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ABSTRACT The ecological drivers that concurrently act upon both a virus and its
host and that drive community assembly are poorly understood despite known in-
teractions between viral populations and their microbial hosts. Hydraulically frac-
tured shale environments provide access to a closed ecosystem in the deep subsur-
face where constrained microbial and viral community assembly processes can be
examined. Here, we used metagenomic analyses of time-resolved-produced fluid
samples from two wells in the Appalachian Basin to track viral and host dynamics
and to investigate community assembly processes. Hypersaline conditions within
these ecosystems should drive microbial community structure to a similar configura-
tion through time in response to common osmotic stress. However, viral predation
appears to counterbalance this potentially strong homogeneous selection and
pushes the microbial community toward undominated assembly. In comparison,
while the viral community was also influenced by substantial undominated pro-
cesses, it assembled, in part, due to homogeneous selection. When the overall as-
sembly processes acting upon both these communities were directly compared with
each other, a significant relationship was revealed, suggesting an association be-
tween microbial and viral community development despite differing selective pres-
sures. These results reveal a potentially important balance of ecological dynamics
that must be in maintained within this deep subsurface ecosystem in order for the
microbial community to persist over extended time periods. More broadly, this rela-
tionship begins to provide knowledge underlying metacommunity development
across trophic levels.

IMPORTANCE Interactions between viral communities and their microbial hosts
have been the subject of many recent studies in a wide range of ecosystems. The
degree of coordination between ecological assembly processes influencing viral and
microbial communities, however, has been explored to a much lesser degree. By us-
ing a combined null modeling approach, this study investigated the ecological as-
sembly processes influencing both viral and microbial community structure within
hydraulically fractured shale environments. Among other results, significant relation-
ships between the structuring processes affecting both the viral and microbial com-
munity were observed, indicating that ecological assembly might be coordinated be-
tween these communities despite differing selective pressures. Within this deep
subsurface ecosystem, these results reveal a potentially important balance of ecolog-
ical dynamics that must be maintained to enable long-term microbial community
persistence. More broadly, this relationship begins to provide insight into the devel-
opment of communities across trophic levels.
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The identification of ecological drivers that shape microbial communities is a chal-
lenge in many environments, where high microbial diversity, a lack of time-resolved

samples, and variable geochemistry limit a full understanding of community assembly.
Hydraulically fractured deep subsurface environments can act as model systems for
investigating ecological principles governing assembly processes. The process of hy-
draulic fracturing involves high-pressure injection of water, chemical additives, and
proppant (usually sand) into deep hydrocarbon-bearing shale formations to generate
fracture networks and recover oil and gas resources. During this activity, diverse
microbial communities of bacteria and archaea are inadvertently injected into the deep
subsurface and exposed to high pressure and temperature and rapidly increasing
salinity driven by the dissolution of shale-derived minerals (1). These consistent phys-
icochemical pressures decrease microbial diversity by selecting for a subset of intro-
duced halophilic microorganisms that are able to subsequently colonize this new
fractured shale ecosystem and persist for extended periods of time (�350 days) (2–4).
Microbial community dynamics are additionally influenced by the presence of abun-
dant viral populations that drive both top-down control via predation of community
members and bottom-up control on microbial activity through the release of cellular
nutrients via cell lysis (3, 5). Importantly, the subsurface fracture network is essentially
a closed system following the hydraulic fracturing process, allowing the study of
time-resolved community dynamics in the absence of new microbial and viral inputs.
Together, this information suggests that hydraulically fractured wells can serve as
model systems to investigate constrained community assembly processes.

