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Abstract
Background: Methods for predicting protein function directly from amino acid sequences are
useful tools in the study of uncharacterised protein families and in comparative genomics. Until
now, this problem has been approached using machine learning techniques that attempt to predict
membership, or otherwise, to predefined functional categories or subcellular locations. A potential
drawback of this approach is that the human-designated functional classes may not accurately
reflect the underlying biology, and consequently important sequence-to-function relationships may
be missed.

Results: We show that a self-supervised data mining approach is able to find relationships between
sequence features and functional annotations. No preconceived ideas about functional categories
are required, and the training data is simply a set of protein sequences and their UniProt/Swiss-Prot
annotations. The main technical aspect of the approach is the co-evolution of amino acid-based
regular expressions and keyword-based logical expressions with genetic programming. Our
experiments on a strictly non-redundant set of eukaryotic proteins reveal that the strongest and
most easily detected sequence-to-function relationships are concerned with targeting to various
cellular compartments, which is an area already well studied both experimentally and
computationally. Of more interest are a number of broad functional roles which can also be
correlated with sequence features. These include inhibition, biosynthesis, transcription and defence
against bacteria. Despite substantial overlaps between these functions and their corresponding
cellular compartments, we find clear differences in the sequence motifs used to predict some of
these functions. For example, the presence of polyglutamine repeats appears to be linked more
strongly to the "transcription" function than to the general "nuclear" function/location.

Conclusion: We have developed a novel and useful approach for knowledge discovery in
annotated sequence data. The technique is able to identify functionally important sequence features
and does not require expert knowledge. By viewing protein function from a sequence perspective,
the approach is also suitable for discovering unexpected links between biological processes, such
as the recently discovered role of ubiquitination in transcription.
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Background
Accurate descriptions of protein function usually arise
through repeated cycles of laboratory experiments and
publication, followed by expert annotation by database
curators (e.g. Swiss-Prot [1] and Pfam [2]). This is, of
course, a time consuming process. Computational
sequence comparison methods are then typically applied
to extend these annotations to related proteins from the
same or a different organism. If adequate precautions are
taken [3,4], this annotation transfer rapidly brings added
value to what would otherwise be a large collection of
unannotated sequences. Unfortunately, a substantial pro-
portion of proteins from fully sequenced organisms
remain unannotated after the application of manual and
automated annotation methods; for the human proteome
this fraction is approximately 40% (data from GOA
Human release 28.0 [5]). Furthermore, many of the exist-
ing annotations are only partial, and one must also
remember that proteins can have more than one function.

High-throughput technologies are helping to provide
additional sources of information that can be used to pre-
dict protein function, typically through the detection of
physical protein-protein interactions, or the analysis of
gene expression patterns. Ultimately, however, a protein's
amino acid sequence dictates its behaviour once it has
been synthesised, and so methods for deducing function
directly from sequence are needed. Alignment-based
sequence comparison methods have already been men-
tioned as a suitable approach, but these have limited use
at large evolutionary distances where annotation transfer
can be unreliable. It should also be noted that alignment
techniques generally require the conservation of whole
domains and are tuned for optimal performance on
water-soluble globular proteins. Structure-based function
prediction (using predicted 3D structures) also places an
emphasis on whole globular domains.

Many aspects of protein function have been attributed to
sequence features that are generally found outside globu-
lar domains, including signals for subcellular targeting,
degradation, calmodulin binding and post-translational
modifications [6,7]. Recently, disordered regions of pro-
teins have been receiving more attention and are no
longer considered functionally inert [8]. These observa-
tions highlight the need for computational techniques
that can link short regions of sequence and/or the global
properties of proteins directly to function, without
recourse to alignments or domain family databases.

So far, only a few researchers have begun to address this
problem [9-11]. Both used a set of precalculated sequence
features to describe each protein in their dataset. These
features were then used to predict membership, or other-
wise, to predefined functional classes. In King et al. [9], the

features included single amino acid and dipeptide fre-
quencies, protein molecular weight, aliphatic index,
hydropathicity and predicted secondary structure. Anno-
tation keywords for a protein and its homologues were
also incoporated into the classification scheme. The target
functional classes were taken from a hierarchical scheme
used at that time for genome annotation by the Sanger
Centre. Jensen et al. omitted the amino acid frequency and
keyword information but additionally included predic-
tions of various post-translational modifications, trans-
membrane helices and protein targeting [10,11]. The
initial study by Jensen et al. [10] attempted to predict a set
of 14 general functional classes proposed by TIGR and the
six enzyme classes of the EC scheme. Their subsequent
study [11] used 347 categories from the Gene Ontology
[12] as targets, and found that reasonable predictions
could be made for 14 of them. It is important to note that
neither of these studies involved the discovery of novel
sequence motifs/features more extensive than adjacent
amino acid pairs.

In this study we address the issues of sequence feature/
motif discovery and functional categorisation simultane-
ously. This is achieved using a co-evolutionary algorithm
which produces two types of protein classifiers. The first
classifier is fed with a single amino acid sequence and pre-
dicts membership of a functional category which has been
assigned by the second classifier on the basis of Swiss-Prot
annotation words. The sequence classifier makes use of
one or more evolved regular expressions which are used to
detect the presence or absence of sequence motifs. The
annotation classifier simply uses Boolean logic to com-
bine the presence or absence of certain words in the anno-
tation. We call this a "self-supervised" data mining
approach in which a moving target is used to train the
sequence classifiers. This is in contrast to standard super-
vised learning approaches where the target is fixed and
predetermined, and unsupervised learning where no tar-
gets are involved.

The results we obtain reinforce the widely held view that
sequences hold intrinsic information about subcellar
localisation [7] since we find the strongest correlations
between sequence features and annotation words that
describe subcellar compartments. We also find that
sequence features can be linked to some general func-
tions, such as biosynthesis and transcription, which can-
not be completely explained by large overlaps with the
cellular compartments in which they occur (e.g. transcrip-
tion in the nucleus). The behaviour of the predictors we
obtain can be analysed and the sequence features associ-
ated with various functions are presented. Finally, future
development and applications of this new approach are
discussed.
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Results and discussion
Discovery of sequence-to-function relationships
Briefly (see Methods for full details), a non-redundant set
of 2146 proteins was generated such that no two
sequences share more than 10% sequence identity. Each
protein is tagged with one or more words from its Uni-
Prot/Swiss-Prot annotation, hereafter referred to as
"annotation words". The data is split into training and
testing sets of 1609 and 537 proteins respectively. Our
"self-supervised" evolutionary learning approach is then
applied to find sequence-to-function relationships. It
does this by simultaneously searching for sequence- and
annotation-based classification rules which overlap as far
as possible on the training set proteins, as illustrated in
Figure 1. Figure 2 shows the outcome and progress of a
few hand-picked runs. An example of an evolved
sequence-to-function predictor is given in Figure 2(A).
This predictor has found a correlation between the anno-
tation of a protein with the words "rna" or "nuclear" (see
annotation_classifier) and an arithmetic inequality based

on sequence pattern frequencies (see sequence_classif
ier). The evolved predictor shown in Figure 2(C) has "cho-
sen" a single annotation word target ("secreted"), and the
sequence classifier again uses several sequence patterns,
including one three-residue pattern (I [AEKM] [^T], which
means "I followed by A, E, K or M followed by anything
except T").

