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COVID-19 has emerged as global health threats. Chronic kidney disease (CKD) patients are immune-
compromised and may have a high risk of infection by the SARS-CoV-2. We aimed to detect common
transcriptomic signatures and pathways between COVID-19 and CKD by systems biology analysis. We
analyzed transcriptomic data obtained from peripheral blood mononuclear cells (PBMC) infected with
SARS-CoV-2 and PBMC of CKD patients. We identified 49 differentially expressed genes (DEGs) which
were common between COVID-19 and CKD. The gene ontology and pathways analysis showed the
DEGs were associated with ‘‘platelet degranulation”, ‘‘regulation of wound healing”, ‘‘platelet activation”,
‘‘focal adhesion”, ‘‘regulation of actin cytoskeleton” and ‘‘PI3K-Akt signalling pathway”. The protein-
protein interaction (PPI) network encoded by the common DEGs showed ten hub proteins (EPHB2,
PRKAR2B, CAV1, ARHGEF12, HSP90B1, ITGA2B, BCL2L1, E2F1, TUBB1, and C3). Besides, we identified sig-
nificant transcription factors and microRNAs that may regulate the common DEGs. We investigated
protein-drug interaction analysis and identified potential drugs namely, aspirin, estradiol, rapamycin,
and nebivolol. The identified common gene signature and pathways between COVID-19 and CKD may
be therapeutic targets in COVID-19 patients with CKD comorbidity.
� 2021 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Novel severe acute respiratory syndrome-related coronavirus-2
(SARS-CoV-2) has appeared as global pandemic (Cui, 2019). SARS-
CoV-2 is a highly infected single-stranded RNA coronavirus. The
SARS-CoV-2 causes respiratory diseases dubbed as COVID-19. The
symptoms of common cold, fever and pneumonia are observed in
COVID-19 patients (Chen et al., 2020). In the mid-1960s
coronavirus was first identified (Mahase, 2020). The severe acute
respiratory syndrome-related coronavirus (SARS-CoV-1) affect
almost 8096 peoples in 2002. The second coronavirus named Mid-
dle East respiratory syndrome (MERS) emerged in 2012 that
infected almost 2494 peoples. The latest coronavirus known by
severe acute respiratory syndrome-related coronavirus 2 (SARS-
CoV-2) infected almost 166,492,108 peoples globally (as of May
22, 2021) (Worldometer, n.d.).

CKD is a disorder of kidneys caused by abnormal blood purifica-
tion. Globally 10% of the population is affected by CKD (‘‘World
Kidney Day: Chronic Kidney Disease,” 2015). The CKD patients
are more possibly to have other chronic diseases as well as hyper-
tension, diabetes, cardiovascular complication, and anaemia
(Robert Thomas et al., 2008). It has been previously (Guan et al.,
2020) shown that about 173 out of 1099 confirmed COVID-19
patients had Chronic obstructive pulmonary disease (COPD)
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(3.5%), diabetes mellitus (16.2%), coronary heart diseases (5.8%),
hypertension (23.7%), cerebrovascular disease (2.3%) and chronic
renal disease (1.7%). Another report showed that among 5700 con-
firmed COVID-19 patients had comorbidities of hypertension
(56.6%), CKD (5%), diabetes (33.8%) and COPD (5.4%) (Richardson
et al., 2020). The CKD patients are immune-compromised and
make the CKD patients more vulnerable to COVID-19. Although
the main target of SARS-CoV-2 is to attack the respiratory systems,
the other organs such as kidney might also be affected by the infec-
tion of the virus. The recent evidence of single-cell profiling
showed that the kidneys are vulnerable to SARS-CoV-2 infection
by the receptor ACE2 (Zou et al., 2020).

