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ABSTRACT We have previously identified a crypt-specific core microbiota (CSCM) in
the colons of healthy laboratory mice and related wild rodents. Here, we confirm
that a CSCM also exists in the human colon and appears to be altered during colon
cancer. The colonic microbiota is suggested to be involved in the development of
colorectal cancer (CRC). Because the microbiota identified in fecal samples from CRC
patients does not directly reflect the microbiota associated with tumor tissues them-
selves, we sought to characterize the bacterial communities from the crypts and as-
sociated adjacent mucosal surfaces of 58 patients (tumor and normal homologous
tissue) and 9 controls with normal colonoscopy results. Here, we confirm that bacte-
ria colonize human colonic crypts in both control and CRC tissues, and using laser-
microdissected tissues and 16S rRNA gene sequencing, we further show that right
and left crypt- and mucosa-associated bacterial communities are significantly differ-
ent. In addition to Bacteroidetes and Firmicutes, and as with murine proximal colon
crypts, environmental nonfermentative Proteobacteria are found in human colonic
crypts. Fusobacterium and Bacteroides fragilis are more abundant in right-side tu-
mors, whereas Parvimonas micra is more prevalent in left-side tumors. More pre-
cisely, Fusobacterium periodonticum is more abundant in crypts from cancerous sam-
ples in the right colon than in associated nontumoral samples from adjacent areas
but not in left-side colonic samples. Future analysis of the interaction between these
bacteria and the crypt epithelium, particularly intestinal stem cells, will allow deci-
phering of their possible oncogenic potential.

IMPORTANCE Due to the huge number of bacteria constituting the human colon
microbiota, alteration in the balance of its constitutive taxa (i.e., dysbiosis) is highly
suspected of being involved in colorectal oncogenesis. Indeed, bacterial signatures
in association with CRC have been described. These signatures may vary if bacteria
are identified in feces or in association with tumor tissues. Here, we show that bac-
teria colonize human colonic crypts in tissues obtained from patients with CRC and
with normal colonoscopy results. Aerobic nonfermentative Proteobacteria previously
identified as constitutive of the crypt-specific core microbiota in murine colonic sam-
ples are similarly prevalent in human colonic crypts in combination with other an-
aerobic taxa. We also show that bacterial signatures characterizing the crypts of co-
lonic tumors vary depending whether right-side or left-side tumors are analyzed.
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Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide. In
2012, CRC accounted for 1,361,000 new cases and 694,000 deaths globally (1), while

in the United States alone, 95,520 new cases and 50,260 deaths were recorded in 2017
(2). The colonic microbiota may contribute to the development of colorectal cancer (3,
4). Early studies, based on culture methods, indicated an association between a few
bacterial species and CRC or healthy tissues (5, 6). An increased risk for colon polyps
was associated with increased abundances of Bacteroides and Bifidobacteria organisms,
whereas Lactobacillus and Eubacterium aerofaciens were associated with the absence of
tumors.

Over the past decades, the widely used 16S rRNA gene-based metataxonomics, the
development of metagenomic methods based on next-generation sequencing (NGS)
technology, and improved bioinformatic tools for big data analysis have afforded
in-depth descriptions of the microbial compositions and functions of the gut microbi-
ota. This has allowed for detailed comparison between feces specimens from CRC
patients and those of healthy controls (7–14) and for comparison between tumor-
associated microbes and microbes associated with tissues not adjacent to tumors
(15–20). Among the diverse set of bacterial taxa identified in these studies, Fusobac-
terium, Bacteroides fragilis, and Parvimonas micra were found to be consistently asso-
ciated with the tumor tissues (21, 22), while other taxa, like Providencia (23), Roseburia,
Ruminococcus and Oscillibacter (24), and Streptococcus gallolyticus (25, 26) were found
associated with tumor tissues in some, but not all, studies. Of note, one study described
an association between a decreased relative abundance of Roseburia in fecal samples
of CRC patients compared to that in healthy volunteers (27), in contrast to findings in
tissue, further pointing to inconsistencies between fecal and tumor-associated micro-
biotas in CRC patients (28). It was also shown that microbial compositions differ
between right (ascending, proximal) and left (descending, distal) cancerous colonic
mucosas, with higher relative abundances of Prevotella, Selenomonas, and Peptostrep-
tococcus in right colonic tumors and with higher abundances of Fusobacterium,
Escherichia-Shigella, and Leptotrichia in left colonic tumors (29). In addition, right-side
tumors were marked by the presence of a bacterial biofilm, unlike left-side tumors (21,
30, 31). Interestingly, Fusobacterium was associated with right colonic tumors in one
study (32) and with both right and left colonic tumors in another (21). Moreover, it was
shown that the tumor-associated microbiota could vary with the stage of the tumor
(33).

Utilizing silver nitrate staining and a combination of laser-capture microdissection
(LCM) and amplification of the 16S rRNA gene followed by deep sequencing, we
previously showed that murine proximal colon crypts harbor a resident microbiota that
we call crypt-specific core microbiota (CSCM). Regardless of the mouse line and
breeding origin, this bacterial population is unexpectedly homogeneous and domi-
nated by a restricted diversity of strictly aerobic genera, such as Acinetobacter, Delftia,
and Stenotrophomonas (34). The aim of the present study was to investigate, using LCM
technology and 16S rRNA gene sequencing, if human colonic crypts also harbor a
consistent core microbiota and if CRC is associated with a dysbiotic core microbiota.
Consequently, we characterized both the crypt-associated microbiota (CAM) and the
mucosa-associated microbiota (MAM) in tumors and in their paired adjacent normal
tissues in samples collected from the right and left colons of CRC patients. We
compared these microbiotas with those associated with colonic biopsy specimens of
healthy volunteers. Our results showed that, regardless of health status, human colonic
crypts are colonized mainly with Firmicutes but are also colonized with Acinetobacter,
Delftia, and Stenotrophomonas; however, they are in lower relative abundances than in
murine proximal colon crypts. Nonfermenting Proteobacteria were also detected in
these samples. The proportions of bacteria previously shown to be associated with CRC
were differentially represented in tumoral crypts from right and left colonic samples.
For instance, Fusobacterium and Bacteroides fragilis were abundant in tumors from the
right colon, whereas Parvimonas micra was associated with tumors from the left colon.
In healthy samples, Faecalibacterium was more abundant in right than in left colonic
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crypts. Taken together, our results demonstrate the existence of a human CSCM and
point to a specific localization of bacteria previously associated with CRC. The presence
of an abnormal microbiota in colonic crypts is hypothesized to be linked to CRC
oncogenesis, but further studies are needed to explore this association.

