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Abstract
There is now considerable evidence for the involvement of K+ channels in nitric oxide (NO)
induced relaxation of smooth muscles including the myometrium. In order to assess whether
apamin-sensitive K+ channels play a role in NO – induced relaxation of the human uterus, we have
studied the effect of specific blockers of these channels on the relaxation of myometrium from non-
pregnant women. In vitro isometric contractions were recorded in uterine tissues from non-
pregnant premenopausal women who had undergone hysterectomy. Apamin (10 nM) and
scyllatoxin (10 nM) did not alter spontaneous myometrial contractions. However, 15-min
pretreatment of the myometrium strips with apamin completely inhibited relaxation caused by
diethylamine-nitric oxide (DEA/NO). The pretreatment with scyllatoxin significantly reduced
(about 2.6 times) maximum relaxation of the strips induced by DEA/NO (p < 0.05). These results
strongly suggest that, beside Ca2+ and voltage dependent charybdotoxin-sensitive (CTX-sensitive)
K+ channels, apamin-sensitive K+ channels are also present in the human non-pregnant
myometrium. These channels offer an additional target in the development of new tocolytic agents.

Background
Nitric oxide has been shown to be a potent inhibitor of
spontaneous contractile activity of the myometrium from
non-pregnant women. It has recently been shown that
contrary to the finding in some smooth muscle, in the my-
ometrium from non-pregnant women, there was no caus-
al relationship between the relaxation induced by NO
donors and the elevated production of cGMP [1,2]. A
number of recent studies on both vascular and uterine
smooth muscle have provided evidence for the involve-
ment of potassium (K+) channels in relaxation induced by
nitric oxide (NO) donors [3–8].

In smooth muscle, K+ channels play an important role in
regulation of cell membrane excitability and contractile
activity of the tissue [3–8]. K+ channels consist of a diverse
group of proteins with disparate structural features and
controlling mechanisms. Calcium (Ca2+)-dependent K+

channels have been found in many smooth muscles in-
cluding myometrium from different species [4,9–12].
Ca2+-activated K+ channels up to now identified in hu-
man myometrium represent the type of large-conductance
and voltage-dependent channels (BK) blocked by charyb-
dotoxin (CTX) and iberiotoxin [11,13]. However, other
classes of Ca2+-activated K+ channels may exist in smooth
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muscle cells including K+ channels with intermediate (IK)
and small unitary conductance (SK) [14,15].

Ca2+-activated K+ channels with small conductance found
in different visceral smooth muscles [4,16,17] have so far
not been identified in human myometrium. These chan-
nels, so called apamin-sensitive K+ channels are specifical-
ly blocked by a bee venom toxin, apamin [18,19] and
scyllatoxin (leiurotoxin I), a toxin from the venom of the
scorpion Leiurus quinquestriatus Hebraeus [20,21]. Calci-
um-dependent apamin-sensitive SK channels and CTX-
sensitive BK channels can apparently co-exist in the same
cell [18,22]. Recently, it has been demonstrated that the
intermediate conductance K+ channels, sensitive to both
apamin and charybdotoxin exist in mouse intestinal
smooth muscles and rat renal arterioles [14,15].

Although, inhibition of smooth muscle contraction by K+

channels openers is a well-recognized mechanism, infor-
mation on the expression and characteristics of various
channels is needed to develop tissue and channel type
specific K+ channel openers. In order to assess whether
apamin-sensitive K+ channels play any role in NO in-
duced relaxation, we have in this study examined the ef-
fect of specific blockers of these channels on the relaxation
of myometrium from non-pregnant women.

Methods
Human uterine tissues were collected from 14 non-preg-
nant premenopausal women (age, 41–50 years; median,
46 years) who had undergone hysterectomy because of ei-
ther dysfunctional bleeding, benign uterine tumors or cer-
vical malignancy. All women were recruited from patients
of the Department of Gynecology, Medical Academy of
Bialystok, Poland. The women were informed about the
nature and procedure of the study and gave their written
consent. The local ethics committee approved the study.
Myometrial samples were excised transversally from the
fundus of uterus, placed in an ice-cold physiological salt
solution and immediately transferred to the laboratory
where processed as previously described [23]. Briefly, 4–8
strips, 6–7 mm in length and 2 × 2 mm of cross section
area were obtained under a dissecting microscope. The
strips were then mounted in an organ bath containing 20
ml of physiological salt solution (PSS) at 37°C, pH 7.4
and bubbled with carbogen (95% O2 + 5% CO2). Strips
were left for the equilibration period of 1–2 hours. During
that period the passive tension was adjusted to 3 mN.