Microbial communities are shaped by different ecological assembly processes
(Table 1) (6). First, two types of selection can lead to deterministic shifts within
microbial communities (7). When some environmental pressure drives two communi-
ties to be significantly divergent, this observed difference is due to “variable selection.”
Variable selection occurs when turnover between two communities is greater than
expected by random chance and has been observed when communities experience
varied geochemical conditions or organic matter composition (8, 9). In comparison,
“homogeneous selection” occurs when some common stressor pushes two communi-
ties to be convergent (e.g., when turnover is lower than expected by random chance
alone) (7). For example, microbial communities from a successional soil environment
were driven to more similar configurations (10). Second, differences in organismal
movement through space can significantly influence community structure. When or-
ganisms are capable of easily dispersing, “homogenizing dispersal” drives communities
to be more similar than under “dispersal limited” scenarios, which are characterized by
low organismal movement leading to communities which drift apart (7, 11). When
comparing communities separated by time rather than space, “dispersal limitation”
suggests that communities are changing due to drift rather than the inability to mix.
Last, when no process dominates (e.g., there is moderate dispersal and weak selection),
the turnover between communities is considered “undominated” (7, 11).

Relative to the processes that drive microbial community assembly, the factors
influencing viral community structure are poorly understood (12). The close association
between viruses and their hosts could lead to viral community assembly, which mirrors
those processes experienced by the hosts (12–14). For example, the viral community
may assemble according to variable selection when environmental filtering drives
highly dynamic host abundances. Conversely, if the microbial community is phyloge-
netically consistent through time, the viral community may be affected by “homoge-
nous selection,” leading to convergent community composition. However, viruses are
still separately subjected to environmental processes, such as grazing, salinity, UV
exposure, or lifestyle (lytic versus lysogenic), which can complicate predictions (13–16).
The interplay between these factors and viral community assembly is underexplored,
partly due to the lack of universal marker genes within viruses which makes viral
communities challenging to study (17). Using a combination of marker genes and
reference-based metagenomic sequencing, one study used null models to attribute
deterministic (“nonrandom”) assembly to a viral subcommunity from macaque feces
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but did not identify specific processes (18). Furthermore, the interplay between micro-
bial and viral community assembly processes is completely unexplored, to our knowl-
edge. By investigating the processes governing the assembly of paired microbial and
viral communities and their coordination, we can better contextualize interactions
across different trophic levels.

Hydraulically fractured shales provide a closed system to investigate potentially
constrained ecological assembly processes affecting both microbial and viral commu-
nities. Within these shales, we expect that microbial communities would initially
experience significant variable selection (e.g., will be driven to divergent configura-
tions) due to the rapid environmental changes encountered upon introduction into the
subsurface (e.g., a freshwater system transitioning to brine-level salinity). Once the
community acclimates to shale conditions, however, we might expect that a common
community configuration will be maintained due to strong homogeneous selection
(barring external perturbations) because ill-adapted members would have been filtered
out by high pressure, temperature, and salinity. Such pattern is observed in many
fractured shale ecosystems where Halanaerobium sp. is consistently a dominant micro-
bial community member in late-produced water samples (2, 3, 5). In addition to abiotic
controls, Borton et al. (2018) demonstrated that numerous metabolic handoffs likely
help maintain these microbial communities, which could further enhance homogenous
selection due to increased ecological interconnections (8, 19, 20). Additional studies
have revealed that viral predation could exert a significant top-down control on the
persisting microbial communities that may also result in community composition being
relatively consistent through time (1, 3, 5). Given these past observations and known
environmental forcing driven by in situ physicochemical conditions (e.g., salinity), we
expect the microbial community structure will be primarily shaped by homogeneous,
deterministic processes after injection into the deep subsurface. In turn, we expect that
viral communities will assemble according to similar processes encountered by the host
microbial community due to their narrow host range (21, 22). Specifically, selection
should first deterministically cause significant shifts in viral community composition of
the input community (i.e., variable selection) and then constrain community composi-
tion to be consistent through time (i.e., homogeneous selection).