The plots in Figure 2(B&D) show the progression of the
correlation between the functional class predicted from
sequence and the functional class assigned based on
annotation words as the evolutionary search proceeds.
The performance on the test set proteins tends to lag
behind the training set performance, however it does usu-
ally follow an upward trend. The averaged results from
250 independent runs (see Methods for more details) are
shown in the upper part of Table 1. The mean correlation
coefficient between predicted and real functional class for
the test set proteins is only 0.112 but this is significantly
greater than the correlations obtained from two control
experiments (two-tailed unpaired Student's t-test for two
means; P <0.001). In one control, sequences are shuffled
with respect to their annotation words (i.e. each sequence
is assigned the annotation words belonging to another
protein). In the second control, each amino acid sequence
is shuffled in a residue-wise manner prior to training
(while the annotation words remain unchanged). In our
previous work [13], where we used a similar approach to
discover sequence features associated with the nuclear
localisation of proteins, the mean correlation coefficient
obtained from single predictors was 0.29 (and jury predic-
tors performed even better). Why is the performance with
the new self-supervised method so much worse? In this
work, we made two major changes to the approach, which
are described below.

Firstly, during dataset construction, there are no special
quality controls imposed on negative examples (proteins
not annotated with particular word). In our previous
work, the non-nuclear proteins in our training and testing
sets had to have some positive annotation for another cel-
lular compartment, which helps eliminate proteins whose
nuclear localisation status is unknown. This is standard
practice in protein function prediction (see ref. [10], for
example). Therefore the datasets used in this study have a
lower contrast between positive and negative examples,
and lower prediction accuracies are expected. Indeed,
when the methods used in this work are applied to the
higher-contrast dataset in ref. [13], the mean correlation
coefficient rises to 0.20 (full data not shown).

The second change in our approach is that the search algo-
rithm is encouraged to find sequence-order dependent
features (see Methods for more details). This actually
decreases the performance of the evolved predictors, but

Outline of approach: simultaneous sequence and annotation classificationsFigure 1
Outline of approach: simultaneous sequence and 
annotation classifications. Part of the dataset is shown 
with sequences (to the left) and Swiss-Prot annotation words 
(to the right). The evolutionary search produces two inde-
pendent classifiers which act on the two types of informa-
tion. Fictional examples of these classifiers are shown. Two 
binary vectors are produced from the application of these 
classifiers to their respective inputs. Ideally, a pair of classifi-
ers would produce identical (non-trivial) binary vectors. The 
goal of the evolutionary search is to maximise the correla-
tion between these vectors.
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Examples of sequence-to-function relationships found by self-supervised learningFigure 2
Examples of sequence-to-function relationships found by self-supervised learning. Three examples of sequence 
classifiers and their associated, co-evolved annotation-based classifiers are shown in panels A,C&E. In panels B,D&F, the corre-
lation between the sequence-based classification and the annotation-based classification is shown for both training and testing 
data during the 8 h runs which produced the final individuals shown in panels A,C&E. Although these are hand-picked exam-
ples, note how the test set correlation generally follows the training set correlation in an upward trend. Because the test set 
proteins are minimally related to the training set proteins (less than 10% sequence identity), this shows that general sequence 
features related to function have been discovered.
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sub annotation_classifier {

my $annot = shift;

return $annot =~ /(rna|nuclear)/;

}

sub sequence_classifier {

my $seq = shift;

return 0.0566 > (num_matches($seq, ’R[KN]’) *

(((num_matches($seq, ’K[HQ]’) *

abs(num_matches($seq, ’SE’)) *

num_matches($seq, ’K[EQ]’) *

(num_matches($seq, ’([EQ]){1,}Q’) *

num_matches($seq, ’^[ACDEFGHIKLNPQRSTVWY]’) -

1) / log(abs(8)) * 0.1580) -

1) - 1) - 4);

}
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sub annotation_classifier {

my $annot = shift;

return $annot =~ /secreted/;

}

sub sequence_classifier {

my $seq = shift;

return abs((num_matches($seq, ’^[^ACDEIKLPQTVY]’) -

num_matches($seq, ’[IQ]$’))) >

num_matches($seq, ’I[AEKM][^T]’);

}
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sub annotation_classifier {

my $annot = shift;

return $annot =~ /transcription/;

}

sub sequence_classifier {

my $seq = shift;

return num_matches($seq, ’P’) *

num_matches($seq, ’DD’) *

((abs(abs(9)) * num_matches($seq, ’DD’) *

num_matches($seq, ’(Q){2,6}[EFMQW][ADEIMNPW]’) -

0.2619) * num_matches($seq, ’P’) -

abs(num_matches($seq, ’((Q){2,6}[EFMQW]){1,2}’))) *

abs(num_matches($seq, ’DD’) *

abs(num_matches($seq, ’D[AE]’))) *

num_matches($seq, ’[EHI]D’) *

abs(abs(num_matches($seq, ’[EFQW]D’))) *

num_matches($seq, ’[NS]D’) >

0.1002;

}
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we are prepared to accept this in order to find potentially
interesting sequence motifs. When the mechanism
encouraging sequence-order dependent feature discovery
is switched off, the mean correlation coefficient rises to
0.28 (full data not shown) when using the higher-contrast
training data as described above. This is close to the 0.29
correlation obtained in ref. [13], indicating that the two
methodological changes account for the lower prediction
performances presented here.

Function predictors obtained directly from our self-super-
vised approach unfortunately do not have either the spe-
cificity (around 28%) or sensitivity (around 23%) to be
useful to biologists. However, the value of our approach
lies in the discovery of potentially novel sequence-to-func-
tion relationships. At a later stage, more accurate predic-
tors can be obtained by removing the sequence-order
dependency, by the use of jury predictors, and by con-
structing higher contrast datasets with the help of expert
biological knowledge to define both positive and negative
examples.

So which sequence-to-function relationships are discov-
ered with this technique? The most common annotation
words used to form functional categories are also shown
in the upper half of Table 1. The cellular compartments

dominate this list, as would be expected from previous
studies which have explored the relationship between
sequence and subcellular localisation [14-16].

Beyond cellular compartments
To explore the relationship between sequence and more
specific functions we performed another 250 runs where
the major cellular compartment words had been removed
from the vocabulary used to generate annotation classifi-
ers. Two other small changes were made to the protocol as
detailed in Methods. One hand-picked predictor is shown
in Figure 2(E). One of the longer and perhaps more inter-
esting regular expressions is (Q) {2,6} [EFMQW] [ADE-
IMNPW], which can be interpreted as "matches between
2 and 6 Q's followed by E, F, M, Q or W followed by A, D,
E, I, M, N, P or W". Patterns similar to this will be dis-
cussed in the context of transcription later in this paper.
The corresponding performance plot in Figure 2(F) shows
the test set correlation rising (noisily) as the run
progresses. The mean correlations for these experiments
are shown in the lower half of Table 1. There is a larger gap
between the training and testing correlations which indi-
cates more overfitting but, as with the first set of 250 runs,
the mean test set correlation (0.0603) is significantly
greater than either of the two controls (two-tailed
unpaired Student's t-test for two means; P <0.001). The

Table 1: Sequence-to-function correlations. 