The mortality rate increases for COVID-19 patients with other
comorbid diseases. There were several studies identified the
comorbid influences on COVID-19 like, the cardiovascular and
hypertensive (Kamyshnyi et al., 2020; Mahmud et al., 2021),
Chronic obstructive pulmonary disease (COPD) comorbidities
(Gerayeli et al., 2021; Lee et al., 2021) and so on. Despite critical
important findings of the previous studies, the effect of
COVID-19 on CKD has not been investigated yet. The transcrip-
tomic analyses have been widely used in biomedical science to
identify key genes and pathways. Several studies have been
detected the transcriptomic alteration in lung epithelial cells and
peripheral blood mononuclear cells (PBMC) in response to SARS-
CoV-2 (Blanco-Melo et al., 2020; Islam et al., 2020) (Arunachalam
et al., 2020; Auwul et al., 2021). To discover molecular mechanism
of disease’s biological condition, the Differentially Expressed (DE)
genes should to identify for further system biological study
(Crow et al., 2019). The DE genes are those whose expression levels
are statistically different between groups. There were several sta-
tistical algorithms available in literature for finding the significant
DE genes. Among them the DESeq2 algorithm is most popular in
case of RNA-seq count data analysis (Love et al., 2015). Another
popular method for microarray data is Limma-Linear Models for
Microarray data (Gentleman et al., 2005; Ritchie et al., 2015). We
used these two popular methods for finding DE genes in
COVID-19 and CKD datasets respectively.

In this study, we used a systems biology approach to detect
commonly dysregulated genes and associate pathways between
COVID-19 and CKD. For this aim, we have used PBMC transcrip-
tomic data of COVID-19 and CKD to identify common transcrip-
tomic signatures followed by enrichment analysis to shed light
into the potential common mechanisms that underlie the
COVID-19 and CKD.
2. Materials and methods

2.1. Data pre-processing and differential expression analysis

We obtained the RNA-Sequencing (RNA-Seq) transcriptomic
dataset of peripheral blood mononuclear cells (PBMC) infected
upon SARS-CoV-2 with the accession number GSE152418
(Arunachalam et al., 2020) from the NCBI Gene Expression Omni-
bus (NCBI-GEO) (Barrett et al., 2013). This dataset consists of 34
samples (17 samples from SARS-CoV-2 infected PBMC and 17 sam-
ples from healthy controls). We collected the raw-count form of
this dataset that was constructed under the platform GPL24676
via Illumina NovaSeq 6000 system. Then, we retrieved PBMC
microarray gene expression dataset of CKD (with the accession
number GSE15072). The dataset contained gene expression profil-
ing data from patients with CKD of varying stages including 9 sam-
ples on stage II-III, 17 patients undergoing hemodialysis treatment
(HD), and 8 healthy controls samples (Granata et al., 2009). For our
study, we considered 9 CKD and 8 healthy control samples from
this dataset and collect the normalized form of this dataset under
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the platform GPL570 [HG-U133_Plus_2] that was constructed via
the Affymetrix Human Genome U133 Plus 2.0 Array system.

To identify significant differentially expressed genes (DEGs), we
used the DESeq2 R package for COVID-19 RNA-Seq count data
(Love et al., 2015). DESeq2 performed normalization process inter-
nally by calculating geometric mean of each gene over all samples.
It used the negative binomial generalized linear models to fit for
each gene and test the gene significance via Wald test. DESeq2 fil-
tered low expressed and outlying genes automatically using cook’s
distance. We analyzed the microarray CKD dataset via limma-
Linear Models for Microarray data R package (Ritchie et al.,
2015). It used statistical t-test for hypothesis testing the signifi-
cance of each gene over samples. The significant DEGs were filtered
based on adjusted p-value < 0.05 and |log2 FC|�1. Venn analysis
used to screen common DEGs between COVID-19 and CKD using
the match function. These common DEGs were used for further
downstream analysis.

2.2. Gene ontology and pathway enrichment analysis

The functional annotation and pathway enrichment analysis of
the DEGs were executed through Enrichr web utility tools
(Kuleshov et al., 2016). We considered Gene Ontology (GO) terms
in three categories namely, ‘biological process (BP)’, ‘cellular com-
ponent (CC)’, and ‘molecular functions (MF)’. For the pathway anal-
ysis, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Reactome database were used as a data source. A statistical thresh-
old criterion p-value < 0.05 were chosen for selecting significant
GO and pathways.

2.3. Protein-protein interaction network analysis

We performed the protein–protein interactions (PPI) using the
STRING database (Szklarczyk et al., 2017). The PPI network was
processed and analyzed in Cytoscape (Smoot et al., 2011). We con-
structed the PPI network considering the proteins encrypted by the
common DEGs between COVID-19 and CKD. The network com-
prised of seed proteins (i.e., common DEGs) and their neighboring
interacting partners. We considered degree and Maximal Clique
Centrality (MCC) parameters to detect the highly connected hub
proteins from the PPI network via CytoHubba plugin in Cytoscape
(Barabasi and Oltvai, 2004; Chin et al., 2014). We detected hub
genes with MCC > 15. The higher the value of MCC of the nodes,
the higher number of edges connected in those hub proteins.