Activity of myometrium was recorded under isometric
conditions by means of force transducers with digital out-
put. The spontaneous contractile activity was treated as a
control. After the recording of spontaneous activity the re-
sponse of myometrium to nitric oxide and K+ channel
blockers was recorded. Quantification of the responses

was done by calculation of area under the curve (AUC),
amplitude and frequency of contractions. The area was
measured from the basal tension over a 10-min period af-
ter each stimulus. The effects were evaluated by compar-
ing experimental responses with the controls (set as
100%).

Diethylamine-nitric oxide (DEA/NO), which has been
shown previously to inhibit spontaneous activity in hu-
man [2,24] or rat [12] myometrium, in a concentration-
dependent manner, was used as NO donor. Three or four
strips from the same uterus were studied in parallel. One
of them was always treated as a control and regularly
washed with PSS. DEA/NO was given cumulatively direct-
ly into the organ bath in log increments within the con-
centrations range 10 nM to 100 µM. The effect of DEA/NO
was observed in the absence and after 15 minutes prein-
cubation with 100 nM CTX, 10 nM apamin or 10 nM scyl-
latoxin. The contact time for each concentration was 10
min. Only one concentration-response curve was ob-
tained for each strip.

Chemicals
DEA/NO, a generous gift of dr Larry K. Keefer from Labo-
ratory of Comparative Carcinogenesis, National Cancer
Institute, Frederick, Maryland, USA, was dissolved in a 10
mM NaOH, and kept cold until dilution with cold pH 7.4
buffer immediately before addition to a bathing medium
[25]. The concentration of NaOH in the organ bath never
exceeded 0.001% v/v and had no influence on the experi-
mental responses. Apamin and scyllatoxin, purchased
from Sigma Chemical Company, were dissolved in dis-
tilled water. All substances were added directly to the or-
gan bath containing physiological salt solution composed
of (mM): NaCl 136.9; KCl 2.68; MgCl2 1.05; NaH2PO4
1.33; CaCl2 1.80; NaHCO3 25.0; glucose 5.55.

Statistical analysis
All data were analyzed statistically with PRISM 3.0
(GraphPad Software Inc., San Diego, Calif.). The data
were analyzed with ANOVA, Friedman test or Wilcoxon
matched pairs signed rank test, where appropriate. The
statistical significance was considered when probability
value was P < 0.05.

Throughout the paper the results are expressed as mean ±
S.E.M. and n denotes the number of tissues obtained from
different patients. In the case when the same protocol was
run on two strips from the same uterus, the data were
averaged.

Results
All experiments were performed on myometrial strips ex-
hibiting regular, spontaneous contractile activity after
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Figure 1
Original recordings showing typical effects of DEA/NO on spontaneous contractile activity of the myometrium from non-preg-
nant women: (A) spontaneous activity and the response to depolarization caused by the solution containing high concentration 
of K+ (80 mM); (B) the effect of a cumulative administration of DEA/NO; (C) the effect of DEA/NO on tissue pretreated with 
10 nM apamin; (D) the effect of DEA/NO on tissue pretreated with 10 nM scyllatoxin
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equilibration (Fig. 1A). The mean frequency of
contractions was 3.95 ± 0.3 per 10 min and its mean am-
plitude was 6,06 ± 0.46 mN (n = 24).

Cumulative administration of DEA/NO (10 nM – 100
µM) caused an inhibition of the spontaneous activity in a
concentration – dependent manner (Fig. 2). The mean
AUC calculated for the highest concentration of DEA/NO
was (51.95 ± 4.68)% of control. The effect was seen as a
decrease of amplitude of contractions and a gradual re-
duction of its frequency (Fig. 1B). Both effects were statis-
tically significant (Friedman test). Removing of DEA/NO
from the bathing medium by washing with the PSS (two
times in 15 min interval) caused gradual return of the con-
tractile activity (Fig. 3). Charybdotoxin (100 nM), a block-
er of Ca2+-sensitive potassium channels with large
conductance caused no change of amplitude, and fre-
quency of the spontaneous contractions (Wilcoxon

matched pairs rank test) (Fig. 4). However, 15 min pre-
treatment of the strips with 100 nM CTX completely in-
hibited the DEA/NO induced decrease of AUC and ampli-
tude of contractions (n = 10) (Fig. 2B and 5). In the
presence of CTX, a small but nevertheless statistically sig-
nificant decrease of the frequency was observed for the
highest concentration of DEA/NO (100 µM).

