evaluate them for use 
in the regulatory process. The DDT qualification process 
is intended to expedite development of publicly available 
DDTs that can be widely employed. Drug developers can 
use a DDT that has been qualified within a specific context 
of use (COU) [FDA Guidance 2020] for the qualified pur-
pose during drug development if: [1] The study is conducted 
properly, [2] the DDT is used for the qualified purpose and 
[3] at the time of qualification, there is no new information 
that conflicts with the basis for qualification. Once a DDT 
has been qualified, CDER reviewers feel more confident in 
the application of the DDT within the qualified COU and do 
not have to re-confirm DDT utility.

Qualification is an expectation that within the stated 
COU, the DDT can be relied on to have a specific inter-
pretation and application in drug development and regula-
tory review. The COU describes the way the DDT is to be 
used and the purpose of the use. A complete COU state-
ment describes the circumstances under which the DDT is 
qualified and the boundaries within which the available data 
adequately support use of the DDT. Once a DDT has been 
qualified for a specific COU in drug development, it can be 
used to produce analytically valid measurements that can be 
relied on to have a specific use and interpretable meaning. 
The DDT can then be used by drug developers for the quali-
fied context in IND, NDA, and BLA submissions without 
the relevant CDER review group reconsidering and recon-
firming suitability.

The process for DDT qualification provides a framework 
for interactions between CDER and DDT submitters to guide 
the collection of data to support a DDT’s prospectively 
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specified COU. The qualification process consists of three 
stages: [1] an initiation stage, [2] a consultation and advice 
stage, and [3] a review stage for the qualification determina-
tion. The appropriate review offices will participate in the 
entire qualification process for the DDT. The goal of the 
process is to reach a determination about the adequacy of 
the submitted data to support DDT qualification within a 
COU. An important future goal of the COU process would 
be the establishment of more formalized planning regarding 
governance and provenance of disease progression models 
and the underlying code. Provenance is an important aspect 
given that the COU should carry some version of an “expira-
tion date” as the demands and utility of models in this cat-
egory evolves with data, knowledge of disease biology and 
the pool of agents and procedures used to treat target dis-
eases. Caretakers of the various models should represent the 
mutual desires of regulators and the scientific community.

Illustrative Example Applications

Evolution of DPMS in Neurodegenerative Disorders 
(Alzheimer’s)

The evolution of DPMs in medicines development for Alz-
heimer’s disease (AD) over the last three decades illustrates 
how DPMs have evolved with increased treatment options, 
understanding of disease, improved analytic techniques, 
emergence of new data types, and increased trial design 
complexity (see Table I). It also highlights how investigators 
build on previous knowledge to continue to evolve models 
and to develop them into expert systems for each disease.

AD DPMs were some of the first reported in the liter-
ature, and were used to describe the symptomatic effects 
of cholinesterase inhibitors in AD patients by Holford and 
Peace [5] and Ito et. al. [7] utilized summary level literature 
data from 52 studies representing nearly 20,000 patients to 
describe impact of disease severity and age on yearly pro-
gression of the most commonly used clinical outcome meas-
ure, and to further describe treatment effect. The model was 
used to describe both symptomatic and disease modifying 
effects, and to determine expected differences in highlighted 
their use to describe effects observed in clinical trials.

With advancements in understanding of disease biology, 
and incorporation of specific biomarkers and genetic tests 
in studies, DPMs were able to further characterize factors 
impacting progression of AD. Ito et al. [39] published fur-
ther work based on a natural history study that incorporated 
imaging data, biomarkers, and genetic information. Subse-
quent work was undertaken by Rogers et. al. in collaboration 
with Ito et al., the Critical Path Institute and FDA to utilize 
both patient level and summary level data that were available 
[40]. A beta-regression approach was used that allowed for 

both data types to inform the model. This model also formed 
the basis for a fit-for-purpose pathway for drug development 
and was the first tool deemed suitable under that regulatory 
program. The model and supporting materials were made 
available as open source for community use.

With increasing understanding that late-stage patients 
may have progressed too far to respond to disease modify-
ing agents, a shift to testing disease modifying agents at the 
earlier stages of AD with resultant slower rates of progres-
sion, there was a need to understand whether existing ele-
ments of the ADASD-cog were more sensitive to detecting 
treatment effect and/or if new endpoints would be needed in 
patients with mild cognitive impairment. Ueckert et al. [30] 
applied Item Response Theory (IRT) to determine which 
items within the ADAS-cog provided the most information 
by stage of disease.