RESULTS
Eligible subjects and samples characteristics. A total of 67 subjects, 9 healthy

volunteers (1 man and 8 women) and 58 CRC patients (37 men and 21 women), were
included in the study. Patient characteristics are shown in Table 1. Briefly, the range of
ages was from 23 to 92 years, with a median of 70 years, and the body mass index was
from 16 to 44.7, with a median of 25.8. Samples were divided into 29 right colon, 34 left
colon, and 4 rectal cancers. Rectal cancer samples were excluded because of low
sample size and thus low statistical power. Patients under chemotherapy, radiotherapy,
or antibiotic treatment were excluded from the present study. The study was approved
by the Comité de Protection des Personnes, by the Comité Consultatif pour le Traite-
ment de l’Information en Matière de Recherche dans le Domaine de la Santé, and by
the Commission Nationale de l’Informatique et des Libertés (project 2012-37). Patients
provided written informed consent for the collection of samples and subsequent
analysis. The right and left colon surgical biopsy specimens were obtained without prior
cleansing, while for rectal samples and those collected during colonoscopies, patients
underwent a protocol that included colon cleansing, anesthesia, and colonoscopy
procedures, and none of the patients had received antibiotics within 4 weeks prior to
colonoscopy or surgery.

Sequencing results. All samples were sequenced on four Illumina MiSeq runs. As
mentioned in Materials and Methods, different controls were included in each run to
detect possible contamination in water or extraction buffer used during microdissec-
tion, DNA extraction, and the 16S rRNA gene PCR amplification. For each control, a
library was prepared and sequenced. These control samples after preprocessing steps
yielded between 1 and 366 sequences per sample, with a mean of 98 and a median of
67.5 sequences. The numbers of sequences obtained for the microdissected samples as
well as the relative abundance for each taxon are reported in Table S1A in the
supplemental material. Alpha diversity was estimated using the Chao1 index, which
indicates the richness of bacterial communities based on the abundance of rare species
belonging to each group of samples. The rarefaction plot indicates that the bacterial
compositions of the samples from nontumoral colonic tissue from CRC patients has a
higher richness than those from tumoral colonic tissues (Fig. S1A). As mentioned in
Materials and Methods, two databases were used to perform taxonomic assignment of
each operational taxonomic unit (OTU): Greengenes (35) and HITdb (36). The compar-
ative analyses between cancerous and noncancerous samples were performed using
HITdb, as this database permits taxonomic analysis to the species level. The corre-
sponding OTU assignments from phylum to species, obtained with HITdb, are reported
in Table S1B.

Core microbiotas in normal colonic tissues. The study aimed to evaluate whether
bacteria could be detected in human colonic crypts, as has previously been described
for mice (34). Using normal colonic biopsy specimens, bacteria were visualized inside
the intestinal crypts by fluorescence in situ hybridization (FISH) technology utilizing a
pan-bacterial probe (Fig. 1A), as well as in the mucosa-associated region of the two
right and seven left colon biopsy specimens (Fig. 1B). These bacteria were then
identified by 16S rRNA sequencing performed on LCM samples of the CAM and MAM
regions, as illustrated in Fig. 1B. Firmicutes and Proteobacteria were the most abundant
phyla present in both sections, with average relative abundances of 36.96% and 35.1%
in CAM and 33.29% and 35.43% in MAM, respectively. Actinobacteria and Bacteroidetes
were also detected at lower levels, with average abundances of 15.22% and 12% in
CAM and 17.04% and 13.03% in MAM, respectively. Among the Proteobacteria, which
were in even lower abundances than in proximal murine colonic crypts, Acinetobacter
(4.27% and 6% in CAM and MAM, respectively), Delftia (2.13% and 3.66% in CAM and
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TABLE 1 Patient characteristics

Patient Gendera Age (yr) Wt (kg) Ht (cm) BMIb Organ Tumor site Stagec T/N/Mc

1 F 77 113 159 44.70 Colon Right 2 3/0/0
2 F 54 75 164 27.89 Colon Right 3 3/2a/0
3 F 89 82 170 28.37 Colon Right 2 3/0/0
4 M 84 75 169 26.26 Colon Left 2 3/0/0
5 F 75 49 164 18.22 Colon Right 3 4b/0/0
6 M 88 65 176 20.98 Rectum Rectum 1 2/0/0
7 F 52 95 176 30.67 Colon Left 0 3/1a/0
8 M 90 78 171 26.67 Colon Left 2 3/0/0
9 M 87 120 171 41.04 Colon Left 2 4/0/0
10 M 23 76 177 24.26 Colon Left 3 3/1a/0
11 M 67 100 180 30.86 Colon Right 4 3/1c/1
12 F 85 60 153 25.63 Rectum Rectum 1 2/0/0
13 M 78 85 173 28.40 Colon Left 4 3/1c/1
14 M 85 63 168 22.32 Rectum Rectum 1 1/0/0
15 M 62 92 171 31.46 Colon Left 2 3/0/0
16 F 75 63 163 23.71 Colon Right 1 2/0/0
17 M 57 78 176 25.18 Colon Left 0 3/0/0
18 F 28 58 173 19.38 Colon Right 3 4b/0/0
19 M 66 86 170 29.76 Colon Right 2 3/0/0
20 F 57 62 155 25.81 Colon Right 2 3/0/0
21 M 61 62 168 21.97 Colon Left 0 3/0/0
22 F 92 85 160 33.20 Colon Left 3 3/1b/0
23 F 77 62 158 24.84 Colon Left 1 2/0/0
24 M 60 79 175 25.80 Colon Left 4 4b/2b/1
25 M 84 68 175 22.00 Colon Right 2 3/0/0
26 M 84 69 152 29.86 Colon Left 2 4/0/0
27 M 64 65 168 23.03 Colon Right 1 1/0/0
28 M 45 112 183 33.44 Colon Left 0 0/0/0
29 M 67 76 175 24.82 Colon Right 4 4/0/1
30 M 78 64 169 22.41 Colon Left 2 3/0/0
31 F 75 61 160 23.83 Colon Right 3 3/1b/0
32 M 66 70 172 23.66 Rectum Rectum 3 4/0/0
33 M 89 95 177 30.32 Colon Left 0 3/0/0
34 M 72 81 175 26.45 Colon Right 4 4/2b/1
35 F 60 70 149 31.53 Colon Left 3 3/2a/0
36 M 70 71 167 25.46 Colon Right 2 3/0/0
37 M 51 70 174 23.12 Colon Left 3 3/1a/0
38 M 52 61 160 23.83 Colon Left 3 3/1/0
39 M 71 86 180 26.54 Colon Left 2 3/0/0
40 M 76 94 178 29.67 Colon Right 3 3/2b/0
41 M 74 86 168 30.47 Colon Left 3 3/1a/0
42 F 52 70 165 25.71 Colon Right 1 1/0/0
43 M 88 67 171 22.91 Colon Right 3 3/1a/0
44 M 70 100 173 33.41 Colon Right 0 1/0/0
45 F 72 71 163 26.72 Colon Right 0 1/0/0
46 F 86 66.5 167 23.84 Colon Right 4 4/1b/1
47 M 58 56 167 20.08 Colon Right 3 3/1b/0
48 M 85 77 175 25.14 Colon Left 2 3/0/0
49 M 71 73 175 23.84 Colon Right 2 3/0/0
50 M 71 62 178 19.57 Colon Left 4 4/1a/1
51 F 89 71 170 24.57 Colon Right 4 3/0/0
52 F 25 42 162 16.00 Colon Left 3 4b/2a/0
53 F 76 95 157 38.54 Colon Right 2 3/0/0
54 M 61 70 175 22.86 Colon Left 4 4/1b/1
55 M 75 60 168 21.30 Colon Left 2 3/0/0
56 M 60 83 174 27.41 Colon Left 0 0/0/0
57 F 47 76 170 26.30 Colon Right 0 0/0/0
58 F 68 57 153 24.30 Colon Right 0 0/0/0