In this study, we applied the ecological null modeling tools �-nearest taxon index
(�NTI) and Raup-Crick (Bray-Curtis) (RCBC), to investigate the ecological assembly
processes affecting both microbial and viral populations in deep fractured shale
ecosystems. We leveraged time-resolved metagenomic data sets across multiple shale
wells and used ribosomal protein S3 (rps3) as a marker gene to infer microbial
community assembly analyses. The recovery of viral sequences from the same data sets
also allowed the same ecological null modeling tools to be applied to over 80% of the
observed viral community, a proportion previously inaccessible to these methods
through the use of viral marker genes. From these data, we show that the assembly
processes that govern these two distinct communities are significantly related to each
other, supporting their strong interdependence. These results further demonstrate the
need to study assembly processes across multiple trophic levels simultaneously to fully
understand factors driving spatiotemporal dynamics of any one trophic level.

TABLE 1 Definition of terms used throughout the article

Term Definition or explanation

�NTI �-Nearest Taxon Index; a phylogenetic null model which can differentiate deterministic and stochastic processes.
RCBC Raup-Crick (Bray-Curtis); a taxonomic null model which differentiates between different stochastic processes.
Variable selection Occurs when selective pressures drive communities to divergent configurations (i.e., different geochemical

conditions result in two communities being phylogenetically driven apart).
Homogenous selection Occurs when selective pressures push communities toward a common composition (i.e., common osmotic

stress drive two communities toward similar phylogenetic configurations).
Dispersal limitation Indicates populations are unable to mix leading to development via ecological drift; stochastic process.
Homogenizing dispersal Indicates two populations are capable of interactions, allowing members to freely exchange; stochastic process.
Undominated Indicates that no single assembly process is capable of explaining variation (i.e., mixtures of processes occur).
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RESULTS AND DISCUSSION
Viral predation counterbalances environmental filtering in governing micro-

bial community assembly processes. Samples collected from two hydraulically frac-
tured wells in the Utica shale—termed Utica-2 (U-2) and Utica-3 (U-3)—are explored in
Daly et al. in greater detail (5). Briefly, these wells exhibited geochemical characteristics
similar to previously described fractured shales (3). Following hydraulic fracturing,
produced waters from both wells became increasingly saline over time with U-2 fluids
increasing from 1.3 g/liter to 172 g/liter total dissolved solids (TDSs) on day 302, and
U-3 fluids increasing from 0.08 g/liter to 204 g/liter TDSs on day 159 (see Fig. S1 in the
supplemental material). In order to measure the ecological assembly processes gov-
erning microbial community structure within these brine-like samples, two null mod-
eling analyses, namely, �-nearest taxon index (�NTI) and Raup-Crick (Bray-Curtis) (RCBC)
were performed. These approaches leverage randomized community structures to
determine whether observed turnover between communities is higher or lower than
would be expected by random chance. �NTI is a phylogenetic null model capable of
distinguishing deterministic and stochastic assembly processes (23). When |�NTI| is
greater than 2, deterministic processes have driven observed community differences.
These deterministic processes can be further investigated. If �NTI is greater than 2,
variable selection has driven the observed communities to be more dissimilar. Such
environmental filtering has been observed when divergent geochemical conditions
affected community composition (24). If �NTI is less than �2, homogenous selection
pushed the observed communities toward a common configuration, as can be ob-
served when river water exerts a potentially common set of stressors in some riverbeds
(25, 26). When |�NTI| is less than 2, however, communities are as different as expected
by random chance due to stochastic processes. In combination with the taxonomic null
model RCBC, we can further distinguish these stochastic processes just as �NTI can
distinguish deterministic processes (7, 23). If RCBC is greater than 0.95, a decreased
ability to mix has led to significant community drift leading a dispersal limitation signal.
In contrast, when a system experiences significantly high exchange rates, a homoge-
nizing dispersal signal (RCBC of less than �0.95) can arise. Lastly, if |RCBC| is less than
0.95, no single assembly process was strong enough to exert control and thus an
undominated signal would be observed (7). Given that RCBC values are primarily useful
when �NTI indicates stochastic processes are responsible for community differences,
we only present RCBC values when |�NTI| values are less than 2. By examining the
dynamics of these two null models through space and time, we can investigate the
ecological assembly processes affecting both the microbial and viral communities.