A. All keywords

Experiment Control I Control II

mean SE mean SE mean SE

CC on training set 0.265 0.00461 0.162 0.00226 0.209 0.00288
CC on testing set 0.112 0.00453 0.00451 0.00294 0.0664 0.00406
Top 10 keywords secreted nuclear membrane cytoplasmic DNA biosynthesis RNA integral meiosis catalyzes

B. Subcellular location keywords excluded
Experiment Control I Control II

mean SE mean SE mean SE

CC on training set 0.231 0.00325 0.179 0.00240 0.213 0.00303
CC on testing set 0.0603 0.00619 0.00619 0.00276 0.0402 0.00350

Top 10 keywords inhibits biosynthesis transcription catalyzes DNA atp bacteria stimulates transcriptional gram-negative

This table presents the results of two experiments performed with the self-supervised learning approach. The numbers shown are the means and 
standard errors (SE) of correlation coefficients (CC) calculated over 250 separate runs. The CC measures the agreement, over a set of proteins, 
between the functional class predicted from sequence and the functional class assigned on the basis of the presence or absence of a certain 
combination of words in a protein's annotation. In A. a standard run and two controls are performed using the full vocabulary of 150 keywords. 
Control I simply involves the random reallocation of annotations to sequences prior to training. In Control II, sequences and annotations are 
correctly allocated but the amino acid sequences are randomly shuffled prior to training. In experiment B. the vocabulary is stripped of subcellular 
location keywords. The 10 most common keywords appearing in the evolved predictors are listed. In all cases the two-tailed unpaired Student's t-
test shows a significant difference (P < 0.001) between the mean CCs of experiments and controls for both training and testing data. (These 
statistics may be calculated from the given means and standard errors, using n = 250.) From this one can conclude that at least some of the 
sequence-to-function associations learned in the training data also apply to the unrelated testing data, and therefore to proteins in general.
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results indicate that some aspects of function are encoded
in sequence features that are detectable and generalisable
with this approach. The 10 most common annotation
words used to define functional categories are listed in the
lower half of Table 1. The relationship between the top
three words: "inhibits", "biosynthesis" and "transcrip-
tion" and the compartments "secreted", "cytoplasmic"
and "nuclear" will be discussed in a following section.

Intra-family motifs
If our training and testing datasets are constructed with a
less strict sequence identity cutoff, our algorithm is able to
discover motifs that are present across multiple sequence
family members. For example, using a 50% cutoff we find
that the H-R-D motif is frequently associated with the
term "kinase" (data not shown). Encouragingly, the
kinase H-R-D motif has been mentioned several times in
the literature [17,18]. However, intra-family motifs are
not the subject of this study, and a strict 10% sequence
identity cutoff is used throughout.

The predictor map
We next analyse the behaviour of all 500 self-supervised
predictors (250 "A-type" which used all annotation words
and 250 "B-type" which used only non-compartment
words) by comparing the binary outputs of their evolved
sequence_classifier subroutines on the 537 test set
sequences. Thus each predictor is represented by a 537
element binary vector, and these are clustered using
Kohonen's Self-Organizing Map (SOM) [19]. The SOM is
a competitive spatial clustering technique which effec-
tively "flattens" high-dimensional data onto the low-
dimensional grid, preserving relationships in the input
data as far as possible. The aim of the clustering is to group
together predictors which produce positive predictions for
similar subsets of the test set. Figure 3 shows the 500 pre-
dictors projected onto an 8 × 8 SOM. The number of "A-"
and "B-type" predictors which cluster to each grid node
are shown in black text. Below this, the frequently occur-
ing annotation words in the annotation_classifier subrou-
tines are shown in coloured text (recall that these define
the "target function" of the predictors). The non-random
distribution of the annotation words is clear, for example
many "secreted" predictors map to the upper left corner of
the map, "inhibits" predictors to the upper right corner,
and so on. While this clustering conveniently summarises
the different predictor behaviours, it is actually more
informative to study the frequencies of the annotation
words belonging to the test set sequences which are posi-
tively predicted by the predictors in each cluster. Therefore
Figure 3 also shows shaded inset boxes which list the
annotation words whose observed frequency in positively
predicted proteins is three or more times the expected
background frequency (see Methods for full details).

We now discuss an example to aid the interpretation of
Figure 3. The grid node located in row two, column seven
has 18 predictors allocated to it. A majority (15/18) use
the word "transcription" in their annotation_classifier
subroutine, and six of the 18 use the word "development".
These two words are usually present in the same logical
expression "transcription OR development" (it occurs 5
times, see Additional file 1). The corresponding over-rep-
resented test set words (shaded inset) include "repressor",
"repression" and several other DNA-related words. Tran-
scription is well known to involve activator and repressor
proteins/domains and the development of multicellular
organisms is largely controlled at the level of transcrip-
tion. Therefore the over-representation of "repressor" and
"repression" indicates that these 18 predictors are cor-
rectly predicting involvement in transcription or develop-
ment for some of the previously unseen test set proteins.
Interestingly, "ubiquitin" is also over-represented in the
positive test set sequences. We have since found evidence
in the literature that ubiquitination is indeed important in
transcription [20].

Note that although the more common annotation words
(e.g. "secreted", "nuclear", "transcription", ...) do not
appear in the shaded inset boxes of Figure 3, there is still
generally good agreement between target annotation
words and over-represented test set annotation words for
each cluster of predictors.

Prediction of function vs. compartment
Distinct positioning on predictor map
Do our self-supervised function predictors actually predict
specific functions (e.g. "transcription")? Or are they sim-
ply predicting targetting to a subcellular compartment in
which a particular function is predominant (e.g.
"nuclear")? This question can in part be answered by stud-
ying Figure 3. For instance, there is a cluster of "transcrip-
tion" predictors at row two, columns 6–7 which is distinct
from the large group of "nuclear" predictors at the bottom
of the map.  This indicates that a different set of proteins
are positively predicted by these two different clusters of
predictors. Likewise, there is a separation between the
"secreted" predictors (top left) and the "inhibits" predic-
tors (top right). On the whole we see separation between
the "A-type" runs (all annotation words) and the "B-type"
runs (excluding location words), but this could be a con-
sequence of the minor differences in the protocols of
these runs (see Methods). Therefore we chose to produce
a set of fixed-target function predictors under identical
conditions so that fair comparisons can be made.

