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Multi-host infectious agents challenge our abilities to understand, predict and
manage disease dynamics. Within this, many infectious agents are also able
to use, simultaneously or sequentially, multiple modes of transmission.
Furthermore, the relative importance of different host species and modes can
itself be dynamic, with potential for switches and shifts in host range and/
or transmission mode in response to changing selective pressures, such as
those imposed by disease control interventions. The epidemiology of such
multi-host, multi-mode infectious agents thereby can involve a multi-faceted
community of definitive and intermediate/secondary hosts or vectors, often
together with infectious stages in the environment, all of which may represent
potential targets, as well as specific challenges, particularly where disease elim-
ination is proposed. Here, we explore, focusing on examples from both human
and animal pathogen systems, why and how we should aim to disentangle and
quantify the relative importance of multi-host multi-mode infectious agent
transmission dynamics under contrasting conditions, and ultimately, how
this can be used to help achieve efficient and effective disease control.

This article is part of the themed issue ‘Opening the black box: re-examining
the ecology and evolution of parasite transmission’.

1. Introduction

Understanding the complex population biology and transmission ecology of
multi-host parasites and pathogens has been declared as one of the major chal-
lenges of biomedical sciences for the twenty-first century [1], and elucidating
and distinguishing between contrasting drivers of disease transmission mainten-
ance and outbreaks is critical in determining policy, targeting interventions and
predicting outcomes. Transmission can be defined, at its simplest, as the means
by which an infectious agent is passed from an infected host to a susceptible
host [2]. Transmission dynamics may involve multiple levels and varying degrees
of complexity (figures 1 and 3 and tables 1 and 2), from single-host species in
pathogens with direct, or simple, life cycles, such as the human-specific measles
virus, to contrasting host stages and species in indirectly transmitted agents with
complex life cycles, such as the multiple mammalian definitive hosts (human,
domestic and wild animals) and single molluscan intermediate hosts of Schisto-
soma japonicum [9-11]. Within this, many infectious agents are able to use,
simultaneously or sequentially, multiple modes of transmission, including but
not exclusive to vertical, direct contact, sexual, aerosol, vector-borne and/or
food-borne (table 1; figures 1 and 2). The relative importance of different hosts
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Figure 1. Classification of pathogens by life cycle complexity, number of hosts and number of transmission modes. (Online version in colour.)
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Figure 2. Multiplicity of pathogen transmission pathways and control opportunities. Examples include, infected infectious hosts can be targeted by: test and slaugh-
ter of livestock and domestic animals, e.g. FMDV, brucellosis; prophylactic drug treatment to reduce infectious stages transmission to environment, e.g. human MDA
for Schistsosoma spp., or to offspring, e.g. targeted use of anti-retroviral drugs to reduce the likelihood of vertical transmission of HIV; human use of condoms to
prevent sexually transmitted infections, e.g. syphilis, HIV. Indirect environmental and vector-borne transmission can be targeted by: improved health education and
sanitation programmes to minimize environmental transmission, e.g. cholera, Guinea worm; improved burial practices to reduce the risk of transmission from people
who have died due to, e.g. Ebola; vector and intermediate host control, e.g. malaria, schistosomiasis, dengue. Uninfected hosts can be targeted by: vaccination of
uninfected humans to prevent human-to-human direct transmission, e.g. measles, or of livestock or domestic animals to prevent human transmission, e.g. domestic
dogs to reduce human cases of rabies due to dog bites, or sheep and cattle to prevent brucellosis transmission to humans; health education.

and modes can itself be dynamic, with potential for switches
and/or shifts in host range or transmission mode (table 1) of
an infectious agent to occur in response to dynamic selective
pressures, such as anthropogenic change and disease control
interventions [12,13].

The goals of many disease control programmes, including
those targeting pathogens with multiple hosts and/or trans-
mission modes, are increasingly shifting towards elimination
or even, in certain cases, eradication [14,15] (table 1). Examin-
ing how pathogens respond to such strong anthropogenic
changes as those imposed by these interventions offers

unique opportunities for ‘quasi-experimental studies’ in
adaptive management frameworks and can play a crucial
role in enriching our mechanistic understanding of trans-
mission dynamics under contrasting selective pressures [16].
Disentangling the transmission dynamics of the infecting
agent/s is particularly important, not only to identify key
hosts and modes against which interventions could or
should be targeted, but also to anticipate potential unin-
tended consequences (positive and negative) that may
occur in response to the selective pressures that elimination
efforts exert on these systems.