Input fluids for the hydraulic-fracturing process are frequently generated using local
freshwater sources, with microbial communities distinct from those that subsequently
colonize and persist in the deep shale ecosystem. Consistently, we observe that
microbial communities in freshwater inputs were significantly different from those in
produced fluids due to variable selection (�NTI of �2) (Fig. 1A and B, Fig. 2A and B). This
variable selection was likely driven by the development of high-salinity conditions in
the deep fractured shales caused by the dissolution of mineral phases. Recycled
produced fluids (RTs) from an older hydraulically fractured well were used as one input
source in well U-3 and differed from later time points, primarily through undominated
processes. This indicates that upon injection, microbial RT communities from well U-3
were influenced by some combination of deterministic and stochastic processes
whereby neither dominates. This result is likely due to the microbial community being
preadapted for saline down-hole conditions in the recycled input water. By surviving in
a similar habitat in a different shale well, the RT communities differ due to isolation but
maintain similarities through common selective pressures, which, when combined, lead
to an undominated signal.

As hypothesized above, intense environmental filtering should occur on produced
fluid samples, due to the strong environmental pressures experienced within the
fractured shale (i.e., salinity, temperature, and pressure). In contrast to our expectation
that homogeneous selection would maintain a consistent community configuration
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through time, the majority of community comparisons in wells U-2 and U-3 were in the
stochastic range (|�NTI| of �2) (Fig. 1A and 2A), with RCBC results suggesting that
undominated processes were the major driver of community assembly (Fig. 1B and 2B).
An undominated signal typically consists of some mixture of weak assembly processes,
such as weak selection combined with a moderate level of dispersal (7, 11). However,
previously observed widespread viral predation within these fractured shale environ-
ments (3, 5) might be the primary driver for this undominated signal. This signal may
arise from a “kill-the-winner” (KTW) scenario counter-acting otherwise strong homoge-
neous selection exerted by the hypersaline conditions (5, 12, 27). A KTW scenario could
be influential via two potential mechanisms. First, KTW could result in variable selection
by continuously driving microbial community turnover through the elimination of the
most abundant community members (28). Under this mechanism, the lack of a dom-
inant community assembly process might be the result of strong variable selection
imposed by viral predation being canceled out by a strong homogeneous selective
pressure imposed by high salinity. Alternatively, KTW could directly result in stochastic
assembly processes in the absence of strong homogeneous selection (29). In this case,
we expect that dominant organisms would still be deterministically targeted by pre-
dation, but the resulting niche space would be filled stochastically. This mixture of
deterministic and stochastic processes is expected to lead to an undominated signal (7).
Regardless of which of these KTW mechanisms is the most accurate, the absence of a
strong signal for homogeneous selection, despite a strong homogenizing pressure (e.g.,
salinity), suggests that viral predation may run counter to potential environmental
filtering in fractured shale ecosystems.
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Viral populations develop according to homogenous selection and undomi-
nated processes. Given the dependence of viruses on their microbial hosts for
reproduction, we hypothesize that viral communities would be influenced by similar
assembly processes as those that affected the microbial community. In this case,
variable selection will act upon input samples while undominated processes structure
later time points. As with the microbial community, we analyzed the viral community
by measuring both �NTI and RCBC. Contrary to our expectations, null modeling results
indicated that viral communities in freshwater input fluids in both wells differed
significantly from those in produced fluids due to a greater influence of dispersal
limitation (Fig. 1C and D, Fig. 2C and D), while viral populations in the recycled
produced fluids in well U-3 were different due to undominated forces (Fig. 2C and D).
The comparative absence of variable selection indicates that changes in environmental
conditions after injection did not influence viral communities as strongly as they
influenced microbial communities. Instead, separation in time (and thus lack of physical
mixing) combined with stochastic ecological drift in the community (leading to a signal
of dispersal limitation) was the primary driver of initial community change.