In parallel to advances in DPMs, both systems biology 
and systems pharmacology models also advanced and pro-
vided even further insights into relationship between the 
emerging imaging, genetic and protein biomarkers, and trial 
outcomes. Karelina et al. [52] looked at how mechanistic 
translational models can allow for prediction of long-term 
clinical trials at various stages of disease. Systems biol-
ogy approaches capture the disease in the broader context 
of CNS neurodegeneration and help provide insights into 
potential targets and pathways for exploration [41].

Inflammation and Immunology

MIDD has been applied in the inflammation and immunol-
ogy areas to characterize disease progression and to provide 
dosing rationale for a myriad of indications such as ulcera-
tive colitis, psoriasis, and rheumatoid arthritis [22]. In these 
indications the progression of disease has been implemented 
through placebo (or standard of care) and active treatment 
indirect response functions in which the clinical endpoints 
have been described using bounded outcome methodolo-
gies [22]. While many of these examples are applied to the 
observations from a single study or combined studies for a 
single novel therapeutic, the expectation of a mature disease 
progression model is to synthesize information across clini-
cal studies and new molecular entities (NMEs). Hu et al. 
[51] applied information from multiple studies, and NMEs, 
utilizing an empirical model describing the expectation 
of disease and standard of care to provide a phase 2 dose 
regimen decision for a novel therapeutic in psoriasis. The 
Immunology and Inflammation therapeutic area has a wealth 
of information and has provided the opportunity for a holis-
tic model describing the behavior of disease and standard 
of care in a clinical trial. Such models provide a basis for 
trial design quantifying the duration of treatment needed 
to observe an effect. As an informative prior they enable a 
reduction in the number of patients needed to demonstrate 
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the effect of a novel treatment. In both cases the application 
of DPMs would accelerate development decision making 
while maintaining scientific rigor.

Rare Disease: Bronchopulmonary Dysplasia

Comprising approximately 8000 diverse disease states linked 
only by their “rare” prevalence designation (disease or con-
dition that affects less than 200,000 people in the United 
States by the US FDA) [42] is a broad array of conditions 
that often begins at birth or soon thereafter sometimes with 
very short life expectancy and rarely in a manageable condi-
tion in adulthood [42]. It is only through the Orphan Drug 
Act of 1983 that this therapeutic area has been properly 
incentivized for financial motivation to spur private sector 
R&D to make inroads to the myriad of diseases in this class.

A recently supported effort of the FDA, Critical Path 
Institute, and International Neonatal Consortium (INC) has 
promoted the execution of pilot projects that generate RWE 
to support regulatory decision making in neonatal drug 
development. One such pilot is focused on developing a vali-
dated definition of Bronchopulmonary dysplasia (BPD). In 
addition to the definition, the BPD pilot will also assess the 
extent to which a large, multisource aggregation of RWD 
will allow identification of validated risk factors for, and 
surrogate endpoints representing, BPD, and the inclusion 
of these in clinical trial simulations that help identify risk 
factors and surrogate that are fit-for-purpose for hypotheti-
cal studies aiming to prevent or treat BPD and its related 
long-term complications. The backbone of the proposed trial 

simulations will be a qualified, fit-for-purpose disease pro-
gression model (and likely other models).

While BPD is described as a disease, in fact its bet-
ter classified as a syndrome – a condition of a premature 
neonate requiring “oxygen supplementation at a particular 
level and for a particular duration in the postnatal period” 
[57]. The probability of a BPD diagnosis depends mainly 
on gestational age and birth weight. Babies born after only 
22–24 weeks of development have an 80% chance of being 
diagnosed with BPD [58]. At this age, lungs are just starting 
to develop alveoli and the premature exposure to air breath-
ing disrupts this process. While knowledge of the many 
factors involved in alveologenesis is steadily accumulating, 
specific endotypes remain to be defined with the quantita-
tive detail needed for both QSP and disease progression 
models. A major caveat is that this knowledge is obtained 
primarily in a range of model systems and using a variety 
of manipulations to induce BPD-like lungs. Longitudinal 
data reflecting disease progression are very limited, both in 
humans and model animals. In humans, longitudinal data in 
neonates are limited for obvious reasons. Besides records of 
oxygen supplementation, there is some longitudinal data on 
the efficiency of gas exchange, showing that premature neo-
nates with BPD are less efficient compared to neonates with-
out BPD and that both improve over time [59]. Ultrasound 
imaging also appears promising as a source of data easily 
obtained from neonates [60, 61]. At present, a landscaping 
exercise is in progress to assemble credible mechanistic and 
RWD sources that would be the foundation of both QSP 
and disease progression models for BPD. Figure 3 illustrates 