2.4. Transcriptional and post-transcriptional network analysis

We performed TFs-Gene and Gene-miRNAs interaction via Net-
workAnalyst webtools (Xia et al., 2015) to identify the significant
TFs and miRNAs. We used the JASPAR (Khan et al., 2018) database
to build the TFs-Gene network. The Tarbase (Sethupathy et al.,
2006) and mirTarbase (Hsu et al., 2011) databases used to build
Gene-miRNAs interactions network via NetworkAnalyst (Xia
et al., 2015). The MCC >=15 cutoff criterion had been chosen for
the selection of significant hub TFs and miRNAs by using Cyto-
Hubba plugin that were visualized in Cytoscape.

2.5. Drug prediction analysis

We used DSigDB (version 1.0) database to identify potential
drugs which are significantly interacted with genes (Yoo et al.,
2015). The DSigDB is a web-based freely accessible resource that
contains the information of drugs and their target genes that have
been used for the gene set enrichment analysis (GSEA). This data-
base currently contains overall 22,527 gene sets including 17,389
drugs and 19,531 genes. We selected the enriched drugs for the
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DEGs by using Enrichr web server using DSigDB (Kuleshov et al.,
2016) database based on the statistical criterion, adjusted p-
value < 0.05.
3. Results

3.1. Transcriptomic signature

First of all, we analyzed the transcriptomic blood datasets of
COVID-19 and identified 625 differentially expressed genes (DEGs)
considering statistical significance criteria, adjusted p-value �0.05
and |log2 FC| � 1. Then, we analyzed the gene expression profiling
dataset of CKD matched with controls. Our analysis showed 728
DEGs in CKD compared to controls. We compared the significant
DEGs between COVID-19 and CKD to identify common DEG. We
found 49 common DEGs between COVID-19 and CKD (Fig. 1a).
The heatmap analysis showed the expression patterns of DEGs
between COVID-19 and healthy control samples that indicated
the clustering of each DEGs in two groups (i.e., up-regulated and
down-regulated) (Fig. 1b). The statistical measurements of the 49
common genes were summarized in Table S1.

To obtain biological insights into common DEGs, we conducted
a gene set enrichment analysis. Our analysis showed significant
biological processes enriched by the DEGs were ‘‘platelet degranu-
lation”, ‘‘regulation of wound healing” and ‘‘regulated exocytosis”.
The significant molecular function (MF) terms enriched by the
common DEGs included ‘‘calcium ion binding”, ‘‘metal ion binding”
and ‘‘lipoprotein particle receptor binding”. The significant cellular
components (CC) terms enriched in ‘‘platelet alpha granule mem-
Fig. 1. DEGs and hub-gene expression profiles (a) Venn diagram shows 49 common DEG
DEGs (49 DEGs) between COVID-19 and chronic kidney disease datasets on COVID-19 da
hub-genes in COVID-19 dataset.
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brane”, ‘‘cytoplasmic vesicle lumen”, ‘‘microvillus” and ‘‘actin
cytoskeleton” for the common DEGs. The top 10 terms of gene
ontology were summarized in Fig. 2.
3.2. Pathway enrichment analysis

We conducted pathway analysis to identify dysregulated path-
ways enriched by the common DEGs identified in COVID-19 and
CKD. Our analysis identified several pathways enriched by the
common DEGs namely, ‘‘platelet activation”, ‘‘ECM-receptor inter-
action”, ‘‘regulation of actin cytoskeleton”, ‘‘PI3K-Akt signalling
pathway”, ‘‘arrhythmogenic right ventricular cardiomyopathy”,
‘‘hypertrophic cardiomyopathy” ‘‘focal adhesion” and ‘‘small cell
lung cancer”. The top significant pathways were summarized in
Table 1 and visualized in Fig. 3.
3.3. Proteomic signature