Viral communities encountered assembly processes that did not strictly align with
those experienced by the host microbial community. In the initial produced waters of
U-2, viral communities appear to be controlled by undominated forces followed by a
period of strong homogeneous selection (Fig. 1C and D) linked to the Halanaerobium
sp.-dominated microbial community (see Fig. S2 in the supplemental material) (5).
Although similar assembly patterns have been observed within a mammalian ecosys-
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tem (18), this is the first time that this methodology has been attempted on such a large
(�80%) proportion of an observed viral community using viral sequences identified de
novo. Moreover, this observation suggests that the relatedness index used to calculate
�NTI actually contains evolutionarily relevant information because this homogeneity
coincides with the dominance of Halanaerobium sp. (5). After this point, the viral
community never reached a similarly homogenous state, instead being governed by
either homogeneous selection or undominated processes (Fig. 1C and D). In contrast,
well U-3 was primarily controlled by undominated processes throughout the sampling
period, never reaching a comparably homogenous condition (Fig. 2C and D). While the
inferred viral assembly processes deviate from our initial hypothesis, the variability in
assembly processes acting upon viral and microbial communities could be driven by
the low host diversity within these ecosystems. Low-diversity ecosystems could drive
viral populations to be more closely related due to changes in microdiversity (i.e.,
strain-level fluctuations), rather than total diversity (i.e., along broad phylogenetic
lineages) (12, 27, 30, 31).

The development of viral communities is intrinsically linked to the microbial
community in fractured shale ecosystems. While the specific community assembly
processes experienced by the viral and microbial communities did not completely
align, significant coordination appears to occur. To determine the relationship between
the ecological processes acting upon viral and microbial communities, the null mod-
eling results from both communities were correlated with each other using both a
permuted Procrustes analyses and Spearman-based Mantel test (Fig. 3, see Table S2 in
the supplemental material). Both the permuted Procrustes (U-2 m2 of 0.460, P � 0.0015;
U-3 m2 of 0.479, P� 0.009) and Mantel tests (Fig. 3) revealed that viral and microbial
�NTI results within each well were significantly correlated. This indicates that the
deterministic processes shaping the phylogeny/relatedness of both communities are
interlinked. Notably, the viral community appears to experience stronger homogeniz-
ing selection than the microbial community, as evidenced by low �NTI values (less than
�30), likely related to a singular selective force primarily affecting viral structuring (i.e.,
host availability).

While previous research has noted the connection between viral and microbial
community dynamics (5, 13, 22, 32), this demonstrates that the ecological pressures
structuring these communities are intrinsically linked; when one community experi-
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ences increased turnover due to shifts in selective pressures (indicated by higher �NTI),
the other will likely experience it as well. These results potentially are the result of the
dynamic feedback loop existing between the top-down and bottom-up effects a virus
community exerts on the host microbial community, although an in silico analysis
would be necessary for confirmation. The RCBC Mantel tests provide further evidence of
coordination in the assembly processes influencing the microbial and viral communities
(U-2 r of 0.815, P � 0.0001; U-3 r of 0.745, P � 0.033) (Table S2). Collectively, our results
indicate strong linkages in the ecological assembly processes affecting viral and
microbial communities, although the underlying mechanisms leading to this coordi-
nation are not yet clear.

Conclusions. While the interactions between viruses and their hosts in marine, soil,
and subsurface environments have received increasing attention in recent years, no
study to date has investigated the relationship between the ecological processes
coordinating the assembly of each community. Here, we demonstrate that while each
community is affected by different specific assembly processes at individual time points
(Fig. 1 and 2), the overall assembly processes influencing these two communities are
linked (Fig. 3). This supports past observations that across viral and host communities,
fluctuations in one community lead to changes in the other (5, 13, 22). We suggest that
widespread viral infection may act as a counterbalance to otherwise strong, homoge-
nous environmental filtering, with the action of viral populations overriding strong
deterministic factors from the abiotic environment (e.g., high salinity) that could
otherwise lead to homogeneous selection (Fig. 4).