L6009L0T :TLE g 205 Y "suvi] fiyd  Bio'buiysijgndiraposiedor qiss H



(a) B (b)
S 1 E:> N
By "‘ o
B, L 4 Bs I'\ v
S, E> I E:> N E

% S
By
force of infection:

A =B+ B 1)+ BE (1)

force of infection:

A0 =B )+ B 1L (0

A1) = Boply (1) + By, 1, (1) — \—Y—'
direct indirect
k—Y—' \—Y—J transmission transmission
within- between- modes mode
species species

transmission  transmission

Figure 3. Schematics of simplified models for systems with multiple host
species (a) and multiple transmission modes (b). Model compartments and
parameters are defined in table 2. Block arrows represent the flow of indi-
viduals between compartments; dashed and dotted arrows represent
transmission within and between species, respectively; line arrows show
release and decay of indirectly transmitted infective stages. The model in
(a) depicts a system with two host species, with the force of infection
Ai{t) in each host species i at time t defined as the sum of the forces of
infection that can be attributed to transmission from each infected host
species j. The model in (b) shows a single-host system with three modes
of transmission, two of which are direct and one of which is indirect via
a ‘pool’ of infective stages £, which could represent infective stages in the
environment, a vector or an intermediate host. In this multi-mode system,
the total force of infection is defined as the sum of the forces of infection
that can be attributed to each transmission mode, .

Here, we explore, focusing on examples from both human
and animal pathogen systems, how the complexities of multi-
host multi-mode infectious agent transmission dynamics may
challenge our abilities to understand and predict disease
dynamics, why and how we should aim to disentangle and
quantify their relative importance under contrasting con-
ditions, and ultimately, how this can be used to help
achieve efficient and effective disease control.

2. Multiple hosts, pathogens and modes of
transmission

(a) Multiple host species and stages

Most diseases globally involve multiple host species [17,18],
with an estimated 60-75% of newly emerging diseases in
humans being multi-host zoonoses, i.e. infectious diseases
that are naturally transmitted between vertebrate animals
and humans [18,19]. Many multi-host infectious agents
have the additional feature of a complex, indirect life cycle,
where different life stages of a pathogen are found in often
highly unrelated phylogenetically, definitive and intermedi-
ate (and/or secondary or vector) host species (table 1). For
example, many trematodes have both obligatory mammalian
and avian definitive host stages, as well as a molluscan inter-
mediate host stage. The epidemiology of such multi-host
infectious agents thereby involves multi-faceted communities
of definitive host species and individuals, together with
vector or intermediate species and individuals, all of which
may represent potential targets, as well as specific challenges,

in the context of disease control, particularly where elimination n

is proposed [8,12]. However, the majority of epidemiological
theory to date has focused on a single-pathogen single-host
framework [20]. Even for zoonoses, if the disease is considered
to be of no economic importance or is asymptomatic in
animals, humans historically have generally been the only
species considered when designing control programmes. In
multi-host systems, a failure to understand or at least consider
the potential importance of other animal hosts when planning
interventions may mean control efforts are ineffective or at
best inefficient.

In diseases with only one host species, the force of infec-
tion, defined as the instantaneous hazard or risk experienced
by a susceptible individual, is likely to be predominantly
dictated by a combination of the number or proportion
of infectious individuals in the population (depending on
whether transmission is density or frequency-dependent),
contact rate between individuals, probability of transmis-
sion given contact and the duration of infectiousness. This
becomes more complicated when multiple hosts are involved
in transmission, as each host species or stage is unlikely to
contribute equally to the force of infection due to heterogene-
ities and trade-offs in these parameters across species and
stages [6,8,21,22]. Even infectious agents with a very broad
host range are often transmitted predominantly by just a
subset of potential hosts, or key host species (table 1), and
this may vary in different contexts or ecosystems. Rabies
virus, for instance, is a pathogen with the potential to infect
all mammals, but its long-term persistence in an ecosystem
typically depends on a maintenance key host, usually a carni-
vore or bat species [23]. For example, in the Serengeti
ecosystem, rabies transmission maintenance appears to be
dependent on domestic dogs [24].