S1 F 52 88 170 26.30 Colon Left 0
S2 F 81 74 164 27.51 Colon Left 0
S3 F 29 68 162 25.91 Colon Left 0
S4 M 55 130 176 41.97 Colon Right 0
S5 F 29 68 162 25.91 Colon Left 0
S6 F 54 63 163 23.71 Colon Left 0

(Continued on next page)

Saffarian et al. ®

July/August 2019 Volume 10 Issue 4 e01315-19 mbio.asm.org 4

https://mbio.asm.org


MAM, respectively), and Stenotrophomonas (1.55% and 3.7% in CAM and MAM, respec-
tively) were also present in human colonic tissue (Fig. 1C; Table S1A). In addition,
Paracoccus and Sphingomonas, belonging to the Alphaproteobacteria class, and Ralsto-
nia and Acidovorax, belonging to the Betaproteobacteria class, were present in human
control colonic crypts (Table S1A). This demonstrated that, similarly to murine proximal
colon crypts, human colonic crypts harbor Gram-negative, aerobic, nonfermenting,
environmental, highly biodegradative Proteobacteria. We further validated the presence
of Acinetobacter in both CAM and MAM by FISH using a probe specific to this genus
(Fig. 1D and E). The common core microbiota was defined as being shared in more than
50% of subjects in each group (37, 38). Using this criterion, 28 OTUs were common to
the control CAM and MAM, whereas 22 OTUs were present only in CAM and 3 OTUs
were specific to mucosa-associated samples (Table S2A). In addition to Acinetobacter

TABLE 1 (Continued)

Patient Gendera Age (yr) Wt (kg) Ht (cm) BMIb Organ Tumor site Stagec T/N/Mc

S7 F 34 68 158 27.24 Colon Right 0
S8 F 38 78 179 24.34 Colon Left 0
S9 F 56 74 168 26.22 Colon Left 0
aF, female; M, male.
bBMI, body mass index (body mass divided by the square of the body height) expressed in kilograms per
square meter.

cThe earliest stage colorectal cancers are called stage 0, and then they range from stages 1 to 4. The lower
the number, the less the cancer has spread, and within a stage, an earlier letter means a lower stage. T/N/
M, classifications of tumors, where T is the size of the tumor, N indicates whether lymph nodes are
involved, and M indicates distant metastasis.

FIG 1 Microbiotas of control subjects. (A and B) Representative images from FISH analyses with the pan-bacterial
probe Eub338 (red) of crypt-associated microbiota (CAM) (A) and mucosa-associated microbiota (MAM) (B)
observed in normal colonic biopsy specimens. Panel B includes a representation of the CAM and MAM regions. (C)
Average relative abundances at the phylum level in murine CAM and in human CAM and MAM. (D and E)
Representative pictures from FISH analyses with the Acinetobacter-specific probe (red) of CAM (D) and MAM (E) in
normal colonic biopsy specimens. White arrows indicate the presence of bacteria. Nuclei are counterstained with
DAPI (blue). Scale bars: 20 �m (A) and 50 �m (B, D, and E).

Core Microbiota in Colon Cancer Patients ®

July/August 2019 Volume 10 Issue 4 e01315-19 mbio.asm.org 5

https://mbio.asm.org


junii, Delftia, and Stenotrophomonas maltophilia, OTUs assigned to Corynebacterium,
Kocuria palustris, Blautia, and Roseburia were shared between normal CAM and MAM.
The OTU assigned to Faecalibacterium prausnitzii was found only in the core of MAM.

Phylum- and order-level compositions of the microbiotas associated with CRC
colonic tissues. Representative crypt hematoxylin-eosin images of normal (Fig. S2A) or
cancerous (Fig. S2D) tissues are presented in the supplemental material. Aberrant
crypts are clearly visualized in the tumoral tissue (Fig. S2D). The presence of bacteria
inside the crypts of cancerous and noncancerous tissues was confirmed by FISH using
a pan-bacterial probe targeting 16S rRNA (Fig. S2B and E). This result indicates that
bacteria can be detected inside the crypts of nontumor and tumor tissues from CRC
patients. These findings are in line with the above-mentioned presence of bacteria in
normal biopsy specimen tissue (Fig. 1A), as reported in a recent publication analyzing
the crypts from a patient with a right-side colon cancer (39). Representative images of
LCM sections of crypts from homologous normal and tumor sites are shown in Fig. S2C
and F, respectively. The region immediately adjacent to the tissue was also microdis-
sected to extract the DNA of MAM, as was performed for the control biopsy specimens.

As reported by others (4, 40, 41), the human colonic microbial composition showed
high interindividual variability. For example, in the present study, Firmicutes repre-
sented between 0.4 and 74.6% (mean, 24.85%) and 0.4 and 88.3% (mean 27.31%) of
bacteria in crypt samples and mucosa-associated samples, respectively (Tables S1A and
B). The interindividual variability in right and left colon specimens from CAM and MAM
are shown in Fig. S3. The phylum Bacteroidetes accounted for between 0 and 52.1%
(mean, 16.16%) of bacteria in crypt samples and for between 0 and 47.5% (mean
25.04%) of bacteria in mucosa-associated samples. In addition, unweighted UniFrac
principal-component analysis (PCoA) analysis showed a cluster overlap of the microb-
iotas from tumoral and adjacent nontumoral tissues (Fig. S1B). This overlap was further
observed at the crypt level (Fig. S1C) and also at the mucosa-associated level (Fig. S1D),
indicating that there is no overall significant difference in microbiota compositions
between tumoral and healthy homologous colon samples, as already reported in other
studies (7, 24). However, despite the observed patient individual variability, differences
between paired tumor and normal samples were observed (Table S1B), indicating that,
in each individual, microbiota composition was modified in the colonic tumor environ-
ment compared to that of the normal adjacent tissue.