Fixed-target function predictors
A fixed-target predictor is produced with the standard
supervised learning approach and is implemented simply
by hard-coding the annotation_classifier subroutine with
Page 6 of 19
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Predictor mapFigure 3
Predictor map. A total of 500 sequence-to-function predictors were produced by the self-supervised genetic programming 
approach. In this figure, an 8 × 8 Self-Organizing Map (SOM) is used to cluster the predictors based on the pattern of 
sequence-based test set classifications. Predictors which classify similar subsets of the sequences will be localised to the same 
region of the map. Each SOM node is annotated as follows (the example used is at row 3 column 2): the number of "A-type" 
and "B-type" predictors which map to this node (e.g. "4A + 2B"); the common target words for the annotation-based classifier 
and their frequencies (e.g. "2 biosynthesis, 2 mitochondrial"); the inset boxes show which annotation words are over-repre-
sented in the test set sequences which are positively classified by the sequence-based classifier (e.g. "oxidised"). See Methods 
for detailed information.
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one or more chosen annotation words. To illustrate this,
the hard-coded subroutine for a "secreted" predictor
would look identical to the evolved subroutine shown in
Figure 1(C). The targets were chosen manually by examin-
ing the predictor map (Figure 3) for the functions most
commonly used by the self-supervised approach (such as
"secreted", "inhibits", "antibacterial", "biosynthesis",
"transcription", and so on). For each target function, a
combined jury predictor is made using the outputs of 100
independently evolved classifiers. The consensus prediction
score for a given sequence is simply the fraction of the clas-
sifiers which "voted positive". The performance of these
fixed-target predictors is summarised in Figure 4, with
accuracy vs. coverage shown at different score thresholds.
For most target functions, the accuracy increases as the
threshold increases, with a corresponding decrease in cov-

erage. This plot shows that the accuracy of prediction to
cellular compartments (e.g. "secreted", "membrane", and
"nuclear") is generally higher than the accuracy of func-
tion predictions (although "transcription" and "inhibits"
are predicted quite well).

Correlations between function predictors
There are three ways to analyse the overlap between func-
tion and compartment. First we can look at consensus pre-
diction scores produced by different predictors on the
same set of proteins. Table 2 shows the correlation coeffi-
cients between the prediction scores of various pairs of
predictors over the 537 test set proteins. To give an idea
what the maximum expected correlation might be we
have included three additional jury predictors which are
copies of three selected cellular compartment predictors

Performance of fixed-target function predictorsFigure 4
Performance of fixed-target function predictors. Twelve function predictors were evolved with fixed targets (listed in 
the Methods) instead of the evolved targets used in the self-supervised approach. Each predictor is constructed from 100 inde-
pendently evolved classifiers, and its "prediction score" is simply the fraction of positive classifications (out of 100). Accuracy 
and coverage are presented at all possible prediction score thresholds (stopping when the number of positive predictions falls 
below 10). In the accuracy and coverage calculations: tp = true positives, tn = true negatives, fp = false positives, fn = false neg-
atives.
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(but are evolved independently). These three copies give
the highest correlations as expected. The next-highest cor-
relation comes from the "nuclear" vs. "transcription" com-
parison; the actual distribution of scores is shown in
Figure 5(A). From this we can conclude that proteins with
a good "transcription" score generally also have a good
"nuclear" score, but proteins with good "nuclear" scores
do not always have good "transcription" scores. This
agrees with the commonsense dictum that "a protein can
be nuclear without being transcription-related but it can't
be transcription-related without being nuclear". These
results suggest that the predictors have some ability to dif-
ferentiate between transcription-related function and
nuclear localisation. Clearly though there is also consider-
able overlap between the behaviour of the predictors.

The correlation between prediction scores for "inhibits"
and "secreted" is also quite strong (see Table 2 and Figure

5(C)). Again it seems that a high score for the function is
usually accompanied by a high score for the compart-
ment. The scores for "cytoplasmic" and "biosynthesis"
also correlate well (Table 2), but the distribution in Figure
5(E) indicates that biosynthetic proteins are not simply a
subset of cytoplasmic proteins (there are many blue
points above and below the y = x line).

Swapped training and testing targets
The second approach to determine if predictors can distin-
guish between function and compartment is to compare
the performance of predictors trained on function but
tested on compartment and vice versa. This is shown for
the "nuclear" & "transcription" pair in Figure 5(B), again
using accuracy vs. coverage plots (introduced in Figure 4).
The plot shows that the "nuclear" prediction performance
(on the test set) is roughly the same, regardless of the tar-
get used during training ("nuclear" or "transcription").
This could be expected, again from the common knowl-
edge that "all transcription proteins are nuclear". When
tested on "transcription" prediction performance, how-
ever, the predictors trained specifically for this function
perform better, suggesting that sequence features specific
to "transcription" have been learnt.

When comparing predictors trained and tested on the dif-
ferent combinations of "secreted" and "inhibits" (Figure
5(D)), we see that the function-trained predictor is better
at predicting the compartment than the compartment-
trained predictor when the coverage is between 0.15 and
0.5 (green vs. red lines). This is surprising, but could be
explained by a large overlap between the function and
compartment and the presence of more specific sequence
features associated with the function. When tested on the
ability to predict the function "inhibits", the function-
trained predictor performs better than the compartment-
trained predictor at low coverage (< 0.2, blue vs. magenta
lines). However, we have to be cautious in this region of
the plot because of the small number of predictions used
to calculate the accuracy.

In Figure 5(F) the only predictor which has a gradually
increasing accuracy curve is the one which is trained and
tested on "biosynthesis" (blue line). This suggests that,
with the current approach and dataset, "cytoplasmic" can-
not really be predicted at all. We should stress, however,
that the test set prediction accuracy for the "biosynthesis"
predictor is poor (the best case accuracy is 0.15, and the
background frequency or "random" prediction accuracy is
0.07). Reasons for the comparatively poor performance of
our approach have already been discussed. The key obser-
vation here is that there is a detectable seqeunce-to-func-
tion signal for proteins annotated with the word
"biosynthesis", which is independent from the (weaker)
signals correlated to cytoplasmic localisation.

Table 2: Correlations between function predictors. 

Function A Function B rA,B

nuclear nuclear-copy 0.979
secreted secreted-copy 0.964
cytoplasmic cytoplasmic-copy 0.899

transcription nuclear 0.860
membrane integral 0.798
inhibits secreted 0.780
biosynthesis cytoplasmic 0.765
DNA nuclear 0.737
cytoplasmic nuclear 0.721
DNA transcription 0.696
cytoplasmic transcription 0.680
catalyzes biosynthesis 0.665
antibacterial secreted 0.643
antibacterial inhibits 0.630
cytoplasmic DNA 0.583
catalyzes inhibits -0.525
catalyzes secreted -0.568
inhibits cytoplasmic -0.598
biosynthesis inhibits -0.617
secreted cytoplasmic -0.623
biosynthesis secreted -0.650

Pearson's correlation coefficient, rA,B is calculated for all pairs of fixed-
target predictor using the "consensus prediction scores" from test set 
sequences. Only predictor pairs where |rA,B| > 0.5 are shown. The 
strongest correlations shown at the top of the table are for "self 
comparisons" using duplicate predictors (trained independently with a 
different random seed). These indicate what "perfect" correlations 
would be, taking into account experimental noise. The highest non-
self correlation, 0.86, is found between "nuclear" and "transcription" 
predictors (the raw data is shown by the blue data points in Figure 
5(A)).
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Sequence features
The third approach is to look in more detail at the
sequence features discovered/used by the predictors. The
initial step in this analysis is to determine which are the
positively and negatively influencing regular expressions
(sequence patterns) in an evolved sequence_classifier sub-
routine. In some cases this would be easy to do by eye (see
Figure 2(C)), but often genetic programming produces
complex expressions that are difficult to read and may
behave in a non-linear fashion (see Figure 2(A&E)), for
example). As described in the Methods, we estimate local
derivatives for each of the regular expression terms in the
evolved subroutine with respect to its output over the
training set proteins. Then all the evolved regular expres-
sions belonging to a predictor (which is made up of 100
independently evolved classifiers) are scanned against the
test set sequences. Each residue in the test set is initially
assigned a zero score, but each time a regular expression
matches a residue, its score is updated by a positive or neg-
ative amount (for positively and negatively influencing
regular expressions, respectively). Finally we extract the
highest and lowest scoring sequence fragments from the
sequences for further analysis.