Behavioural patterns may play a role in determining the
importance of potential hosts within a system, and hence,
key hosts may not necessarily be highly abundant but have a
behavioural repertoire that places them in high contact with
other suitable host species, for example, the roosting
behaviour and habitat selection of bats and their link to
Nipah virus epidemiology [25]. Certain pathogen species
also have behavioural patterns to maximize their opportunities
for transmission to key host species. The larval propagule
stage of S. japonicum in China, for example, shows different
behavioural (and genetic) profiles in relation to the key main-
tenance host species present: in hilly regions where nocturnal
rodents are the species which predominantly maintain trans-
mission, cercariae are shed from Oncomelanaia snails in the
late afternoons and evening, whereas in lowland habitats
where bovines drive transmission, early morning shedding
occurs, coinciding with the timing of peak bovine water contact
[26,27]. Even more intriguing are cases where certain complex
life cycle pathogens manipulate their hosts’ behaviour to facili-
tate transmission from one host species and stage to another,
and there are numerous cases within parasitized invertebrates
[28]. Examples of specific manipulation of vertebrate host be-
haviour are rarer, although increased aggression is proposed
to enhance transmission, via blood and/or saliva through
biting, of viruses such as rabies, Hantaan and Seoul [29].
Toxoplasma gondii appears to enhance the likelihood of rodent
intermediate hosts being preyed upon by their feline definitive
hosts through subtle manipulation of a whole suite of predator-
risk behaviours [30—40]. Moreover, T. gondii appears to subtly
alter the rats’ cognitive perception of predation risk, turning
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their innate aversion to predator odour into a ‘suicidal” ‘fatal
feline attraction” and this appears specific towards their
feline definitive host [40—42]. There do, however, appear to
be differences between domestic and wild species of felines,
potentially in relation to their capacities as efficient definitive
hosts [43].

(b) Multiple modes, routes and pathways of
transmission

The terms transmission ‘mode’, ‘route’” and ‘pathways’ are
often used interchangeably and the terminology can be con-
fusing (discussed in [20]) as well as varying between public
health and evolutionary biology literature. In terms of disen-
tangling pathogen transmission dynamics and identifying
where and when to target control programme activities, the
level of resolution is likely to be important.

Modes of pathogen transmission between infected individ-
uals and susceptible hosts may be ‘direct’, via vertical
(including cytoplasmic, transplacental, during vaginal birth
or breast feeding), direct physical contact (body surface to
body surface), sexual or inoculation /blood-borne transmission,
or ‘indirect’, via aerosol/airborne, vector/intermediate-
host-borne, fomites/vehicle-borne, water and food-borne path-
ways (figures 1 and 2). Within the evolutionary literature on
disease, a major distinction between transmission modes, par-
ticularly in terms of the evolution of virulence [20,44], has
been between ‘vertical’ (as above) and ‘horizontal’, which
encompasses both direct and indirect modes. The broader
term ‘transmission pathway’ is also often used, particularly in
the context of ‘risk analyses’ in relation to, among other
issues, food-borne diseases/food safety [4]. The transmission
pathway in this context is the sequence of steps needed for
the undesirable outcome (i.e. exposure/infection of the host)
to occur. Transmission pathway thereby encompasses both
the mode by which the pathogen leaves one host and enters
the next, for example, faecal-oral, and the specific route
it takes, for example, via a fomite or via water contamination.
Toxoplasma gondii, for instance, may be transmitted to a suscep-
tible host through the indirect food-borne mode, but in terms of
managing risk or implementing control strategies, it is impor-
tant to differentiate between the different possible food-borne
routes through which the host may have been infected. The
new host will have eaten infected meat, but the meat could
have been either from an infected animal (i.e. with T. gondii
bradyzoites) or the animal was not infected, but there was
contamination of the food product at some stage (e.g. with
T. gondii oocysts). Thus, in this example, the transmission
pathway encompasses different routes but the same mode of
transmission. Conceptualizing exposure in this way is con-
venient as it allows an overall evaluation of risk of exposure
by combining the probabilities (P) of the series of events
occurring, for example: P (animal is infected) x P (infected
animal is not detected and removed from the food chain) x P
(viable pathogen is present in the meat of infected animal) x
P (pathogen not inactivated by processing) x P (food with
viable pathogen consumed by a susceptible person). By
decomposing transmission into multiple steps, it may be poss-
ible to intervene with control measures and evaluate effects at
different levels.