For example, Fusobacterium was more abundant in tumors than in paired nontumor
samples. At the order level, Fusobacteriales accounted for 0.1 to 4.5% of the organisms
in nontumoral samples, with an average of 1.06%, and for 0.1 to 86.6% in tumor
samples, with an average of 6.27%. For the patient with a Fusobacterium abundance of
86.6% in the tumor crypt sample, an abundance of 26.3% was found in the mucosa-
associated sample, whereas in the patient’s nontumor samples, the abundances were,
respectively, 0.3 and 1.1% in the crypt and in the mucosa-associated samples.

Species-level composition of the microbiota associated with CRC colonic tis-
sues. Among the Fusobacteriaceae family, Fusobacterium periodonticum and Leptotri-
chia buccalis were the most abundant species observed in cancerous samples and often
found together in the same samples. Fusobacterium nucleatum was found in the
mucosa-associated sample of two CRC patients and in association with F. periodonticum
and B. fragilis (Table S1A). A nonparametric Kruskal-Wallis test and a zero-inflated
Gaussian (ZIG) mixture model (42–44) identified several taxa with significantly different
relative abundances between tumor and adjacent nontumor samples, including Fuso-
bacterium, Bacteroides fragilis, and Gemella morbillorum (Table S3). The ZIG mixture
model was used in subsequent analyses. Parvimonas micra (P � 0.00822), F. periodon-
ticum (P � 0.01626), Bacteroides uniformis (P � 0.00547), and G. morbillorum
(P � 0.01599) were more abundant in tumor samples than in adjacent noncancerous
tissues. Coassociation of these bacteria was not necessarily observed in the same tumor
tissue. For example, for the three patients with the highest abundance of P. micra, F.
periodonticum and B. fragilis were also associated in patient 4, whereas B. fragilis was
present in patient 48 and F. periodonticum was present in patient 8 (Table S1A). Even
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if B. fragilis could be detected in both tumor and nontumor samples, the 38 OTUs
assigned to B. fragilis indicate a significant increase of its relative abundance in tumor
samples compared to in nontumor samples (P values are from 0.00191 to 0.04981).
Some OTUs assigned to B. fragilis were present in tumoral CAM and absent in tumoral
MAM and vice versa for other OTUs (Table S3B). S. gallolyticus is present only in low
numbers of samples (15 tumor and 5 nontumor samples) and at very low abundances
(from 0.001 to 0.11%). However, there is a significant increase in the number of OTUs
assigned to S. gallolyticus in tumor samples versus adjacent nontumor samples
(P � 0.01296). In contrast, Blautia wexlerae is less represented in cancer samples than in
noncancer samples (P � 0.04424). The relative abundances of selected species in
nontumoral and tumoral samples are represented in Fig. 2.

qPCR and FISH analyses. 16S rRNA gene sequencing results were validated by
quantitative PCR (qPCR) using primers specific for the 16S rRNA gene of Fusobacterium
genus, B. fragilis, and P. micra and by FISH using fluorescent probes specific for the 16S
rRNA of the Fusobacterium genus and B. fragilis. In addition, primers targeting a
conserved region on the 16S rRNA gene were also used for the PCR to quantify the
bacterial DNA present in each sample. Water served as the template control in order to
determine the threshold of detection, while dilution series of genomic DNA from E. coli,
Fusobacterium nucleatum subsp. animalis, B. fragilis, and P. micra, in water or in
extracted human tissue (spike-in controls), were used to test the specificities of the
primer pairs. The threshold cycle (Ct) values of the water control were 27.33 � 0.10 with
the 16S pan-bacterial primers, 35.25 � 0.48 with the Fusobacterium primers,
32.15 � 0.27 with the B. fragilis primers, and 36.51 � 1.32 with the P. micra primers. The
results shown in Fig. S4A and B confirm that the primers used were specific to their
corresponding genomic DNA and that the presence of eukaryotic DNA did not inhibit
amplification. P. micra DNA present in the microdissected samples was found in
insufficient quantities for PCR amplification, which has a lower sensitivity than 16 rRNA
gene sequencing. However, using the Fusobacterium primers, we were able to confirm
the 16S rRNA gene sequencing results. The abundance of Fusobacterium DNA was
higher in samples from crypt-associated regions and mucosa-associated regions from
tumor tissue than in the samples from noncancer tissue from the same patient (Fig. 3A).

FIG 2 Relative abundances of selected bacterial species in tumoral (T) and nontumoral (NT) samples. The percentages represent the sums of the
relative abundances found in CAM and MAM. Data are displayed as means � standard errors of the means (SEM) and were analyzed by the fitZIG
test. *, P � 0.05; **, P � 0.01.
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Using a fluorescent probe targeting the 16S rRNA of Fusobacterium, bacteria could be
observed in the tumor crypt (Fig. 3C) but not in homologous normal tissue (Fig. 3B). The
presence of Fusobacterium in tissue from another cancer patient was also visualized by
FISH using a combination of the Fusobacterium-specific probe and the probe targeting
a constant region of the bacterial 16S rRNA (Fig. 3D). To obtain a higher-resolution
taxonomic characterization of Fusobacterium, we amplified and sequenced the Fuso-
bacterium rpoB gene in crypt samples. A BLASTN analysis of the PCR product sequences
identified F. nucleatum subsp. polymorphum.

An example of PCR amplification of microdissected samples shows also that the
abundance of B. fragilis DNA is higher in sample AN from a tumor mucosa-associated
region than in the paired normal mucosa-associated region (sample AP), confirming the
sequencing results (Fig. 4A). The presence of B. fragilis inside colonic crypts could also
be validated by FISH using a fluorescent probe targeting the 16S rRNA of B. fragilis in
both nontumor (Fig. 4B) and tumor (Fig. 4C) crypts. The presence of the bft gene,
encoding the enterotoxin of B. fragilis, was not detected by PCR in the samples positive
for the presence of B. fragilis 16S rRNA genes.