In experiments performed on tissues taken from 10 wom-
en, we studied the effect of apamin, a blocker of Ca2+-de-
pendent K+ channels with small conductance on DEA/NO
– induced relaxation of the myometrium. Apamin at a
concentration of 10 nM did not alter spontaneous myo-
metrial contractions. In presence of apamin, the mean val-
ues of amplitude and frequency of contractions did not
differ significantly from those observed before the blocker
administration (Wilcoxon matched pairs rank test) (Fig.
4). However, pretreatment of myometrium strips with 10

Figure 2
Concentration – response relationships of DEA/NO-induced relaxation before and after pretreatment with blockers of Ca2+-
sensitive K+ channels: (A) DEA/NO alone (n = 10), DEA/NO after preincubation with 10 nM scyllatoxin (n = 5), or 10 nM 
apamin (n = 10); (B) DEA/NO in the absence and presence of 100 nM CTX (n = 10). Each point represents the mean ± SEM 
and * indicates effects significantly different from those observed in absence of the blockers (ANOVA). The spontaneous con-
tractile activity was treated as a control.
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nM apamin for 15 minutes resulted in complete inhibi-
tion of relaxation caused by a cumulative administration
of DEA/NO. In the presence of apamin, the mean AUC
value at the highest DEA/NO concentration in the bath
medium was (97.13 ± 2.73)%. This value did not differ
significantly from that calculated for the spontaneous
contractions (p > 0.05) (Fig. 1C, 2A and 5).

To test this effect we used scyllatoxin, a polypeptide isolat-
ed from scorpion venom, that blocks the apamin-sensitive
K+ channels in other tissues [20,21]. In a separate group of
five experiments, scyllatoxin (10 nM), like apamin, did
not alter spontaneous myometrial activity (Fig. 4). How-
ever, pretreatment of tissue with 10 nM scyllatoxin con-
siderably reduced the DEA/NO-induced relaxation of the
strips (Fig. 2A and 5). In the presence of 10 nM scyllatox-
in, the mean AUC value at 100 µDEA/NO in the bath me-
dium was (81.63 ± 2.54)%. Thus, in presence of 10 nM
scyllatoxin, the maximum of DEA/NO-induced relaxation
of the myometrium strips was about 2.6 times smaller
than that recorded in the absence of the blocker. The dif-
ference was statistically significant (P < 0.05). However,
the reduction of the DEA/NO-induced relaxing effect by
scyllatoxin was, lower than that observed after pretreat-
ment with apamin After pretreatment with 10 nM scylla-
toxin the AUC value calculated for 100 µM DEA/NO
(81.63 ± 2.54%) significantly differed from that calculat-
ed in presence of 10 nM apamin (97.13 ± 2.73%).

Discussion and conclusions
The present data show that DEA/NO causes concentra-
tion-dependent decrease of AUC, amplitude and frequen-
cy of the myometrium from non-pregnant women. The
blockers of both SK and BK channels reduce the DEA/NO-
induced inhibition of spontaneous activity of the
myometrium.

Relaxation of many smooth muscles by NO donors in-
volves activation of K+ current resulting in hyperpolarisa-
tion of cell membrane. K+ channels may be activated by
pathways involving direct action by NO and/or cGMP-
mediated mechanisms [26,27]. In majority of smooth
muscles, the relaxing effect of NO is related to opening of
large-conductance Ca2+ and voltage dependent K+ chan-
nels blocked by charybdotoxin and iberiotoxin (BK).
Present data show that, in the myometrium from non-
pregnant women, the relaxation of spontaneous contrac-
tions induced by DEA/NO is inhibited by charybdotoxin.
The same effect has been observed before [1]. Thorough
analysis revealed, however, that although CTX completely
inhibited the DEA/NO-induced decrease of amplitude it
was less efficient in preventing the lowering of frequency.
Using contraction as the only indicator of the DEA/NO in-
fluence on the myometrium activity, we can only specu-
late about a mechanism of the observed effect. The
concentration of CTX used in the experiments inhibits
about 80% of potassium current through BK channels