Disentangling transmission dynamics becomes even more
complex, however, as many infectious agents have the poten-
tial to be transmitted to susceptible individuals via more than

one mode of transmission and pathogens may use all poss-
ible transmission modes simultaneously or even switch
according to conditions [20]. For example, Rift Valley fever
virus (RVFV) is usually transmitted among livestock,
specifically cattle, sheep and goats, via mosquitoes bites,
but can also be transmitted vertically between animals,
even in the absence of detectable maternal viraemia [45].
Transmission of RVFV from domestic animals to humans
occurs mainly through direct contact with blood, excreta,
meat, milk or other secretions of infected animals, but in a
few cases, zoonotic transmission can also occur through
mosquito vectors [46,47]. It is unclear which, if any, animal
species maintain RVFV during the wet seasons and interepi-
demic periods, but it is believed that RVFV can be
maintained during these periods solely within the mosquito
population via alternative transmission pathways, including
via transovarial vertical transmission within certain
mosquito species [48].

Another classic example is T. gondii. While having only
one definitive host, a member of the Felidae, which shed
oocysts within the stool, all warm blooded organisms can
become infected by this protozoan, either via the consump-
tion of vegetation or water contaminated with the highly
resistant oocysts or by consuming raw or undercooked
meat containing bradyzoite cyst stages. Moreover, in spite
of causing substantial abortion or mortality in certain second-
ary host species such as sheep and humans, some species, in
particular mice and rats, appear to maintain infection
through congenital or neonatal transmission [49-51]. Several
cases of successful sexual transmission, many with conse-
quent vertical transmission to their progeny, have also been
documented in experimental studies involving, but not exclu-
sive to, rats [52], dogs [53], sheep [54,55] and goats [56,57].
Sexual transmission through T. gondii tachyzoites in semen
has also been proposed as a potential transmission mode
for human toxoplasmosis [58,59], but it remains unknown
how prevalent or successful these different modes are
under natural conditions.

Such a multiplicity of modes, routes and pathways
through which a pathogen can spread presents additional
challenges during disease outbreaks in terms of identifying
the source or sources of infection. Foot-and-mouth disease
(FMD) virus, for example, which causes an acute vesicular
disease of domesticated and wild ruminants and pigs, can
be spread through the movements of infected animals or
their bodily fluid, faeces, urine, contaminated persons,
objects and aerosols [60]. While some host species, such as
cattle and sheep, are believed to be primarily infected
through respiratory modes such as aerosol, other potential
host species, such as pigs, are believed to be more likely to
be infected through wounds or ingestion [61]. Furthermore,
some species can serve as carriers of FMD, remaining infec-
tious for up to 5 years [62]. Transmission can be further
amplified through anthropogenic means such as vehicles
and humans serving as mechanical vectors, as well as via
environmental waterways and animal products. The multiple
potential transmission pathways of this persistent disease
have repeatedly served to complicate FMD outbreak control
and prevention strategies [63].

Considering all potential modes, routes and overall path-
ways of transmission is, therefore, imperative when it comes
to planning or implementing disease control interventions.
However, we often know so little about their relative
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importance or the forces of selection acting on them at
different times.

(c) Dynamic hosts, pathogens and pathways

An additional challenge for disease control or elimination is
the capacity of pathogens to evolve in the face of changing
pressures, which may mean, for instance, an alteration in or
expansion of the key hosts and host range within a system,
or even an alteration or expansion of the transmission
modes and pathways available.