We should point out that the sequence feature analysis
does no more than summarise the correlation of sequence
features to annotations in the training data. We know that
our algorithm overfits the data to some extent, therefore
we checked all four cuts of the training/testing data for evi-
dence of over-fitting. Only the "stable" sequence features,
discovered in all four (overlapping) training sets are pre-
sented below.

The fixed-target predictors of "nuclear", "transcription"
and "DNA" annotations make use of an interesting reper-
toire of sequence features. As expected from our knowl-
edge of nuclear import signals [13,21], all three predictor
types look for tracts of lysine and/or arginine (K/R) typi-
cally 3 to 5 residues in length. These K/R features seem to
be most important for the "DNA" predictor (red bars in
Figure 6(A)), representing around 30% of the highest
scoring sequence fragments. We also observe a depend-
ence on tracts of negatively charged glutamate and aspar-
tate (E/D) residues for predictors of "nuclear" and "DNA"
(and to a lesser extent, "transcription", see the green bars
in Figure 6(A)). Acidic domains similar to this have been
associated with protein-protein interactions in the
nucleus [22-24], in addition to various non-nuclear roles
[25-27].

The most clear-cut distribution can be seen for poly-
glutamine-containing (polyQ) features. These are most
important in the "transcription" predictor (around 50%
of high scoring fragments), moderately important in the
"nuclear" predictor and not at all important for the

"DNA" predictor (dark blue bars in Figure 6(A)). Poly-Q
tracts are known to be involved in transcriptional activa-
tion (see ref. [28] for a review). Transcriptional activation
domains are generally involved in stabilising/assembling
the transcriptional machinery (as opposed to the DNA-
recognition process). The molecular details of polyQ
interactions are unclear, despite considerable interest in
neurodegenerative diseases, such as Huntington's disease,
in which mutant polyQ-expanded proteins are associated
with late-onset neuronal death.

Closer manual inspection of the high scoring sequence
fragments from the "transcription" predictor showed that
the polyglutamine tract tends to be flanked by the follow-
ing residues (with a convenient mnemonic): D, R, H, A, N,
K, S, L, E, P, T. The flanked polyglutamine feature is very
strongly associated with the "transcription" predictor
(magenta bars in Figure 6(A)). These flanking residues
tend to have either small or charged sidechains, with the
exception of leucine which is bulky and hydrophobic. The
biological significance of the flanking amino acids is not
yet clear.

An interesting N-terminal sequence feature also appears
to be important for just the "nuclear" and "DNA" predic-
tors (cyan bars in in Figure 6(A)). This feature is character-
ised by a negatively charged amino acid (or serine)
following the N-terminal methionine.

The predictors of "secreted", "inhibits" or "antibacterial"
do not exhibit clear differences in terms of the positively
influencing features. A possible positive feature associated
with all three predictors is the presence of a Cys, Gly or
Pro and a Lys or Arg (in any order); this feature constitutes
20% of the high scoring fragments (data not shown).
There are clear differences in the negatively influencing
sequence features. Lysine and glutamate have a strong
negative influence on "secreted" predictors (present in
86% of low-scoring fragments, data not shown), but not
on predictors for "inhibits". Predictors for "antibacterial"
show that glutamate and aspartate are negatively influenc-
ing (87% of low-scoring subsequences, data not shown),
but there is no such role for lysine. Negative sequence sig-
nals are difficult to explain, however, and are not dis-
cussed further.

The sequence features having a positive influence on the
predictors for "cytoplasmic", "biosynthesis" and "cata-
lyzes" are summarised in Figure 6(B). No obvious aligna-
ble motif could be identified from the high-scoring
fragments, but this was not expected because most protein
families have distinct 3D structures and the active sites of
enzymes tend to be formed from non-contiguous resi-
dues. However, short high-scoring fragments identified by
the "biosynthesis" and "catalyzes" predictors typically
Page 10 of 19
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Comparison of location vs. function predictorsFigure 5
Comparison of location vs. function predictors. In panel A, the consensus prediction scores from two different fixed-tar-
get predictors over 537 test set sequences are shown in scatter plot form. The red points show scores for two identical but 
independently trained "nuclear" predictors. As expected, a strong correlation exists between the scores of these two predic-
tors. The blue points show scores from a "nuclear" predictor plotted against the scores from a "transcription" predictor. The 
scores are still quite well correlated but the distribution of points mainly below the diagonal suggests that proteins that get high 
scores for "nuclear" do not always have equally high scores for "transcription", which agrees with general observations that not 
all nuclear proteins are involved in transcription (but all transcription proteins are nuclear). In panel B, accuracy vs. coverage 
plots are shown for the four combinations of predictors trained and/or tested on "nuclear" and/or "transcription". The data 
shown here are for the pooled test set proteins from a four-fold cross-validation experiment. The noteworthy result here is 
the increased performance of the "transcription"-trained predictor (blue line) compared to the "nuclear"-trained predictor 
(magenta line) when predicting "transcription". Panels C & D show the equivalent data for "secreted" vs. "inhibits" predictors 
Panels E & F show the data for "cytoplasmic" vs. "biosynthesis" predictors.
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contained one or more aromatic residue (green bars in
Figure 6(B)). Histidine is well known as an active site res-
idue due to its ability to reversibly accept hydrogen ions
and to coordinate with metal ions. Phenylalanine and
tryptophan have been shown to be important in main-
taining the geometry of the active site through stacking
interactions with other aromatic moieties, including cata-
lytic histidines [29-31] Acidic residues (red bars), which
are also well known to participate in catalysis, are impor-
tant for all three predictor types, but most prominent in
the "cytoplasmic" predictor. Proline (blue bars) is linked
to "biosynthesis" and "catalyzes", but is not well known
as an active site constituent. In fact, according to the The
IMB Jena Image Library Site Database [32], proline is
ranked 19th out of the 20 amino acids according to the
number of times it occurs in active sites (using all known
enzyme structures in the PDB). Interestingly however,
proline ranks 7th according to its occurrence in the envi-
ronment surrounding known active site residues (Rolf
Huehne & Juergen Suehnel, personal communication).
The general agreement between our sequence-based anal-
ysis and the structure-based survey leads us to suggest that
proline has an important accessory role in maintaining
the geometry of active sites.