We investigated the protein–protein interaction (PPI) analysis
of each proteins corresponding to the common DEGs identified
between COVID-19 and CKD to identify critical molecules (Fig. 4).
We employed Maximal Clique Centrality (MCC) based assessment
of PPI network. We detected 10 hub proteins (EPHB2, PRKAR2B,
CAV1, ARHGEF12, HSP90B1, ITGA2B, BCL2L1, E2F1, TUBB1 and
C3) which may be considered as the proteomic signature. Fig. 1d
showed the average log expression value of these hub genes. The
functional associations of these hub genes were summarized in
Table 2.
s between COVID-19 and chronic kidney disease datasets; (b) Heatmap of common
taset; (c) volcano plot of COVID-19 dataset, (d) Expression plot of the identified 10



Fig. 2. Gene ontology enrichment analysis of 49 common DEGs identified in COVID-19 and CKD; The terms BP, CC and MF stand left side of this figure indicate the ‘biological
function’, ‘cellular component’ and ‘molecular function’ enrichment categories, respectively.

Table 1
Molecular pathways (top ten) enriched by the common differentially expressed genes.

Source Pathways Adjusted p-
value

# of
Genes

Related Genes

KEGG Platelet activation 1.29E-05 5 ARHGEF12;ITGB3;ITGA2B;GP1BA;MYLK
ECM-receptor interaction 4.83E-05 4 ITGB3;ITGA2B;ITGA7;GP1BA
Focal adhesion 1.24E-04 5 ITGB3;CAV1;ITGA2B;ITGA7;MYLK
Regulation of actin cytoskeleton 1.74E-04 5 ARHGEF12;ITGB3;ITGA2B;ITGA7;MYLK
Fluid shear stress and atherosclerosis 3.71E-04 4 ITGB3;CAV1;ITGA2B;HSP90B1
Arrhythmogenic right ventricular cardiomyopathy
(ARVC)

7.32E-04 3 ITGB3;ITGA2B;ITGA7

Hypertrophic cardiomyopathy (HCM) 0.001185288 3 ITGB3;ITGA2B;ITGA7
Dilated cardiomyopathy (DCM) 0.001442953 3 ITGB3;ITGA2B;ITGA7
Small cell lung cancer 0.001536035 3 ITGA2B;E2F1;BCL2L1
PI3K-Akt signalling pathway 0.001700219 5 ITGB3;ITGA2B;ITGA7;HSP90B1;BCL2L1

Reactome Hemostasis 7.21939E-08 10 SELP;EHD3;SPARC;PRKAR2B;ITGB3;CAV1;KIF4A;ITGA2B;GP1BA;
CLU;PF4

Platelet degranulation 2.11035E-07 5 SELP;SPARC;ITGB3;ITGA2B;CLU;PF4
Response to elevated platelet cytosolic Ca2+ 2.78284E-07 5 SELP;SPARC;ITGB3;ITGA2B;CLU;PF4
Platelet activation, signalling and aggregation 2.60487E-06 6 SELP;SPARC;ITGB3;ITGA2B;GP1BA;CLU;PF4
ECM proteoglycans 9.89058E-06 4 SPARC;ITGB3;ITGA2B;ITGA7
L1CAM interactions 8.94941E-05 4 ITGB3;KIF4A;ITGA2B;EPHB2
Platelet Aggregation (Plug Formation) 0.000101262 3 ITGB3;ITGA2B;GP1BA
Cell surface interactions at the vascular wall 0.000109012 4 SELP;ITGB3;CAV1;PF4
Integrin cell surface interactions 0.000592926 3 ITGB3;ITGA2B;ITGA7
p130Cas linkage to MAPK signalling for integrin 0.000604968 2 ITGB3;ITGA2B

Md. Rabiul Auwul, C. Zhang, Md Rezanur Rahman et al. Saudi Journal of Biological Sciences 28 (2021) 5647–5656
3.4. Regulatory signature

To detect transcriptional signatures and post-transcriptional
regulatory signatures of the 49 common DEGs, the TFs-DEGs and
miRNAs-DEGs interaction networks were reconstructed using the
experimentally verified interactions. Considering the topological
parameters, we detected significant transcription factors namely,
FOXC1, CREM, GATA2, SRF and FOXL1 (Fig. 5a). We identified sig-
nificant miRNAs namely, mir-124-3p, mir-1-3p, mir-27a-3, mir-
129-2-3p, mir-155-5p and mir-34a-5p (Fig. 5b).
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3.5. Drug prediction analysis

To identify possible candidate drugs that may target the com-
mon DEGs, we performed drug target enrichment analysis with
considering the DEGs as drug targets. The drug prediction analysis
suggested several drugs that may target the DEGs (Table 3). Table 3
showed the top ten enriched drugs (tetradioxin, aspirin, estradiol,
rapamycin, benzene, arachidonic acid, styrene, genistein, arsenous,
nebivolol) by the DEGs that may be potential drugs for the treat-
ment of SARS-CoV-2 infected CKD patients.