The interpretation of viral ecological modeling still poses a number of challenges.
Viruses primarily have either a lysogenic or lytic lifestyle which could have ramifications
for viral community development (12). Lysogenic viruses would likely experience
different pressures than free lytic viruses given that they can integrate within host
genomes until becoming virulent. For example, in a surface marine environment where
high UV exposure may lead to free virus degradation, lysogenic phage could be
protected and potentially more closely mirror microbial community dynamics (33).
Once induced, however, lysogenic viruses might encounter lagged processes relative to
their hosts, as observed within some marine environments (13). Alternatively, a com-
munity dominated by viruses with a lytic lifestyle might experience more divergent
assembly than the microbial community (i.e., faster dispersal and inaccessibility to
sufficient hosts). While the viral community within a fractured shale is a roughly equal
mixture of these lifestyles (5), other ecosystems might have a different ratio of lysogenic
and lytic viruses. Better quantification of viral lifestyles will help improve our under-
standing of the contributions that viruses make to ecological assembly processes.
Another complication is that all of the viruses within this study were obtained via
shotgun metagenomic sequencing and likely represent only a subset of the overall viral
community (34). By collecting viromes, rather than metagenomes, a more complete
viral community could be available, enabling us to better distinguish different viral
groups (17, 34).

Beyond broader ecological considerations, these viral-host relationships have impli-
cations for the functioning of fractured shale ecosystems. Our results demonstrate that
the two shale ecosystems examined here exhibit coordination between viral and
microbial community assembly. Other studies have indicated that additional shale
ecosystems develop along similar trajectories, although less information about viral
community dynamics is available (2, 3, 35, 36). The apparent coordination and feedback
between microbial and viral communities in the systems studied here suggest that such
processes may be conserved across shale systems. If these feedback are disrupted,
there may be impacts to the functioning of the shale ecosystem. For example, extensive
viral predation could disrupt microbe-microbe interactions (e.g., between Halanaero-
bium sp. and Methanohalophilus sp.) and lead to changes in biogeochemical fluxes,
such as the generation of new biogenic methane (19, 37). While hypothetical, these
potential outcomes demonstrate the necessity of investigating how different assembly
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processes are partitioned within shale ecosystems. Furthermore, insights gained in this
constrained shale ecosystem may be applicable to other environments that host more
complex microbial and viral populations.

Overall, our results both confirm previous observations of the relationship between
viral and microbial communities and demonstrate a strong association with respect to
assembly processes, which has not been previously recognized. Not yet clear, however,
are mechanisms that underlie coordination in assembly processes. To ultimately predict
the effects of viral-host interplay across diverse ecosystems, such mechanisms need to
be revealed through modeling efforts and lab-based experiments.

MATERIALS AND METHODS
Sample collection. Hydraulic fracturing input fluids and shale-produced fluids were collected from

wellheads and oil-gas-water separators in sterile bottles with no headspace (1 to 2 liters). When fluids
were collected from the separator tanks, the separator tanks were flushed immediately before sample
collection to minimize community changes due to incubation in the separator. Flow rates ranged from
�400,000 liters per day at early time points to �170,000 liters per day at later time points, with a
separator capacity of �5,500 liters. These fluids were collected from two wells in the Utica-Point Pleasant
shale formation in Ohio (n � 2, Utica formation). Fluids were filtered on 0.22-�m pore size polyether-
sulfone filters (Millipore; Fisher Scientific). Produced fluids contained high concentrations of ferrous iron
(100 to 180 mg liter�1). During the filtering process, the oxidizing iron resulted in a natural analog of the
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balance, giving rise to undominated assembly for both the microbial and viral communities. (C) Within
scenario 2, however, a multi-infection event leaves open niche space that is then occupied due to weak
dispersal-based assembly processes, resulting in an undominated signal. (D) Regardless of the scenario,
the result is the same, namely, coordination between the ecological assembly processes of microbial and
viral communities. While the magnitudes might vary, these results suggest that one community will
experience dynamics in response to the other.
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chemical flocculation protocol used to concentrate free viral particles (38). Thus, the viruses sampled in
this study are probably a combination of free viral particles, integrated proviruses, and active, replicating
viruses. Total nucleic acids were extracted from filters using lysis buffer I (39), purified with two
phenol-chloroform and one chloroform-isoamyl alcohol extraction, and precipitated with NaCl and
ice-cold ethanol. Nucleic acids were stored at –20°C until sequencing.