Figure 3
Original recording showing effects of DEA/NO on spontaneous contractions of the myometrium from non-pregnant women 
followed by reappearing of the contractile activity after wash-out with the PSS solution.
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Figure 4
Effects of Ca2+-sensitive K+ channel blockers on amplitude and frequency of spontaneous contractions. Each bar represents 
the mean ± SEM of 10 (apamin), 5 (scyllatoxin), and 10 (CTX) experiments.

Figure 5
DEA/NO-induced changes of amplitude and frequency of contractions observed in the absence and after incubation with Ca2+-
sensitive K+ channel blockers. Each bar represents the mean ± SEM of 10 (apamin), 5 (scyllatoxin), and 10 (CTX) experiments
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[32]. That means that a fraction of this channels could re-
main unblocked, accessible to NO donated by DEA/NO.
The fact that only the frequency of contractions is sensitive
to activation of this fraction may indicate that, in presence
of 100 nM CTX, other types of K+ channels play predomi-
nant role in controlling the amplitude of contractions. It
also implies that NO donated by DEA/NO inhibits the
spontaneous contractile activity reducing excitability of
the myometrium cells by taking their membrane potential
away from the threshold for action potential generation.
Our data indicate that also apamin and scyllatoxin, block-
ers of small conductance K+ channels can counteract DEA/
NO-induced relaxation. Apamin is a blocker of Ca2+ sen-
sitive K+ channels with small conductance [28]. In
different smooth muscles the maximum effective concen-
trations of apamin are within the range 1 nM to 1 µM
[14,29,30]. The lack of NO-induced inhibition of contrac-
tile activity that we observed in the presence of 10 nM
apamin suggests the existence of apamin-sensitive K+

channels in cell membrane of the myometrium from non-
pregnant women. On the other hand, in some smooth
muscle preparations from animals intermediate conduct-
ance K+ channels exist that are sensitive to both CTX and
apamin [14,15]. The similar effects of CTX and apamin on
the relaxation caused by DEA/NO suggest that the same
channel may be a target for both blockers. Such a conclu-
sion, however, is inconsistent with data obtained in pres-
ence of scyllatoxin, a blocker of Ca2+-activated K+

channels with small conductance [21] that has no effect
on intermediate or large conductance, Ca2+-activated K+

channels [31]. The decrease of NO-induced inhibition in
presence of scyllatoxin shown here supports the sugges-
tion that Ca2+-activated K+ channels with small conduct-
ance exist in the myometrium from non-pregnant
women. The difference between effects of equimolar con-
centrations of apamin and scyllatoxin is in agreement
with the fact that the scyllatoxin affinity to the SK chan-
nels is 10 – 20 lower than that of apamin [30,32].

Our findings, however, are not in agreement with the data
reported by others. Perez et al. [11] using cell membranes
from myometrium from non-pregnant women that were
incorporated into lipid bilayer have founded no apamin-
sensitive K+ currents in this preparation. The lack of sensi-
tivity to apamin was also observed in a beta-subunit of
maxi KCa channel from human myometrium expressed in
Xenopus laevis oocytes [33]. The discrepancy between our
findings and the electrophysiological observations
[11,33] may be explained by assuming that exposure to
NO or metabolic activation is required to activate the
apamin-sensitive K+ channels. It has been observed that
the transfer of ionic channels to the artificial environment
resulted in an inactivation of these channels [34,35].

The data of the present study strongly suggest that, the
apamin-sensitive K+ channels exist in the myometrium
from non-pregnant women. On the basis of our data we
cannot, however, preclude that in myometrium from
non-pregnant women exist channels sensitive to both
CTX and apamin similar to those reported in some
smooth muscles [14,15]. Further studies are necessary to
verify this hypothesis.

We have previously shown that K+
ATP channel openers are

potent inhibitors of contractile responses of the myo-
metrium of non-pregnant women induced by vaso-
pressin, an agent implicated in the pathophysiology of
dysmenorrhoea [6]. Specific openers of apamin sensitive
K+ channels, if developed, should have strong potential in
the treatment of dysmenorrhoea.
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