Are sequence-to-function relationships discovered?
We conclude that at least two functions, "transcription"
and "biosynthesis", are associated with specific sequence
features that are not simply a consequence of overlapping
subcellular localisation. The most compelling evidence
comes from the accuracy vs. coverage plots in Figure
5(B&F) where the training and testing targets were
swapped, and Figure 6, where different contributing
sequence features were found for each type of predictor.
We draw further encouragement from the previously doc-
umented functions of some of the sequence features
found automatically by our method (e.g. polyQ in tran-
scription activation).

Conclusion
Existing function prediction methods are forced to take a
simplified view of protein sequences, for example by con-
sidering amino acid composition, secondary structure
predictions and the presence of known motifs. The prepa-
ration of input data for these methods is therefore heavily
dependent on human knowledge and expertise. In this
study we show how an open-ended evolutionary algo-
rithm can automatically discover features in unprocessed
amino acid sequences that correlate with protein func-
tion. Our algorithm is also unique in the way it self-selects
target functions while it learns these sequence features.

The most complex feature discovered so far is the "flanked
polyglutamine tract" associated with transcription, but
many other features are much less specific, for example

the "containing proline" feature associated with catalysis.
Our algorithm is designed so that every sequence-to-func-
tion predictor makes use of at least one sequence order-
dependent feature. However, this feature can either be
positively or negatively associated with the function, and
may escape our attention if it is not clearly represented in
the high (or low) scoring sequence fragments. Sometimes
the sequence order-dependent features are a consequence
of overfitting to the training data. There is clearly room for
improvement so that more numerous and higher quality
sequence features can be discovered for a variety of func-
tions.

Feature discovery is currently limited by two interrelated
factors: the size of the non-redundant protein dataset and
the completeness of their annotations. Our dataset is rel-
atively small because we have only accepted sequences
with high-quality human annotations which contain at
least one of the 150 most frequent words. We could
increase the amount of annotated training data by includ-
ing homology-based electronic annotations, as used by
both King et al. [9] and Jensen et al. [10,11]. We also esti-
mate that a less stringent sequence identity cutoff of 30%
would increase the dataset size by around 25%, although
at this level, some "pollution" by family-related functions
would be introduced [3]. However, in order to make the
biggest impact on dataset size and quality one might use
the Gene Ontology (GO) [11,12] to describe protein func-
tion. Firstly, the combined coverage manual and elec-
tronic GO annotations is quite good (60% of human
proteins and rising). Secondly, the hierarchical structure
of GO provides a more consistent description of protein
structure at many different levels. The word-based
approach we have used is easy to follow, but it is of course
limited because words are often ambiguous out of con-
text. In contrast, the GO annotations benefit from the cor-
rect judgements of expert annotators.

The free-text UniProt/Swiss-Prot annotations we used
may have one advantage, however. They contain informa-
tion about ligands, cofactors, modifications and interac-
tion partners that is not (yet) available in GO. For
example, proteins targeted by ubiquitination may not be
flagged as such in GO, but these are certainly suitable tar-
gets for sequence feature discovery. Further information
about interaction partners could be drawn from databases
such as KEGG [33] or the full-text literature.

It is also interesting to look at the evolved annotation
word combinations which define the target functions. In
the original set of 250 "A-type" predictors we saw 15
instances of the combination "nuclear OR DNA" and 9
instances of "nuclear OR RNA". (All the annotation word
combinations are shown in Additional file 1, for the inter-
ested reader.) The association of "nuclear" with "DNA"
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and "RNA" is perhaps not surprising. Our algorithm has
presumably learnt that if proteins are not annotated with
the word "nuclear" (maybe we excluded a "by similarity"
annotation) then the word "DNA" is also a good indica-
tion of nuclear localisation. Likewise, most RNA process-
ing takes place in the nucleus. Interestingly, "ubiquitin"
also co-occurs with "nuclear" quite frequently (5 times in
the 250 predictors). Compared to the co-occurrence of
these two terms in the training set annotations (7 times in
1609 proteins) this seems quite high, and we suggest that
from the sequence perspective there is a stronger func-
tional linkage between the two terms than was previously
known. Recent experimental studies have indeed shown
that ubiquitination has an important role in transcription
[20]. We have not presented a detailed analysis of the
annotation word combinations because it is difficult to
factor out the overfitting to the training data (due to the
dataset limitations discussed above), and because we

would need to run many more experiments to estimate
the co-occurrence frequencies accurately. However, the
rudimentary analysis presented above does clearly illus-
trate the knowledge discovery potential of our method.

As discussed earlier, the low prediction accuracy of the
evolved function predictors can be explained partly by the
low-contrast training data we used. Another equally plau-
sible explanation is that there might not always be a sim-
ple one-to-one relationship between sequence features
and annotated protein functions. However, given training
data of sufficient quality and quantity, we believe that
novel biology can be discovered from amino acid
sequences with a method such as this. We do not doubt
the importance of three-dimensional structure in protein
function, rather we suggest that linear motifs and features
may be responsible for more biology than is currently
thought. Parallels can be drawn with the recently discov-

Function-related sequence featuresFigure 6
Function-related sequence features. The sequence_classifier subroutines of fixed-target predictors contain one or more 
evolved regular expressions which may influence the classifier in a positive or negatively way. As described in the Methods, this 
positive or negative influence can be determined with an approximation method. The positively influencing regular expressions 
are matched against test set sequences (cuts 1 to 4 of the data individually, or pooled together, indicated with "All" in the fig-
ure). The 500 most-matched residues or sequence fragments are then analysed manually for recurrent patterns. In panel A, we 
summarise the sequence features that are important for predictors of the functions: "nuclear", "transcription" and "DNA". As 
expected, sequence features containing multiple lysine and arginine residues are an important signal in nuclear proteins (the 
pattern [KR] {3} is found in approximately 15% of the top 500 positively influencing residues for "nuclear" predictors). Other 
signals thought to be involved in protein-protein interactions in the nucleus are also identified by this analysis: repeated acidic 
residues and polyglutamine. The polyglutamine feature, and particularly polyglutamine flanked by at least one of the residues D/
R/H/A/N/K/S/L/E/P/T, is a stronger signal for "transcription" predictors. In panel B, the same analysis is performed for predic-
tors of "cytoplasmic", "biosynthesis" and "catalyzes". In this case only single-residue "features" are apparent from the data. For 
instance, aromatic residues are more important for predictors of "biosynthesis" and "catalyzes" than for "cytoplasmic" (green 
bars).
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ered role of microRNAs in gene regulation; it is reasonable
to suggest that all biological systems have evolved to use
low information content components wherever possible.

Our artificial evolutionary approach for sequence feature
discovery is a kind of in silico combinatorial screening
experiment. The current implementation is non-physical
and is based on regular expression matching. Although
the evolution of the regular expressions is highly flexible,
effective pattern discovery depends on the stepwise
improvement and expansion of an initial simple pattern,
with each step providing an increase in fitness. Certain
patterns may therefore not be reachable unless the repre-
sentation is changed (perhaps made more physical),
larger populations are used, or some prior information is
incorporated (such as helical wheel preprocessing). These
are therefore considerations for future work.