Fig. 3. Barplot of KEGG and Reactome pathway enrichment analyses of 49 common DEGs identified in COVID-19 and chronic kidney disease datasets.
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4. Discussion

The COVID-19 has become an immense threat to humankind.
Higher death and critical COVID-19 conditions are observed in
old patients with comorbid diseases including CKD. Investigations
are being undertaken to identify the transcriptional signatures and
pathways among COVID-19 and its comorbidities; however, the
association between COVID-19 and CKD have not studied yet. In
this study, we implemented a system biology approach to detect
the common transcriptional signatures and pathways between
COVID-19 and CKD that may clarify the increased critical COVID-
19 condition in CKD patients. Our study suggests 49 DEGs which
were common between COVID-19 and CKD suggesting common
transcriptomic signature shared between two pathologies. To deci-
pher the biological significance, we conducted the functional
enrichment analysis of DEG(HK et al., 2020). Our analysis suggests
the pathways enriched by the common DEGs involved in the plate-
let activation that is associated with CKD (Gremmel et al., 2013).
The severe COVID-19 patients have significantly high association
with platelet activation and platelet-dependent monocyte tran-
scription factors expression (Hottz et al., 2020). The extracellular
matrix (ECM) pathway was also identified as a critical pathway;
ECM components include a combination of mechanical and func-
tional macromolecules that have higher involvements in CKD and
renal fibrosis (Genovese et al., 2014). The ECM play significant roles
in lung fibrosis and it suggesting that the COVID-19 patients with
lung fibrosis comorbidity may present greater complications (Sun
et al., 2020). Our study suggests hemostasis is highly associated
with COVID-19 and CKD as well(Lutz et al., 2014) (Ardy et al.,
2020).

The hub genes have been identified from the PPI network to
detect critical signaling molecules that may be therapeutic targets
for the development of drugs to treat in COVID-19 patients with
and CKD comorbidity. Among the hub genes, the Caveolin 1
(CAV1) is the key element of the caveolae plasma membranes that
has an association with early-stage CKD cohort and severe CKD as
well (Chand et al., 2016). In addition, the CAV1 has a wide range of
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effects in all stages of viral infection (Xing et al., 2020). The E2F
Transcription Factor 1 (E2F1) gene plays a vital role in controlling
the cell cycle and act as tumor suppressed genes. It aims also con-
verting to proteins of small DNA tumor viruses (Neuman et al.,
1996). The complement 3 (C3) gene activation has been implicated
the aggravation of lung injury of SARS-CoV infection in preclinical
models. The first COVID-19 patient was treated with the C3 inhibi-
tor (Mastaglio et al., 2020). Moreover, the genetic polymorphism in
C3 gene is also related to the progression of CKD (Ibrahim et al.,
2020). The EPH family was also reported to be associated with viral
infection (Chan and Watt, 1991; Wang et al., 2020). The PRKAR2B
is an important protein kinase genes may associate with COPD
(Mostafaei et al., 2018). The Tubulin Beta 1 Class VI (TUBB1) gene
is associated with virus infectious disease and is being found as a
hub gene in COVID-19 disease which was consistent with our find-
ings (Oh et al., 2020). The Integrin Subunit Alpha 2b (ITGA2B) is
significantly associated with clear renal cell carcinoma (Khoriaty
et al., 2019; Lu et al., 2016).

A number of significant transcriptomics factors detected in this
study that may regulate the common DEGs between COVID-19 and
CKD datsets. Among the identified TFs, Forkhead Box C1 (FOXC1)
and the Forkhead Box L1 (FOXL1) have been detected as differen-
tially expressed in renal cell carcinoma (Yao et al., 2016). The
expression of FOXC1 was reported as vital factor for increasing
the hepatitis B virus X (Yang et al., 2017). One more transcription
factor GATA2 was implicated in renal development (Yu et al.,
2010). Besides, we detected several miRNAs as potential regulators
of the DEGs. The mir-129-2-3p has been detected as a diagnostic
and prognostic biomarker for renal cell carcinoma (Gao et al.,
2016). It was detected as up-regulated signatures in human papil-
lomavirus; the researcher suggested that the expression of mir-
129-2-3p may be of considerable important signature for SRAS-
CoV-2 (Arisan et al., 2020). Chronic renal inflammation has been
developed with the altered mir-146a-5p expression (Osamu
et al., 2012).