Metagenomic sequencing and assembly. Libraries were prepared using the Nextera XT library
system according to manufacturer’s instructions. Sequencing adapters were ligated, and library frag-
ments were amplified with 12 to 15 cycles of PCR before quantification with the KAPA Biosystems
next-generation sequencing library kit. Following library preparation with a TruSeq paired-end cluster kit
(v4), sequencing was performed on the Illumina HiSeq 2500 platform with HiSeq TruSeq sequencing by
synthesis (SBS) sequencing kits (v4) following a 2 � 150-bp indexed run recipe. Fastq files were
generated with CASSAVA 1.8.2. Fastq files were trimmed from the 5= and 3= ends with Sickle, and each
sample was assembled individually with IDBA-UD using default parameters (5, 40, 41). Metagenome
statistics, including the amount of sequencing are detailed in Table S1 in the supplemental material.
Scaffolds of �5.0 kb were included in subsequent viral analyses.

Microbial analysis. An hidden Markov model (HMM) obtained from PFAM (PF00189) was utilized to
find rps3 sequences in each metagenomic assembly (42). Resulting sequences were clustered at 100%
using the UCLUST option within USEARCH (43). Reads per kilobase million (RPKM) was calculated by
mapping metagenomic reads to the clustered sequences using Bowtie2 and then normalizing read
counts to sequencing depth (44). An alignment for these sequences was generated using MUSCLE and
trimmed in Geneious to remove any position consisting of �95% gaps, after which a RAxML tree was
generated using an evolutionary model approximated by PROTTEST (45–48) (see Text S1 in the supplemental
material).

Viral analysis. Assemblies were mined for viruses using the methods outlined in Daly et al. (2019).
Briefly, VirSorter was run using the “virome” database to identify viral sequences (49). Sequences
resulting in category 1 or 2 status were retained and clustered into viral OTUs using the “ClusterGe-
nomes” (v1.1.3) app in CyVerse, using 95% average nucleotide identity and 80% alignment fraction of the
smallest contig (50). Length-normalized viral operational taxonomic unit (OTU) abundances were then
determined by mapping reads to viral sequences using Bowtie2, dividing read counts by length, and
adjusting individual abundances by summed values within a sample (5, 44). Due to the lack of marker
genes across viruses, a protein clustering approach was utilized to generate a tree which approximates
taxonomic relationships as follows. First, vConTACT was used to compare gene content across viral
genomes/contigs and obtain all-versus-all pairwise similarity values (51). Viral sequences which shared no
protein content were assigned a similarity score of 0 in order to allow their incorporation into the tree.
These similarity values were then standardized between 0 and 1 in order to capture subtle differences
which were masked by large scores. These similarity values were finally converted to dissimilarity values
and used to generate a unweighted pair group method using average linkages (UPGMA) tree (upgma
command, “phangorn” package v2.4.0) (see Text S2 in the supplemental material) (52).