Fig. 3  Schematic of BPD Disease Progression with Variables of Clinical Interest Linked to Stage of Progression.
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the nature of the repeated measure data of current clinical 
and convenience sampling and the gaps particularly at the 
onset of disease progression where sampling is limited or 
nonexistent. It is hoped that this effort even if it does not 
support the full COU desired will be a starting point for 
future models and encourage more informative BPD trials 
with sampling that compliments current data and knowledge 
gaps. It is also the hope and intent that the landscaping and 
integration of mechanistic, RWD and disease progression 
data, and incorporation into a coupled disease-progression 
and QSP platform can facilitate the discovery and translation 
of novel targets and identify optimal timepoints for thera-
peutic intervention.

Neuroscience

Evolving Approaches (Systems Biology/Data 
Science)

Mechanism-driven DPMs (mDPMs) describe the time evo-
lution of disease characteristics with fit for purpose mecha-
nistic description and can often be tied to QSP models to 
provide a more comprehensive representation of underly-
ing biology for the respective mechanisms. mDMPs provide 
decision value across the discovery and translational medi-
cine continuum, such informing the design and interpreta-
tion of POC/POM clinical studies, and informing the bio-
marker strategy, as tied to a disease or to a therapeutic MOA. 
This begs the question – how does one inform mechanisms 
that can be incorporated into mDPMs Various data sources 
are often relied upon when interrogating disease mecha-
nisms or drug MOA, such as non-clinical in-vitro or in-vivo 
models. Although these efforts and tools generate important 
data, but not sufficient by themselves. Systems biology has 
deep academic roots and has over time extended its reach 
from basic science application, elucidating system wide 
etiology of disease and drug action, into more recently hav-
ing increasingly direct influence on key drug discovery and 
development milestones. e.g., identifying MOA of a com-
pound, or facilitating translation into the clinic. The advan-
tage and promise of systems biology as a discipline is the 
data driven, scientifically objective approach to discovery 
and elucidation of disease mechanisms and drug action. One 
data source we have discussed earlier here is the importance 
of disease registries for the assembly and engineering of 
DPMs. These same registries can be additionally utilized as 
an important source of identification of underlying biology 
implicated along the time evolution of disease progression. 
Big data approaches such as metabolomics and proteomics 
(derived from patient samples from these registries) have 
been invaluable tools in discovery of novel mechanisms 
implicated in disease. When coupled with advanced data 

science approaches e.g., machine learning, they represent an 
innovative and data driven pipeline for discovery of disease 
mechanisms, and incorporation into mDPMs or mDPM-QSP 
platforms.

Multi‑endpoint QSP Models: COVID‑19

A recent example for a novel oral treatment for COVID-
19 illustrates the flexibility of a DPM to integrate informa-
tion from disparate sources and to build on existing models 
by incorporating rapidly emerging data to quickly answer 
important questions regarding drug development [11]. The 
model provided understanding across several different bio-
marker endpoints, and clinical outcomes, and was used to 
inform study design (specifically treatment duration).

In this example, a QSP model of the pathogenesis and 
treatment of SARS-CoV-2 infection streamlined and acceler-
ated the development and Emergency Use Authorization of 
a novel medicine to treat COVID-19. Utilizing an updated 
version of a previously published preliminary model of the 
immune response to SARS-CoV-2 infection (significantly 
updated with emerging data from a curated dataset span-
ning viral load and immune responses in plasma and lung) 
allowed for in silico exploration of the uncertainties of clini-
cal trial design to rapidly inform development decisions for 
upcoming clinical trial duration. The authors identified a 
population of parameter sets to generate heterogeneity in 
pathophysiology and treatment and tested this model against 
published reports from interventional SARS-CoV-2 target-
ing Ab and anti-viral trials. Upon generation and selection 
of a virtual population, they matched both the placebo and 
treated responses in viral load in these trials. They extended 
the model to predict the rate of hospitalization or death 
within a population. To validate this approach, they showed 
the model matched a published subgroup analysis of patients 
treated with neutralizing Abs. By simulating intervention 
at different timepoints post infection, the model predicted 
efficacy is not sensitive to interventions within five days of 
symptom onset, but efficacy is dramatically reduced if more 
than five days pass post-symptom onset prior to treatment, 
as borne out in the clinical trial [43].