Core bacteria in CRC patients. As the microbial communities of a tumor and paired
normal tissue from a given patient significantly differed from each other, core OTUs
were defined as present in more than 50% of individuals, as was done for control
samples. As shown in Fig. S5 and in Table S2B, 26 OTUs were shared by the four
categories of cancerous patients. OTUs assigned to Proteobacteria, such as Paracoccus,

FIG 3 Validation of the presence of Fusobacterium in colonic tissues. The results of qPCR amplification of microdissected DNA are shown. (A)
Amplification of microdissected samples using 16S rRNA genes or Fusobacterium primers. (B and C) Images are representative of FISH analyses
with a Fusobacterium-specific probe linked to Alexa 555 of the homologous normal tissue (B) or the paired tumoral colonic tissue (C) of the same
patient. (D) Representative images of FISH analyses with the pan-bacterial probe Eub338 (green) and the Fusobacterium-specific probe (red).
Nuclei are stained in blue with DAPI. Scale bars: 100 �m (B and D) and 20 �m (C).
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Acidovorax, Acinetobacter junii, Delftia, and S. maltophilia, belonged to this common
core, similarly to control samples. Two other OTUs assigned to A. junii were specifically
found in tumor CAM. One OTU (denovo 354529) of F. prausnitzii was found in the core
of control MAM samples and was shared between the four categories of cancer
samples, whereas another one (denovo 180406) was found in nontumoral CAM and
MAM. Only three OTUs were specific to tumoral CAM and MAM samples and were
assigned to Prevotella copri, Staphylococcus hominis, and Comamonas kerstersii.

Bacterial community in cancerous tissue and adjacent noncancerous normal
crypts from right and left colon specimens. Globally, at the global crypt level, our
findings show greater relative abundances of P. micra (OTU 121066, P � 0.00103) and
F. periodonticum (OTU 178918, P � 0.00622) when tumoral samples are compared to
the adjacent nontumoral samples (Table S3B). Similar findings were observed for G.
morbillorum (OTU 158176, P � 0.00823), Lachnoclostridium citroniae (OTU 172457,
P � 0.04695), and Peptostreptococcus stomatis (OTU 149267, P � 0.03663). To evaluate
if the observed differences exist in both the right and the left colon, we compared the
relative abundances of these OTUs between the two separate sites. As shown in Fig. 5,
the relative abundances of these taxa differ between the right and left colons even in
noncancerous crypts. For example, Bacteroidiales and Clostridiales were more abundant
in nontumoral crypt samples from right colons than in samples from the left colons,
whereas the opposite was observed for Bacillales. More precisely, OTU denovo 162624,
assigned to Eubacterium rectale (P � 0.04264), and OTU denovo 37653, assigned to
Ruminococcaceae (P � 0.01713), were more abundant in right noncancerous colon
specimens than in left noncancerous colon specimens, whereas Paracoccus (OTU
167461, P � 0.00927) was more abundant in left noncancerous colon than in right
noncancerous colon (Table S3B). The relative abundances of F. periodonticum, P. micra,
L. citroniae, and B. fragilis in the tumoral crypts from the right and left colon specimens
showed marked differences. While Fusobacterium, B. fragilis, and L. citroniae were more
abundant in right tumoral crypts than in left tumoral crypts, P. micra was more
abundant in left tumoral crypts (Fig. 6 and Table S3B). Moreover, B. uniformis (OTU
164580, P � 0.02282), B. wexlerae (OTU 59724, P � 0.00362), and E. rectale (OTU 162624,
P � 0.00208) were more abundant in crypts in cancerous right colons than from

FIG 4 Validation of the presence of Bacteroides fragilis in colonic tissues. qPCR amplification of microdissected DNA is shown. (A) Amplification of
microdissected samples using 16S rRNA genes or B. fragilis primers. AP and AN represent the LCM identification of samples from the nontumoral (LN) and
tumoral (LT) MAM regions. (B and C) Images are representative of FISH analyses with a B. fragilis-specific probe linked to Alexa 555 of a noncancerous tissue
(B) or the paired tumoral colonic tissue (C) of the same patient. Nuclei are counterstained in blue with DAPI. Scale bars: 20 �m.

Core Microbiota in Colon Cancer Patients ®

July/August 2019 Volume 10 Issue 4 e01315-19 mbio.asm.org 9

https://mbio.asm.org


FIG 5 Average relative abundances at the order level in CAM. Percentages are from the normal right colon (Right NT) or normal left colon (Left NT) and from
the tumoral right colon (Right T) and tumoral left colon (Left T).
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cancerous left colons. F. periodonticum is more abundant in crypts from cancerous
samples from right colons than in nontumoral adjacent samples (P � 0.010007), as with
P. micra (P � 0.001939) and G. morbillorum (P � 0.022105). However, this was not the
case for G. morbillorum in left colonic samples (Fig. 6 and Table S3B). Lastly, OTU 64963,
assigned to Acinetobacter lwoffii, was more abundant in crypts from nontumoral
samples from the right colons than from the samples’ paired tumoral counterparts.

Bacterial communities in cancerous mucosa-associated regions and adjacent
noncancerous mucosa-associated regions from right and left colons. To assess if
the observed differences in the crypt also occurred in the mucosa-associated samples,
we compared the average relative abundances of mucosa-associated bacteria in right
and left colonic samples, as presented in Fig. 7. A slight increase in the relative
abundance of Fusobacteria (F. periodonticum and Leptotrichia) was observed in tumor
samples compared to abundances in the paired, noncancerous samples; however,
the differences were not significant (P values, 0.366263 and 0.154968, respectively).
On the other hand, Bacteroides thetaiotaomicron (OTU 185118) and B. uniformis
were significantly more abundant in mucosa-associated noncancerous samples than
in mucosa-associated cancerous samples (P values, 0.016581 and 0.013195, respec-
tively) (Fig. 8). Furthermore, Streptococcus vestibularis (P � 0.03064), Streptococcus oralis
(P � 0.023305), Moraxella osloensis (P � 0.016988), and Kocuria palustris (P � 0.010586)
were more abundant in noncancerous samples from the right colon than from the left
colon. For example, K. palustris accounted for 0.1 to 13.2% of mucosa-associated
bacteria in the right colon (mean, 1.72%; 12 positive samples out of 21) and for 0.1 to
0.7% of mucosa-associated bacteria in left colon samples (mean, 0.12%; 8 positive
samples out of 20). At the species level, in the tumoral samples, no OTU had signifi-
cantly different relative abundances in MAM from right and left colon samples. As for
the crypt samples, there are statistically significant differences in the relative abun-
dances of F. periodonticum, P. micra, and B. fragilis in the mucosa-associated microb-
iotas from right and left cancerous colonic samples, whereas this is not the case for L.
citroniae. Moreover, in contrast to the results observed for the crypt samples, there are
no statistically significant differences in P. micra and G. morbillorum abundances
between mucosa samples from cancerous samples from the right colon and mucosa
samples from nontumoral samples (Fig. 8 and Table S3B).