Finally, we briefly discuss a future application of self-
supervised function predictors. Our recent unpublished
results show that the clustering of proteins using amino
acid frequency vectors can be improved significantly by
appending the binary outputs of 40 different evolved
function predictors to the vectors. Most of the clusters
obtained are enriched in one or more biological func-
tions, therefore it is possible to assign/suggest functions
for novel or uncharacterised proteins which fall into these
clusters.

Methods
Datasets
The UniProt/Swiss-Prot datafile from UniProt release 1.6
(29 March 2004) was the source of sequence and annota-
tion information for this study. It contains 146,720
entries, but we considered only eukaryotic proteins
(67,392). We create a non-redundant set in a four stage
approach as detailed below:

1. The UniProt/Swiss-Prot file is processed by reading
from beginning to end. We only consider annotations of
these types: FUNCTION, PATHWAY, PTM, CATALYTIC
ACTIVITY, DEVELOPMENTAL STAGE, TISSUE SPECIFI-
CITY, SUBCELLULAR LOCATION, MISCELLANEOUS,
DOMAIN and which do not contain any of the following
words: similarity, probable, potential, possible, probably, possi-
bly, putative, may, or the phrases could be, seems to be, might
be. This is our crude quality control filter for "definitive"
annotations.  During processing, each FUNCTION anno-
tation is stored in a hash table. If a protein is encountered
with an already-seen FUNCTION annotation it is ignored
(the Swiss-Prot curators often copy annotations from one
family member to another). Proteins with no definitive
FUNCTION annotation are ignored. The annotations are
then split into words and a frequency count for each word

is incremented. At the end of processing, a sorted list of
the most frequent words is saved.

2. The list of frequent annotation words is filtered manu-
ally to remove uninformative words, such as "the" and
"protein", and leave behind the 150 most frequent
informative annotation words. Words indicating tissue-
specific expression (such as "blood" and "muscle"), were
also excluded because we did not expect this information
to be present in the amino-acid sequence (perhaps
wrongly). The full list is given in the Additional file 2.

3. The datafile is processed again following the procedures
in step 1. This time, annotation words which are not
present in the top 150 list are removed. This leaves 4908
proteins which are annotated with at least one word from
the top 150. These are passed to step 4.

4. Homology-based reduction is performed using the
blastclust program from the BLAST package version 2.2.2
[34] on the amino acid sequences of the 4908 proteins.
The parameter settings for cluster inclusion are as follows:
"-S 10" (minimum 10% sequence identity) and"-L 0.2"
(minimum 20% alignment overlap). The final dataset of
2146 proteins is created by selecting one representative
(the longest sequence) from each cluster.

The 2146 proteins are split randomly into four subsets,
which we call cuts 1 to 4. In most experiments, the train-
ing set is formed from the union of cuts 1 to 3 and the test-
ing set is cut 4. The data presented in Figures 4&5 were
generated using a fourfold cross-validation procedure,
where each cut of the data is used in turn as a test set. In
Figure 6, the analysis is performed on the four different
cuts of the data.

Genetic programming and self-supervised learning
Genetic programming (GP) has been described by Koza
[35] as an automatic method for creating computer pro-
grams using a population-based evolutionary search
inspired by the natural processes of selection, mutation
and recombination. We use the open source genetic pro-
gramming package PerlGP [36] to evolve Perl subroutines
which perform various operations on protein sequences
or their annotations. The genetic material in PerlGP is a
tree-like data structure, which is flattened into a piece of
Perl code which is then passed to the interpreter.

The evolutionary process works on a population of 2000
individuals. At the beginning of a run, the individuals are
created randomly, following a set of production rules
known as a grammar. The grammar ensures that the code
generated is syntactically correct. A simplified grammar is
given below in Backus-Naur notation:
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ROOT := sub annotation_classifier {

 my $annot = shift;

 return ANNOTBOOL;

 }

 sub sequence_classifier {

 my $seq = shift;

 return SEQNUM > SEQNUM;

 }

ANNOTBOOL := ANNOTBOOL && ANNOTBOOL |

 (ANNOTBOOL || ANNOTBOOL) |

 !(ANNOTBOOL) |

 $annot =~/ANNOTPATT/

ANNOTPATT := ANNOTPATT ANNOTPATT |

 catalyzes | golgi | mitosis ...

SEQNUM := (SEQNUM + SEQNUM) |

 (SEQNUM – SEQNUM) |

 SEQNUM * SEQNUM |

 (SEQNUM/SEQNUM) |

 abs(SEQNUM) | log(SEQNUM) |

 0 | 1 | 2 | ... | 8 | 9 |

 0.1234 | 0.7654 | ... |

 num_matches ($seq, 'SEQPATT') |

 num_matches ($seq, '^SEQPATT') |

 num_matches ($seq, 'SEQPATT$')

SEQPATT := (SEQPATT)(SEQPATT) |

 (SEQPATT)MOD | [AAS] | [^AAS]

AAS := AAS AAS | A | C | D | E ... | Y

MOD := {1,3} | {1,4} | {2,5} | ...

Because each individual is created starting at the ROOT
node, the two subroutines annotation_classifier and
sequence_classifier are always encoded by an individual's
genotype (refer to Figure 2 for examples). The return value
of annotation_classifier may be any logical combination
of boolean regular expression matches (ANNOTPATT) of
certain words against the annotation belonging to each
sequence (a space-delimited string of annotation words).
The return value of the sequence_classifier may be any
arithmetic combination of numerical constants and the
return values of num_matches which calculates the
number of times a regular expression matches (SEQPATT)
in the amino acid sequence.

The phenotype of an individual is the behaviour of these
two evolved subroutines when applied to the training set
data from a hard-coded loop. This loop simply passes the
annotation word string for each protein in turn to
annotation_classifier and stores the results in a binary vec-
tor. A second binary vector is constructed in a similar
manner by passing the amino acid sequence of each pro-
tein to the sequence_classifier subroutine. In this case,
however, a bit is set only if the subroutine returns true and
then also returns false for a shuffled version of the same
sequence. This forces the algorithm to discover sequence
order-dependent features. The two binary vectors are then
compared with each other using the correlation coeffi-
cient described by Matthews [37]. A positive correlation
indicates that there are patterns in the sequences which
correspond to the functions described in the annotation,
and individuals with higher correlation coefficients are
given a reproductive advantage within the genetic algo-
rithm. The selection procedure follows the default param-
eters in PerlGP (basically this involves tournaments of 50
individuals, of which the fittest 20 reproduce to replace
the least fit 20). The mutation and crossover operators
obey the grammar and so always produce syntactically
correct individuals. The runs were performed on machines
with 2800 MHz Intel P4 processors, and were each termi-
nated after 8 wall-clock hours had elapsed. The amino
acid sequences are reshuffled every 1000 tournaments. A
typical run completes around 13,000 tournaments.

Two constraints are imposed on the self-supervised learn-
ing process. First we ensure that the fraction of training set
examples classified as "positive" by the
annotation_classifier is between 10% and 50%. The justi-
fication for this is that we do not want the system to learn
patterns that only apply to a small number of proteins.
Second, our preliminary experiments showed that solu-
tions often emerged where a simple sequence pattern was
associated with a very complex combination of annota-
tion words. Because we prefer to discover complex
sequence patterns that are associated with a few annota-
tion words we have forced the annotation_classifier to
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contain no more than three annotation words. In both
cases these limits are implemented by "killing" any indi-
vidual which fails to meet the requirements. In retrospect,
we could have imposed a less arbitrary limit on the size of
the annotation_classifier subroutine by simply requiring
that it was smaller than the sequence_classifier subrou-
tine.