Ecological null modeling. Ecological null modeling was performed in order to investigate the
ecological drivers affecting both microbial and viral communities (7, 23, 53). Specifically, �-nearest taxon
index (�NTI) and Raup-Crick (Bray-Curtis) (RCBC) were used to determine contributions from selective and
dispersal-based processes, respectively. First, �-mean nearest taxon distance (�MNTD) was calculated for
each possible pairwise comparison within either the microbial or viral communities (comdistnt, “picante”
package v1.8) (54). By comparing these observed �MNTD values to those obtained from 999 community
randomizations, �NTI was calculated according to Stegen et al. (7, 23). These �NTI results can then be
used to investigate the phylogenetic turnover within both communities and to understand whether
deterministic (i.e., selection) or stochastic (i.e., random) processes affected community composition. If a
|�NTI| value exceeds 2, a deterministic process shaped the microbial or viral community; if a |�NTI| value
is less than 2, a stochastic process affected the community. Deterministic processes can then be distinguished
based upon the sign of the �NTI value. When �NTI is greater than 2, communities are significantly more
different than would be explained by random chance due to variable selection. Such a process occurs when
environmental conditions between the compared communities are different (e.g., differences in organic
carbon quality), leading to variation in community composition (55). If �NTI is less than �2, communities are
significantly more similar than would be expected by random chance due to homogeneous selection. This
type of selection would occur when relatively spatiotemporally consistent environmental conditions drive
communities toward a common configuration, such as in the case of microbial community succession in
geochemically stable soil environments (10). Correlations between microbial and viral �NTI values were
assessed using both a permuted Procrustes test (protest command, “vegan” package v2.5.4) and a Spearman-
based Mantel test (mantel command, vegan package v2.5.4) (56).

In order to calculate �NTI, a phylogenetic tree is necessary. Given that metagenomic sequencing was
primarily used to investigate the microbial communities, the rps3 RAxML tree generated above was used
to assess phylogenetic turnover. Rarefaction to the sample with the lowest sequencing depth was used
to verify that results were not an artifact of sequencing depth, and any differences were noted. Viral null
modeling was performed using the �80% of the viruses placed on the viral relationship tree following
the methods detailed above. In some cases, different samples showed identical viral composition (i.e., the
same viruses were present in some pairs of samples). While we would normally expect a homogeneous
selection signal in comparisons between these communities, �MNTD calculations result in no nearest
neighbor distance, as the nearest neighbor is identical in all cases. When calculating �NTI, this results in
a divide-by-zero error, as the null models are also identical. In order to alleviate these problems, small
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amounts of nearest neighbor “noise” were added in the form of very small values (10�5) to the null
�MNTD measurements to indicate that a null phylogenetic tree has slightly augmented distances.

In addition to �NTI calculations, RCBC was used to further distinguish observed stochastic processes
according to Stegen et al. (23). Using 9,999 iterations per pairwise comparison, null communities were
probabilistically generated based upon observed microbial and viral abundances. From these commu-
nities, a null distribution of Bray-Curtis values was calculated and then compared to observed Bray-Curtis
values. Resulting deviations of the observed values from the null expectation represent the RCBC metric
once normalized from �1 to �1. Significant RCBC values (|RCBC| of �0.95) suggest that communities are
governed by either dispersal limitation or homogenous dispersal. Dispersal limitation (RCBC of �0.95)
occurs when two communities are significantly different due to being physically unable to mix in either
time or space, leading to significant ecological drift (random changes in organismal abundance).
Homogenous dispersal (RCBC of less than �0.95) happens when two communities are significantly more
similar due to the ability to freely mix throughout a given environment. Lastly, if |RCBC| is less than 0.95,
the differences between communities arose due to undominated processes where no single ecological
pressure is able to exert a dominating effect (i.e., weak dispersal and weak selection) (7). Given that these
results are only useful in distinguishing stochastic processes, RCBC values are only presented for
insignificant �NTI values (i.e., |�NTI| of �2).

Plot generation and code availability. The program R (v3.5.4) was used to perform statistical tests
and plot generation (57). All data plots were generated using “ggplot2” (package v3.1.1) (58). R scripts
used within this study are available at https://github.com/danczakre/ShaleViralEcology.

Data availability. The metagenomes used in this study are publicly available through JGI; accession
numbers can be found in Table S1.
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