FIG 6 Relative abundances of selected bacterial species in crypt samples from the right colon and left colon from nontumoral and tumoral samples. Data are
means � SEM and were analyzed by the fitZIG test. *, P � 0.05; **, P � 0.01; ns, differences were not significant.
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FIG 7 Average relative abundances at the order level in MAM. Percentages are from the normal right colon (Right NT) or normal left colon (Left NT) and from
the tumoral right colon (Right T) and tumoral left colon (Left T).
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DISCUSSION

Most studies addressing the relationship between the microbiota and CRC have
been based on an analysis of the bacterial compositions of either fecal samples or, to
a lesser extent, tumoral tissues and their paired adjacent normal tissues. In the present
study, we performed an in-depth analysis of the bacterial compositions in colonic
crypts and mucosa-associated compartments in both CRC patients and individuals with
normal colonoscopy results. First, we confirmed that colonic crypts in healthy volun-
teers are colonized by bacteria. While this result supports earlier published findings (45),
another group reported that no bacteria were found in colonic crypts of healthy
individuals (46). The combination of LCM and 16S rRNA gene sequencing applied in this
study allowed for the identification of bacterial species colonizing the crypts as well as
those associated with the mucosa. Interestingly, the three genera (Acinetobacter, Delftia,
and Stenotrophomonas) which we previously described as the crypt-specific core
microbiota in murine proximal colon crypts (34) were also retrieved in human normal
colonic crypts, and OTUs associated with these genera belong to the common core
microbiota. These bacteria were also found in crypts and mucosa-associated regions
from tumor sites and their paired adjacent normal tissue, and we did not observe a
significant decrease in the abundance of Acinetobacter in tumoral samples compared to
that in adjacent normal tissue, unlike results reported by other studies (29, 47). Instead,
we identified additional Gram-negative, aerobic, nonfermentative, environmental Pro-
teobacteria (such as Ralstonia and Acidovorax) that inhabit human colonic crypts. It is
interesting to note that Proteobacteria, such as Comamonadaceae, Moraxellaceae, Pseu-
domonadaceae, and Xanthomonadaceae, represent 31.9% and 35.2% of CAM and MAM,
respectively, whereas the abundances of these phyla represent only 1% of the fecal
microbiota (48). Taken together, the present study was able to extend the concept of
a human crypt-specific core microbiota (CSCM), which has so far been established only
in rodents. Like its murine counterpart, human CSCM is marked by the strong repre-
sentation of strictly aerobic and facultative anaerobic taxa that are likely to be part of
a coevolutionary symbiosis driven by the necessity of maintaining a stable ecosystem
in the vicinity of the crypt, a critical epithelial regenerative apparatus (49).

In addition, this study shows that this CSCM is broadly conserved in tumoral and

FIG 8 Relative abundances of selected bacterial species in mucosa samples from the right colon and left colon from nontumoral and tumoral samples. Data
are means � SEM and were analyzed by the fitZIG test. *, P � 0.05; **, P � 0.01; ns, differences were not significant.
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normal tissues adjacent to the tumor as wells as in control individuals but is marked by
the added presence of pathobionts, i.e., commensal bacteria with pathogenic potential
(50), which are highly abundant at the expense of the bona fide CSCM in both tumoral
crypts and the associated epithelium. We also found, despite the low number of
patients and low abundances, a statistically significantly higher proportion of S. gallo-
lyticus (formerly Streptococcus bovis) in tumoral samples than in the adjacent nontu-
moral samples, in accordance with the results of previous publications (51, 52). We also
found an increase in the abundance of B. fragilis in tumoral crypts of right colons, even
though this bacterium was also present in normal paired samples. B. fragilis involve-
ment in the oncogenic process leading to CRC (53) was recently confirmed (21, 54). B.
fragilis enterotoxin was found to induce reactive oxygen species (ROS)-dependent DNA
damage, degradation of the tumor suppressor E-cadherin, and increased expression of
Wnt, leading to cell proliferation. Similarly, B. fragilis and S. gallolyticus were described
as “alpha-bugs,” which by themselves or via microbiota modification can drive the
oncogenic process (55). While E. coli strains expressing the polyketide synthase (pks)
island, encoding DNA-damaging colibactin (56–58), have also been associated with
CRC, this was not confirmed in the present study, as the presence of E. coli was found
in only a very low number of patients, without significant differences between tumoral
and nontumoral samples. Similarly, we did not find Providencia or Shigella, two Proteo-
bacteria genera previously shown to be associated with the CRC tumor environment (4,
23). In agreement with our results, other studies did not find an increase in E. coli or
Shigella in cancer groups versus normal patients (3) or a decrease in the abundance of
Escherichia-Shigella (29) or Shigella (15) in cancerous versus noncancerous tissues. As a
matter of fact, fecal microbiotas of mucosa-associated bacteria significantly differ;
hence, fecal samples cannot be considered an adequate reflection of the microbiota
attached to mucosal surfaces (24, 40, 41, 59). This needs to be considered before
establishing bacterial biomarkers of early stages of CRC.

Interestingly, right-side and left-side tumors appear to differ in their dominant
pathobionts, with Fusobacterium isolates prevailing in the former and P. micra in the
latter, both belonging to a decompartmentalized oral microbiota that appears as a
hallmark of cancer and inflammatory conditions of the gut (14, 21, 60–64). The
association of oral bacteria with tumors is not restricted to colorectal cancer; indeed P.
micra and P. stomatis were found to be enriched in patients with gastric cancer (65).
Moreover, some oral pathogens have been associated with a higher risk of pancreatic
cancer (66). A “driver-passenger” model was proposed to explain the bacterial interac-
tions occurring in CRC (67). In this model, driver bacteria are involved in the initiation
phase of CRC and are then replaced by passenger bacteria that promote tumorigenesis.
In other terms, a first change in the gut microbiota allows for oral bacteria to colonize
the gut mucosa, and by the disruption of the epithelial barrier, these bacteria promote
oncogenesis (60). Many studies mention an association between F. nucleatum and CRC
(56). Interestingly, our study identified with the HITdb F. periodonticum as associated
with CRC. However, by further characterization using rpoB sequencing, we confirmed
that F. nucleatum subsp. polymorphum is actually the species associated with CRC. This
result is in line with those of previous phylogenetic studies based on 16S rRNA gene
sequence analysis reporting either that F. periodonticum is indistinguishable from F.
nucleatum (68) or that these two species are very close (69, 70). Nonetheless, F.
periodonticum has also been previously identified in colon tumors (21, 71). F. nucleatum
was proposed as a driver bacterium through its ability to adhere to and invade
epithelial cells through its FadA adhesin, followed by an increase in the production of
ROS, transcription factors, Wnt, and inflammatory proteins that stimulate the growth of
CRC cells (72). Moreover, it was shown that microsatellite instability was present in the
right colon but that chromosomal instability was more frequent in the left colon,
possibly due to differences in microbiota composition (56, 73).