A comprehensive listing of all the parameter settings used
in the GP is not provided here, however default parame-
ters are used extensively and all the source code and data
needed to implement these experiments is provided as
Additional file 3.

"B-type" runs
The following annotation words are excluded in the "B-
type" runs: "secreted", "nuclear", "membrane", "cytoplas-
mic", "mitochondrial", "integral", "chloroplast", "extra-
cellular". Also, the code-generating grammar does not
contain the production rules which produce anchored
regular expressions (num_matches ($seq, '^SEQPATT')
and num_matches ($seq, 'SEQPATT$'). Finally, the lower
limit for the fraction of positive training set examples clas-
sified as "positive" by the annotation_classifier is reduced
from 10% to 5% because we expect biological functions to
be less prevalent than subcellular locations.

The predictor map
In order to cluster the function predictors (in Figure 3) we
calculate a binary vector for each predictor. This vector
holds the outputs of the sequence_classifier subroutine
which has been applied to each of the 537 test set
sequences. We use a Kohonen self-organizing map (SOM)
[19] to cluster the 500 vectors (250 "A-type" and 250 "B-
type" predictors). The 8 × 8 rectangular SOM uses a square
neighbourhood and was trained for 20 epochs using a lin-
early decreasing learning rate (initially 0.1) and radius
(initially 4). The Euclidean distance measure is used to
identify the "winning nodes" during SOM training. The
predictors which map to the same SOM node are analysed
in two ways, as described below.

Analysis of annotation_classifier subroutines
In Figure 3 we summarise the frequencies of annotation
words used as targets in the evolved annotation_classifier
subroutines. For example if three predictors mapped to a
SOM node and their targets were "nuclear", "nuclear|dna"
and "nuclear|mitosis", then these would be summarised
as "3 nuclear, 1 dna, 1 mitosis". However, for reasons of
space, annotation words are shown only if they are found
in at least two predictors and in at least one quarter of the
predictors. If a target contains more than one copy of the
same word (e.g. "nuclear|nuclear|dna"), it is counted only
once. The raw data is presented in Additional file 1.

Analysis of positively predicted test set sequence annotations
At each node in the SOM to which n predictors are
mapped/clustered, two quantities, Ow (observed frac-
tional occurrence) and Ew (expected fractional occur-
rence), are calculated for each word w of the 150
annotation words W used in our study. We define si,j ∈
{0,1} as the output of the sequence_classifier function
from predictor i applied to sequence j. There are m
sequences in the test set (m = 537), and aj,w ∈ {0, 1}
denotes whether sequence j is annotated with word w or
not. Then, Ow is calculated as follows:

where the bottom term is basically the top term summed
over all 150 words. The expected fraction is calculated
from just the sequence annotations as:

Annotation words are shown in the inset boxes of Figure

3 if  ≥ 3.

Fixed-target function predictors
As discussed in the main text, GP runs were also per-
formed using hard-coded annotation_classifier subrou-
tines using the following targets (in the same order as the
key in Figure 4): "secreted", "membrane", "integral mem-
brane", "nuclear", "transcription|transcriptional", "dna",
"inhibits|inhibit|inhibitor", "bacteria|antibacte-
rial|gram", "cytoplasmic", "biosynthesis", "catalyzes",
"mitochondrial". These experiments include the anchored
regular expressions used also in "A-type" self-supervised
runs. For each target, 100 independent runs were per-
formed on machines with 2166 MHz Athlon XP proces-
sors, and were terminated after 3 wall-clock hours. For
each sequence, the 100 different predictions can be com-
bined into one "consensus prediction score" by simply
taking the mean of the binary outputs.

Per-residue analysis of predictor behaviour
Given that complex expressions are often produced by GP
(see Figure 2(E) for example), it is important that we find
ways to understand them more easily. We use a simple
technique to estimate the contribution (positive or nega-
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tive) to the final output made by each constituent regular
expression in sequence_classifier. We illustrate the
method with a simple example:

sub sequence_classifier {

 my $seq = shift;

 return 5 + num_matches ($seq, 'EE')
>

 num_matches ($seq, ' [VIILLII]');

}

First we do some simple simplification of the regular
expressions and then rearrange the whole expression to
give:

 5 + num_matches ($seq, 'EE') - num_matches ($seq,
' [ILV]') > 0

We can then give each unique regular expression a sym-
bol, xi, as in the following equation:

5 + x1 - x2 > 0

Then we calculate the actual number of matches made by

regular expression xi in sequence j, denoted  and substi-

tute them into the equation:

Each xi component in this expression is then perturbed by

a small amount upwards, p, and downwards, q, and the

direction in which the output changes, , is calculated.

For example, for element x1 the change for sequence j is

calculated with:

Usually p = q = 1, but if  = 0 then q = 0. In essence we

are estimating the derivative of the output of
sequence_classifier with respect to xi.

Then we calculate the number of times  is positive

(posi), zero (zeroi) or negative (negi) over all N sequences

in the training set. To summarise the positive or negative
contribution of the regular expression we calculate:

Now each regular expression from an evolved predictor
can be assigned a ci value, which ranges between -1
(always negatively influencing) to +1 (always positively
influencing).

A fixed-target predictor made from 100 independently
evolved classifiers can contain a few hundred regular
expressions. After calculating cifor each regular expression,
a protein sequence can be analysed using the following
procedure:

1. assign a zero score to each residue sa in the sequence

2. for each of the 100 classifiers:

(a) over all constituent regular expressions i, calcu-

late sumpos = and sumneg = 

(b) for each regular expression i:

i. at all matching positions where ci > 0, sa = sa +

ii. at all matching positions where ci < 0, sa = sa

+ 

This analysis was performed for the highest scoring 10%
of the test set proteins (based on the consensus prediction
score described above). The 500 highest scoring residues
(according to sa) were extracted for analysis and the prep-
aration of Figure 6. Sometimes these were single residues,
and sometimes they were short fragments. The 500 most
negative-scoring residues for each fixed-target function
predictor were also extracted and analysed.
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Additional File 1
As in Figure 2 of the article, the predictors are clustered with a 8 × 8 
Kohonen Self-Organising Map (SOM). In this figure, the evolved anno-
tation word boolean expression (from the annotation_classifier subrou-
tine) are shown in full for each of the 500 evolved function predictors. 
Each boolean expression is separated by a semicolon. The A-type predictors 
are shown with upper case to identify them.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-16-S1.pdf]

Additional File 2
Here we show the full list of the 150 most common annotation words after 
manual filtering. The filtering is performed in order to remove stopwords 
and words that do not contain any information about protein function. 
The filtered words are shown with strikethrough text.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-16-S2.html]

Additional File 3
Additional supplementary material (includes files 1 and 2); gzipped tar 
archive; after unpacking, please open the file brameier2005/index.html in 
your web browser.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-16-S3.gz]
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