Next, the drugs that may target the common DEGs have been
detected by using the DSigDB database. Among the detected



Fig. 4. PPI sub-network analysis of DE genes using common differentially expressed genes identified in COVID-19 and chronic kidney disease datasets with ten hub genes.
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significant drugs, the rapamycin has been proposed as a potential
repurposable drug for the treatment of COVID-19 (Husain and
Byrareddycde, 2020). Nebivolol is a drug for acute and chronic
renal disorder and used to treat hypertension. The researchers also
suggest using nebivolol to treat COVID-19 (Bocci et al., 2020). We
propose further studies of biological and clinical investigation to
evaluate the potential repurposing of these candidate drugs for
potential treatment in COVID-19 patients with CKD comorbidity.

In this study, a popular system biology approach used to iden-
tify common signature genes between the COVID-19 and CKD.
We chose both of the datasets originated from the same tissue
(PBMC) that make more reliable on finding common signature
between them. Instead of the advantages of this procedure, some
limitations of this study would be noted as the samples of SARS-
CoV-2 and CKD were not taken the same time, a small number of
samples, and the dearth of clinical validation of the identified
molecules. Thus cautions have to be taken while interpreting the
findings of the study. The researcher may apply some existing
machine learning algorithms to find the genetic effect of
5652
COVID-19 to Chronic Kidney Disease Patients for the future learn-
ing (Hasan et al., 2021, 2020a, 2020b, 2020c).
5. Conclusions

In this study, we aimed to identify the potential pathogenic pro-
cesses which were common between COVID-19 and CKD. We iden-
tified 49 common DEGs between COVID-19 and CKD by analyzing
blood transcriptomic data. The neutrophil mediated immunity,
neutrophil activation has been found significantly associated with
the DEGs. We identified several significant pathways and hub pro-
teins related to common DEGs. We identified several significant
small molecules associated with the common DEGs that might be
potential candidate drugs to treat COVID-19 patients with CKD
comorbidity. The identified hub genes and pathways may be
potential therapeutic targets. The findings of this study are based
on bioinformatics analysis; further clinical investigations are sug-
gested to validate the identified molecular signatures.



Table 2
Overview of the hub genes obtained from PPI network.

Gene
symbol

MCC
value

Description Related Diseases and pathways References

E2F1 56 E2F Transcription Factor 1 This gene plays a vital role in controlling the cell cycle and the tumor suppressed
genes act and is also an aim of the converting proteins of small DNA tumor viruses
and is also significantly associated with renal cell carcinoma.

(Ma et al., 2013;
Neuman et al., 1996)

CAV1 54 Caveolin 1 CAV1 have a wide range of effect in all stage of viral infection like influenza A and an
association with early-stage CKD cohort and in a cohort with more severe CKD.

(Chand et al., 2016;
Xing et al., 2020)

HSP90B1 47 Heat Shock Protein 90 Beta
Family Member 1

It have significant pathophysiological role in bipolar disorder and the high
expression of HSP90B1 is related with bone metastasis in renal cell carcinoma.

(Kakiuchi et al., 2007)

BCL2L1 46 BCL2 Like 1 The gene is functionally associated with several cancer related process and its
protein expression is associated with colorectal adenoma-to-carcinoma progression.
The ‘‘absolute glaucoma” and ‘‘tongue carcinoma” diseases also associated with this
gene.

(Boise et al., 1993;
Sillars-Hardebol et al.,
2012)

ARHGEF12 34 Rho Guanine Nucleotide
Exchange Factor 12

Leukemia and Giant Axonal Neuropathy disease are associated clearly with
ARHGEF12.

(Fagerberg et al., 2014)

EPHB2 31 EPH Receptor B2 EPHB2 gene has been shown to be up-regulated in glioblastoma and the mutation of
this gene identified in colorectal, gastric, bleeding disorder and prostate cancer/
brain cancer. The EPH family also associated with virus infection.