Host switches, whereby a pathogen successfully jumps
from one host species to another (table 1), are thought to
have been a major process in the evolution of many infectious
agents and can be an unpredictable consequence of the chan-
ging evolutionary pressures, including those exerted by
disease control interventions. Biological and epidemiological
features of the disease, modes of transmission and host sus-
ceptibility can all influence an infectious agent’s ability to
switch host species [64,65]. Pathogens, particularly those
with high mutation rates, antigenic diversity and short gener-
ation times, may rapidly adapt to new host species [66-68]
and evidence suggests that RNA viruses are the most likely
group of infectious agents to switch hosts and establish in
humans [1]. This is illustrated by influenza A viruses, for
which avian and swine hosts are the main reservoirs. Spora-
dic human infections with zoonotic influenza viruses are
well documented, particularly for avian influenza subtypes
A/H5N1 and, more recently A/H7N9. Human-to-human
transmission is typically limited following these spillover
events, but genetic re-assortment between influenza strains
within co-infected humans, birds or pigs, and acquisition of
human-specific respiratory epithelium receptors, can lead to
novel, human-adapted strains with pandemic potential [69].
Similarly, canine distemper virus (CDV) is also an RNA
virus with global distribution and an expanding range of
host species, including domestic and wild canids, marine
mammals, felids, procyonids and ursids, and non-human
primates. The propensity of CDV for host-switching has
raised concerns about both potential risks for humans and
extinction threats to endangered wildlife [70].

The strength of the selective pressures imposed upon
the pathogen will also impact its likelihood to switch and
adapt to new host species. There are numerous examples
where agricultural intensification and environmental change
have been proposed as key anthropogenic drivers for zoonotic
disease emergence (reviewed in [71]), but pressures exerted by
control interventions themselves could also lead to host or
transmission mode shifts. An important potential example is
Dracunculiasis, caused by the Guinea worm Dracunculus
medinensis, that has been targeted for eradication since the
early 1990s [72]. Dracunculiasis was rediscovered in Chad in
2010 after an apparent absence of human cases for 10 years,
and it appears that dogs may now serve as keys hosts for sus-
taining transmission in this setting, with potentially an
additional aberrant life cycle pathway involving a paratenic
host involved in ongoing transmission to both humans and
dogs [73,74]. This particular example may also, therefore, high-
light the potential for interdependencies between switches
and/or shifts in host species and transmission pathways.

Host-switching also enhances opportunities for novel inter-
actions between multiple infectious agents in co-infected
individuals. Co-infecting pathogens can have profound effects

on pathogen ecology and evolution, both through direct inter- [ 8 |

pathogen interactions and/or via the host’s immune response
[75-77]. A particular challenge regarding elimination of multi-
host pathogens is the phenomenon of hybridizations and intro-
gressions (table 1), which can contribute to adaptation and
even the expansion of key host range [78,79]. Evidence for
hybridizations and introgressions between a broad range of
pathogen species is gathering, partly in line with improve-
ments in molecular diagnostics and genome sequencing of
these organisms [12,13]. One example is schistosomiasis in
West Africa, where it had previously been thought that the
human and animal schistosomes were separate, and control
and surveillance efforts have subsequently focused entirely
on the human population alone. However, molecular tech-
niques have revealed that within certain regions, a large
proportion of both the human definitive and the snail intermedi-
ate host populations are infected with introgressions between
the human schistosome species Schistosoma haematobium with
the ruminant species Schistosoma bovis and/or Schistosoma
curassoni [80,81]. This raises the important question of whether,
atleast in certain settings in Africa, the role of non-human mam-
malian hosts in the transmission dynamics of human
schistosomiasis has been severely underestimated.