One limitation of the present and similar studies analyzing low-biomass samples,
such as colonic crypt microdissected structures, is the risk of potential environmental
contaminations leading to the misinterpretation of a result if one does not apply
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alternative techniques to 16S rRNA analysis, such as FISH or cultivation, both being
impossible to apply to the entire array of 16S rRNA-identified taxa in a complex
structure where bacteria are possibly weakly metabolically active. For instance, recent
studies on the microbial compositions of placenta and amniotic fluid, which are
expected to be poorly, if at all, colonized, indicate that 16S rRNA gene sequencing does
not reveal differences in bacterial composition between samples and technical controls
(74, 75). As a matter of fact, the main sources of contamination stem from reagents,
such as extraction buffers and PCR reagents, or even from cross-contamination be-
tween samples. One approach may be to remove the sequences present in negative-
control samples. However, low levels of real sequences may be present in the negative
controls due to cross-contamination, and the removal of such sequences may result in
loss of relevant biological signals (76, 77). Alternatively, one could remove the potential
contaminants following 16S rRNA gene sequencing by deleting the sequences previ-
ously identified as contaminants in the literature. This might, however, arbitrarily
eliminate relevant signals because the sequences were identified as contaminants on
the basis of different extraction methods and PCR reagents. Some sequences assigned
to phylotypes described in the literature as environmental contaminants, such as
Agrobacterium tumefaciens, Pseudomonas monteilii, and Chryseobacterium, were de-
tected in our study but not necessarily together in the same samples (Table S1B).
Another known environmental contaminant is Acinetobacter. However, using a probe
specifically targeting the 16Sr RNA of this genus, we could visualize the presence of
Acinetobacter in our colonic human samples, thereby providing the necessary alterna-
tive method required to confirm the actual presence of the bacterium. As a reminder,
in a previous study bearing on murine colonic crypts, we had been able to confirm the
presence of Acinetobacter not only by FISH but also by culture (78). This demonstrates
that Acinetobacter is likely to be a universal commensal of colonic crypts following
harnessing from environmental sources. In summary, in these studies of low-biomass
samples, one is faced with the difficult exercise of extracting relevant signals from
among contaminating noise that cannot be rationally eliminated. Confirmation by
alternative approaches, such as FISH and culture, brings indisputable validation. The
issue is more difficult for taxa that do not benefit from these alternative techniques.
One can consider that environmental taxa with high signal levels that share common
metabolic properties with Acinetobacter (i.e., strictly aerobic, nonfermentative) may also
be considered relevant. One therefore needs to perform a critical analysis on the basis
of the above-described criteria but cannot at once delete all signals without reflection.

We are also conscious that a second limitation of the study was the low number of
biopsy specimens from healthy volunteers; however, this does not alter the conclusions
based on the comparison between tumoral and adjacent nontumoral samples from
cancerous patients. In conclusion, based on this decompartmentalization and the
differential microbial patterns present in the distinctive colon segments, the role of
these pathobionts, such as Fusobacterium and Bacteroides fragilis, awaits further eval-
uation, as they may reveal key elements on the mechanisms involved in colon onco-
genesis.

MATERIALS AND METHODS
Patient characteristics. A total of 58 patients (Table 1) underwent surgical resection of primary

colonic adenocarcinoma at the Hôpital Henri Mondor, Créteil, France. Following resection, colonic
specimens were examined by an oncological pathologist, and biopsy specimens were taken from the
tumor site and from the adjacent nonmalignant tissue (at a distance of about 15 to 20 cm). In addition,
nine colonic biopsy specimens from routine colonoscopy procedures (patients S1 to S9) were included
in the analysis and served as normal tissue controls (Table 1). The right and left colon surgical biopsy
specimens were obtained without prior cleansing, while for the rectal samples and those collected
during colonoscopies, patients were prepped using two liters of polyethylene glycol the day prior to the
procedure. This cleansing treatment eliminates the bulk of luminal microbes, and as a consequence, the
entry of bacteria into the crypts is very inefficient. A small piece of each tissue was immediately
snap-frozen in nitrogen and subsequently embedded into optimal cutting temperature (OCT) compound
4583 (Sakura), subjected to dry ice-chilled isopentane, and stored at �80°C.

LCM and sample collection for intestinal microbiota analysis. Frozen blocks were cut at a
thickness of 8 �m using a CM 3050S cryostat (Leica), and sections were collected on Arcturus PEN
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membrane glass slides (Biosystems) and stored at �20°C until use. Frozen sections were thawed and
briefly stained with histogen (MDS Analytical Technologies) containing RNaseOUT recombinant RNase
inhibitor, washed in RNase-free water supplemented with ProtectRNA (Sigma-Aldrich), and dehydrated
in ethanol (once in 70% [vol/vol] ethanol for 30 s, twice in 95% [vol/vol] ethanol for 1 min, and twice in
100% [vol/vol] ethanol for 2 min) and in xylene (two incubation rounds of 5 min) before being air-dried.
Slides were then transferred into a Veritas LCM system (Arcturus XT microdissection system; Thermo-
Fisher Scientific), microdissected, and captured on Capture HS LCM caps (Arcturus; ThermoFisher
Scientific). For each sample, crypts and mucosa-associated regions were microdissected. DNA was
extracted using the PicoPure DNA extraction kit (Arcturus; ThermoFisher Scientific) after incubation for
30 min at room temperature with lysozyme (10 mg/ml in phosphate-buffered saline [PBS]; Sigma-
Aldrich). Negative controls included extractions without addition of any sample to evaluate potential
contamination from kit reagents. To minimize further risk of contamination from small materials, plastic
tubes and plates were pretreated with UV cross-linker for 3 h before use.

16S rRNA gene sequencing and analysis. 16S rRNA gene amplification and library construction
were performed according to Illumina recommendations (79). Briefly, a first PCR round was performed
using 4 �l of DNA extracted from microdissected tissues using primers targeting the 16S rRNA gene V3
and V4 regions, forward primer 341F (5=-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCW
GCAG-3=), and reverse primer 805R (5=-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTA
TCTAATCC-3=), where the Illumina adapters are indicated in italics. After 25 cycles, PCR products were
purified using AMPure XP beads (Beckman Coulter Genomics) according to the manufacturer’s recom-
mendations. A second PCR was performed to attach dual indices using the Nextera XT index kit (Illumina).
After eight cycles, PCR products were purified using AMPure XP beads (Beckman Coulter Genomics). PCRs
were also performed using PicoPure extraction buffer alone (DNA extraction negative controls) or water
as the template and used as controls for 16S rRNA gene sequencing analysis. The size of the libraries
(�600 bp) and their quantification were determined by Fragment Analyzer (Advanced Analytical) using
the high-sensitivity NGS fragment analysis kit. Purified amplicons were pooled in equimolar concentra-
tions to obtain a 6 pM library containing 10% of the PhiX control. Sequencing was performed on an
Illumina MiSeq instrument using the paired-end 300-bp protocol at the Institut Pasteur.