(Chan and Watt, 1991;
Wang et al., 2020)

PRKAR2B 31 Protein Kinase CAMP-
Dependent Type II Regulatory
Subunit Beta

The PRKAR2B is an important protein kinase genes may associate with COPD, carney
complex variant and with spinocerebellar ataxia.

(Mostafaei et al., 2018;
Solberg et al., 1992)

TUBB1 27 Tubulin Beta 1 Class VI The gene is associated with virus infectious disease and is found as a hub gene in
COVID-19 disease. It is also associated with macrothrombocytopenia, autosomal
dominant, tubb1-related and autosomal dominant macrothrombocytopenia.

(Oh et al., 2020)

ITGA2B 17 Integrin Subunit Alpha 2b This gene is significantly associated with renal cell carcinoma. It also related with
glanzmann thrombasthenia and bleeding disorder, platelet-type, 16.

(Khoriaty et al., 2019;
Lu et al., 2016)

C3 17 Complement C3 The genetic polymorphism in C3 is related to the progression in chronic kidney
disease (CKD) patients and the C3 inhibitor also used to treat the first case of COVID-
19 patient.

(Ibrahim et al., 2020;
Mastaglio et al., 2020)

The first column indicated the gene symbol of the ten hub genes, the second column indicated the Maximal Clique Centrality (MCC) values corresponding to each of the hub
genes (the larger the value of MCC, the more significant the hub genes), the third column indicated the full name of each hub gene, the fourth column described the associated
diseases and pathways of each hub genes and their corresponding reference given in column six.

Fig. 5. Regulatory signature identification for the common DEGs in COVID-19 and chronic kidney disease datasets: (a) Significant transcription factors were identified from
TFs-Genes interaction analysis; (b) Significant miRNAs were identified from Genes-miRNAs interaction analysis.
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Table 3
Candidate drugs (top ten) identified from gene-drug interaction enrichment analysis.

Drugs Adjusted
p-values

Related Genes

Tetradioxin 3.25E-04 SPARC;TNFAIP6;PTGDR2;ITGB3;FAXDC2;RORC;
CLU;USP18;NRGN;HSP90B1;C3;
LAPTM4B;PGRMC1;PRKAR2B;TUBB1;E2F1;
S100A12;FBXO5;MFAP3L;GINS2;CAV1;
YOD1;DHCR24;VIL1;ID1;BCL2L1

Aspirin 0.001147 SELP;SPARC;TNFAIP6;PTGDR2;ITGB3;ITGA2B;
E2F1;GP1BA;PF4;BCL2L1

Estradiol 0.001461 TNFAIP6;ITGB3;FAXDC2;RORC;CREM;CLU;
USP18;MYLK;HSP90B1;C3;PRKAR2B;
TUBB1;E2F1;FBXO5;MFAP3L;GINS2;MMD;
PLK2;CAV1;DHCR24;CDC42BPA;VIL1;
OLFM1;KIF4A;ID1;BCL2L1

Rapamycin 0.001491 CALD1;FAXDC2;ID1;E2F1;FBXO5;MYLK;BCL2L1
Benzene 0.001575 SPARC;TNFAIP6;PLK2;ITGA2B;CREM;GP1BA;

ALOX12;CLU;USP18;PF4
Arachidonic

acid
0.001916 SELP;SPARC;ITGB3;ITGA2B;ALOX12;BCL2L1

Styrene 0.002021 C3;SELP;BCL2L1;PF4
Genistein 0.0025 GINS2;TNFAIP6;ITGB3;PLK2;CAV1;DHCR24;

MYLK;C3;OLFM1;KIF4A;ID1;
FBXO5;BCL2L1

Arsenenous 0.003526 SPARC;TNFAIP6;ITGB3;PLK2;CAV1;CREM;
ALOX12;CLU;MYLK;NRGN;
PGRMC1;ID1;BCL2L1

Nebivolol 0.004022 SELP;TNFAIP6;DHCR24

The first column indicated the names of the top ten drugs suggested in this study
for the treatment of the COVID-19 patients with CKD comorbidity, the second
column indicated the adjusted p-values (the p-value adjusted via Benjamini and
Hochberg (FDR) of the corresponding drugs; the smaller the value of adjusted p-
value, the more significancant the drug), the third column indicated the related
genes of each drugs.
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