Mode switches, whereby a pathogen successfully switches
to a new mode of transmission (or mode shift, whereby a
pathogen successfully alters the predomination of one mode
to another; table 1), in contrast with that of host switches and
shifts, have rarely been documented in the evolutionary and
disease literature. Of the few, in addition to the T. gondii in
rodents example cited above [49], there is evidence from the
1991 cholera epidemic in South America that Vibrio cholera
can shift towards predominantly foodborne transmission
modes under conditions of and in countries with high
sanitation, while its more virulent waterborne mode predomi-
nates under conditions of poor sanitation [82,83]. It has also
been proposed that the endemic syphilis may have switched
mode from the direct skin contact mode, usually transmitted
during childhood, of the endemic syphiles (Treponema pallidum
subsp. pertenue, the causative agent of yaws, and T. pallidum
subsp. endemicum, the causative agent of bejel) in tropical
developing countries to the sexually transmitted mode of
venereal syphilis (T. pallidum subsp. pallidum) in temperate
developed countries. The original ‘unified” theory proposed
that all three treponemal diseases were caused by the
same aetiological agent and that the mode of transmission
and clinical characteristics of infection were dictated by the
environment and opportunities [84]. There are recent sequen-
cing data both in support (and contradiction) of this [85].
However, recent studies have also identified, for example,
cases of venereal syphilis in temperate counties caused by
the yaws subspecies [85]. Thus, these treponemes may be
potentially indicative of dynamic mode shifts rather than
true mode switches under contrasting environments and
pressures. Even more intriguing perhaps is recent evidence of
Treponema subspecies hybridization, which could be hypo-
thesized to further enhance the potential for multiple-mode
transmission dynamics [13,86]. There are current fears and
gathering evidence that Zika virus may also increase and/or
continue to be transmitted, despite increased vector control,
through a mode switch (or shift) towards sexual transmission
[87,88]. Similarly, in the recent Ebola epidemic, there
were fears that the Ebola virus might evolve aerosol
transmission, given greater opportunities for this mode of
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transmission in crowded human situations, especially as aero-
sol transmission of filoviruses has been demonstrated in
laboratory experiments [89].

3. Disentangling and quantifying transmission

(a) Conceptualizing and modelling multi-host

transmission
Although much epidemiological theory has focused on single-
host systems, a number of conceptual frameworks have been
put forward to aid our understanding of multi-host—pathogen
systems. As with single-host systems, the basic reproduction
number, Ry, is often central to these frameworks [6-8],
with Ry being defined as the expected number of secondary
infections generated by a typical infectious individual in a
totally susceptible population [90]. In particular, for a multi-
host—parasite to persist in a system, the overall basic reproduc-
tion number across the host community (denoted Ry ;) must
be greater than 1, giving a useful threshold for parasite elimin-
ation (i.e. Rqtor < 1). Within that system, Ry o will depend on
the basic reproduction number within each host species, i
(Ro,), as well as the level of heterogeneous ‘structuring’ of
transmission (that is transmission between host species relative
to that within host species, relating to the issue of ‘who acquires
infection from whom’ (WAIFW), which we return to below) [6].
Only those host species for which Ry is greater than 1 will be
capable of independently sustaining transmission in the
absence of other host species; these hosts can be referred to
as ‘maintenance hosts’, using terminology proposed by
Haydon et al. [8]. If there are several maintenance host species
(Ro,; > 1 for more than one host), this can be referred to as a
system with ‘facultative multi-host parasitism’. If there are no
maintenance hosts (Ry; < 1 for all hosts) in a system, but a com-
munity of hosts can together maintain transmission (Rg 1ot > 1),
this can be termed ‘obligate multi-host parasitism’, under the
framework proposed by Fenton ef al. [6]. Another type of key
host, termed an ‘essential host’, can be defined as one for
which transmission cannot be sustained (R < 1) in the
absence of its contribution to transmission. (Note that
the terms maintenance host and essential host are not mutually
exclusive but neither are they synonymous.)

Since Ry, and Rt cannot be measured directly, they
must typically be derived through mathematical models.
The structure and assumptions of a multi-host model, and
thus the mathematical expressions for Ry; and Rp.r and
types of data needed for their estimation, will depend on
the specific multi-host—pathogen system under investigation
(a generic model of a system with two host species is given in
figure 3a). In general, however, for a model with n host
groups, Ro ot can be derived from the largest eigenvalue of
the n x n next-generation matrix of the model, the elements
of which represent the number of new infections in host
group i generated by a single infected host in group j
[7,90]. (Thus, the diagonal elements of this matrix, i = j, rep-
resent Ry;.) The elements of the next-generation matrix will
depend on: (i) rates of transmission within and between host
species, described by the WAIFW matrix; (ii) duration of infec-
tiousness for each host group (and, for indirectly transmitted
pathogens, the persistence of infective stages in the environ-
ment, vector or intermediate host); and (iii) the relative
abundance or density of each host species. (See [7,90] for full

details on how the next-generation matrix and Ry are derived [ 9 |

from models with heterogeneous transmission.)