Challenges and Opportunities

Challenges exist for routine, standardized approaches for 
the development and use of well-characterized and robust 
DPMs. These include but are not limited to the following:

• more consistent evaluation and regulatory feedback 
regarding the construction and utility of DPMs

• more diverse and collaborative drug development culture 
which embraces the contributions of a truly multidiscipli-
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nary community that is required to develop such models 
as opposed to other model types in the MIDD toolbox

○ a more collaborative environment for the sharing of 
data, code, and models.

○ a more collaborative and neutral governance and 
provenance environment that is both efficient and 
comprehensive.

Despite these challenges, progress has been made in 
all these areas. Recent publications and FDA public meet-
ings [2, 9] provides initial thoughts on best practices for 
DPMs. As the field is still evolving and the COU for the 
various DPM types can be very varied, a heavily prescrip-
tive approach is unwarranted though these initial thoughts 
form the basis of what will surely evolve as a meaningful 
guide. Collaboration happens of course but the more con-
sistent engagement of academic thought leaders particularly 
those in the disease biology arena of targeted therapeutic 
areas should be more commonly expected. Notions of model 
ownership need also to be examined and resolved so more 
can contribute and benefit from such collaborations.

An important requirement for the future success of DPM 
is the collaborative spirit and effort that must guide the next 
generation of models and ultimately enhance their utility 
beyond drug development purposes. As alluded to previ-
ously, this will require a relaxed view of model ownership 
and a broader adoption of open science principles. As some 
have pointed out [44], despite the increasing availability of 
Open Science (OS) infrastructure and the rise in policies 
to change behavior, OS practices are not yet the norm. The 
benefits are clear it would seem—less error-prone and more 
visible models, not only to peers from the same and other 
scientific disciplines but also greater penetration to the pub-
lic, who can appreciate the economic benefits of knowledge 
dissemination. Moreover, engaging in OS practices facili-
tates the sharing and reuse of data, materials, and code in 
the scientific community [45, 46], contributes to enriched 
scholarly output and literacy, and increases trust in the pro-
cess [47] The obstacles to meaningful OS adoption are typi-
cally grounded in financial concerns over intellectual prop-
erty (IP) and heavily constrained by past legal practice. An 
important evolution for this collaboration and more consist-
ent OS engagement will require legal agreements and data 
use agreements more focused on shared IP where financial 
incentives are agreed upon without constraining the creative 
process and the OS approach.

Conclusions and Path Forward

Despite past challenges, the use of DPMs to inform drug 
development is becoming routine. DPMs flexibility in 
allowing integration of information from various sources 

in a quantitive manner make them indispensable for use in 
informing trial design and improving confidence in deci-
sion making during all stages of drug development. They 
are now routinely accepted and used in support of drug sub-
missions worldwide. The key questions surrounding DPMs 
are no longer whether they have validity, do they add value 
and where they can be applied, but rather how their use can 
be expanded to incorporate emerging complex data types, 
to answer more and more complex development questions 
stemming from new modalities and emerging health risks, 
and how to do so quickly and efficiently so they accelerate 
development of new medicines.

There is a growing need for disease models to inform 
multiple safety, biomarker, and efficacy endpoints simulta-
neously, a requirement that may not be suited for classical 
empiric DPM approaches. While ML approaches are used 
to recognize patterns in large data, and complex statistical 
methodologies [48] have been proposed, they lack the under-
lying ability to integrate basic pharmacologic principles and 
drug-specific information that Quantitive clinical pharma-
cology “expert-systems” like QSP models afford, and that 
can allow for hypothesis generation (i.e. for identification 
of new targets or pathways). In addition, QSP approaches, 
based in fundamental principles of pharmacology, allow 
for models to build. grow and evolve as new information 
emerges. They can be shared and maintained by a commu-
nity of users [45]. 

Finally, going forward, DPMs may be combined with 
other emerging tools and technologies to decrease patient 
burden. While randomized controlled trials have been con-
sidered the standard for demonstration of efficacy, there has 
been a significant drive for increased patient inclusivity and 
use of patient centric designs to minimize patient burden and 
to provide maximal benefit to patients seeking clinical trials 
as a care option. Hybrid study designs that include features 
of RCTs with use of RWD can combine the advantages of 
both [62]. A potential synergy is DPMS utilizing RWD as 
an informative Bayesian prior to augment control arms of a 
study. An appropriate drug-disease-trial model could signifi-
cantly minimize the number of patients needed in the con-
trol arm, improving likelihood that a patient receives active 
therapy. This could be of particular benefit for populations 
that are not part of initial approvals and that are typically 
included in post-approval commitments, such as pediatrics 
by minimizing the number of patients needed in the control 
arms and maximizing the likelihood of being randomized 
to active treatment.
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