We sequenced a total of 269 samples, including 228 laser-microdissected samples, 22 PicoPure buffer
controls (LCM buffer), and 19 water samples used as the template controls. A total of 41,939,989 read
pairs were generated (mean, 155,911 read pairs per sample, with a median of 87,190). The reads were first
demultiplexed according to their dual barcode by sample, and each pair was assembled using FLASH
v1.2.11 (80). The FLASH error correction feature was used to remove ambiguous base pairs in the
overlapping region of each read pairs (the average size of the overlapping region was 120 bp). Primer
sequences were then removed (cutadapt 2.6) (81), and any sequences containing ambiguous bases (N)
or fewer than 370 bases (PRINSEQ-lite 0.20.3) were removed (82). Furthermore, only fragments with a
mean Phred quality score above 28 were kept. After removal of all buffer control and water samples, a
total of 11,005,482 sequences were retained, with an average of 48,269 sequences per sample (median
20,127). Sequences analyses were performed using QIIME (v1.9.1) (83) as follows: (i) pick_otu.py was used
to cluster sequences using the UCLUST algorithm (84) into OTUs at 97% similarity; (ii) pick_rep_set.py was
used to select a representatives set of OTUs, including a sequence representative of each OTU,
corresponding to the centroid of the associated cluster; and (iii) assigne_taxonomy.py was used to
perform taxonomy assignment for the representative set, using the UCLUST assignment method (default
parameters) and the Greengenes 13.8 16S rRNA gene sequence database (35) or the human intestinal
16S rRNA gene taxonomic database, HITdb (36). To build the phylogenic tree of representative sets, the
multiple alignment was generated using PyNAST (85) based on default similarity of 75%. The phylogenic
tree was constructed using make_phylogeny.py with the tree_method_default parameter using the
FastTree algorithm (86). The resulting phylogenic tree was further processed to calculate core diversity
metrics, including �-diversity (based on weighted/unweighted UniFrac metrics [87]) and �-diversity (for
different depths of rarefaction) measures. Moreover, we carried out taxonomic group diversity analysis
and differential taxonomy abundance (scripts of QIIME). The intergroup high similarity and intragroup
low similarity of microbiotas are assessed by determining �-diversity using PCoA (generated by QIIME
using unweighted UniFrac metrics) (83, 87). To test for significant differences in taxonomic abundances,
we used the nonparametric Kruskal-Wallis test with the false-discovery rate correction implemented in
QIIME and the zero-inflated Gaussian (ZIG) mixture model (42). Differences were considered significant
at a P of �0.05. The number of sequences obtained with the control samples was not sufficient to obtain
significant results.

The core OTU was defined as the set of OTUs that were observed in a given fraction of samples.
Before computing the core OTU, all numbers of OTU less than 5 were considered 0. A fraction of 50% was
used, and the core OTU was calculated using compute_core_microbiom.py.

Quantitative RT-PCR. Diluted DNAs extracted from the LCM crypt or luminal part of the colon were
used as a template for quantitative reverse transcription (RT)-PCR using specific primers (400 nM) for
phyla and/or bacterial families in a 15-�l final volume containing Sybr green master mix (Roche) using
the QuantStudio 7 flex real-time PCR system (Applied Biosystems). Cycling conditions were as follows: an
initial denaturation step at 95°C for 10 min, with 40 cycles of denaturation at 95°C for 10 s, and an
annealing/elongation at 60°C for 60 s. The list of all primers used in this study is provided in Table S4 in
the supplemental material. The specificity of the primers was tested using dilution series of genomic DNA
from Escherichia coli prepared by using the Wizard kit from Promega and using genomic DNAs of
Fusobacterium, Bacteroides fragilis, and Parvimonas micra obtained from the DSMZ. Dilutions of bacterial
genomic DNA were performed in water or with an extract of human colonic tissue.
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PCR amplification of the Fusobacterium rpoB gene. A total of 2 �l of the DNA extracted from LCM
crypts was used as the template in a final volume of 50 �l with 1 U of Taq DNA polymerase (MP
Biomedicals). The PCR conditions for amplifying the rpoB gene were as follows: denaturation at 94°C for
1 min, primer annealing at 50°C for 1 min, and extension at 72°C for 1 min. The final cycle included an
additional extension time of 10 min at 72°C. A 2-�l aliquot of the reaction mixture was analyzed by 1.5%
agarose gel electrophoresis in a Tris-acetate buffer at 100 V for 45 min. The amplification products were
stained with ethidium bromide and visualized by UV transillumination. The PCR products were purified
using the QIAquick PCR purification kit (Qiagen). The nucleotide sequences were determined by Sanger
sequencing (Eurofins Genomics).

FISH. Frozen sections were rehydrated in PBS, incubated with 4% paraformaldehyde, washed twice
in PBS, covered with a solution of lysozyme at 10 mg/ml in PBS for 10 min at 37°C, and washed twice with
PBS. After 30 min of incubation in hybridization buffer (20 mM Tris-HCl [pH 8], 0.9 M NaCl, 0.01% SDS,
30% formamide), slides were incubated overnight in hybridization buffer containing a 50 nM or 100 nM
concentration of the fluorescent probes at 55°C (Table S4). After being washed twice in 64 mM NaCl,
24 mM Tris-HCl, 5 mM EDTA 0.1% SDS, slides were covered for 30 s with 4=,6-diamidino-2-phenylindole
(DAPI) (0.125 �g/ml in PBS), washed in PBS, and mounted in ProLong gold antifade reagent (Invitrogen).
The fluorescent 16S rRNA-targeted oligonucleotide probes used in this study are listed in Table S4 in the
supplemental material. The probes were covalently linked to Alexa 555 or Alexa 488 at their 5= ends. The
labeled nonEub338 probe was used as control, and no staining was observed. Slides were examined
under an Olympus IX81 microscope equipped with a charge-coupled device (CCD) camera, and images
were processed using the MetaVue software program or under a Widefield ApoTome inverted micro-
scope (Zeiss) using the AxoVision software program. FISH images proposed for this paper did not allow
us to spot bacteria inside all the colonic crypts. Indeed, FISH images were acquired with a single-focus
plan, and when the focus plan changed, bacteria disappeared in previously stained crypts and appeared
in other crypts due to uneven localization of crypts in the blocks and possibly different localizations of
the relevant bacteria in the height of the crypts (Fig. S6). Moreover, when crypts that contain bacteria are
visualized and counted after FISH by varying the focus plan, bacteria are present in 70% of colonic crypts.

Data deposition. The 16S rRNA gene sequence data have been deposited into the NCBI Sequence
Read Archive database under BioProject accession number PRJNA507548.
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