(b) Empirical approaches for quantifying transmission

by host species

While models can help us identify the types of factors that are
important for determining multi-host transmission dynamics,
empirical data are essential in order to parametrize models
and gain quantitative insights into the relative importance
of different host species and thus, the potential impact of
different interventions (tables 2 and 3). Parameters for dur-
ation of infectiousness and host densities (components
(ii) and (iii) mentioned above) can often be measured directly.
Host population sizes are typically observable for human and
livestock populations and, although more challenging, can
usually be estimated for wildlife populations using, for
example, mark/recapture studies. The duration of infectious-
ness in each host individual and/or group (which should
account for both recovery and mortality rates) can usually
be estimated from clinical, veterinary and/or epidemiological
data, and where diseases have an environmental source of
transmission, such as waterborne infections [83,118,119], per-
sistence of the pathogen in the environment can also often be
directly measured [103]. This persistence in the environment
can be considered as an extension of the infectious period, a
reservoir of the infectious agent or a combination of the two
[120], and models of diseases with environmental source of
transmission often explicitly include an environmental com-
partment contributed to by infectious individuals [121]
(figure 3b).

The main challenge for quantifying multi-host trans-
mission dynamics typically lies in parametrization of the
WAIFW matrix, as the transmission rates, 8;;, within and
between species which make up the elements of the matrix
again cannot normally be measured directly (see [122]). How-
ever, the relative magnitudes of values in a WAIFW matrix will
depend largely on the relative infectiousness of each host
species and contact rates within and between host groups, on
which empirical evidence can, in many cases, be obtained.
For example, the relative infectiousness of each species can
sometimes be quantified by comparing pathogen shedding
rates across host species, as has been achieved through examin-
ations of the relative presence of bovine tuberculosis
Mycobacterium bovis in the faeces, urine and tracheal aspirates
of free-living wildlife in the UK [105], through comparative
measurements of the eggs of S. japonicum shed per day in the
stools of domestic and wild animals in China [106,123], and
likewise comparative measurements of T. gondii oocysts shed
per day in the stool of domestic and wild cats [107,108]. Hetero-
geneities in levels of infectiousness within, as well as between,
host species can also be important to consider, given that
parasite aggregation among hosts and the potential for
‘super-spreaders’ are common phenomena that can have
important implications for disease dynamics and control.

In terms of measuring contact rates, at least within human
populations, this can be done through questionnaires and contact
diaries, for example, to identify age-assortative mixing patterns
[113,124-126]. However, a contact that has the potential to effec-
tively transmit infection can be hard to define, and will vary
between diseases. Interhost species mixing patterns, particularly
between animal populations, can be even more challenging to
measure, although if largely dependent on spatial structuring
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can be inferred from degree of overlap in host ranges or habitats,
as was done in a modelling study to identify key animal reser-
voirs of African trypanosomiasis [115]. Technological advances
such as video-capture, radio-tracking and GPS tracking have
also provided useful insights into wildlife population contact
rates, both within species, for example, deer [127], and between
species, such as in study on risk of Hendra virus transmission
between flying-foxes and horses in Australia [94].

Evidence to inform relative rates of transmission between
versus within species can also be obtained through molecular
epidemiological approaches. For clusters of avian influenza
infections in humans, the relatedness of virus genomes
between cases can help ascertain whether any cases with no
history of exposure to sick poultry may represent human—
human transmission events [128]. Meanwhile, population
genetics studies of schistosomiasis have been used to estimate
levels of parasite genetic differentiation across host species in
China and the Philippines, to give at least qualitative insights
into the degree of transmission structuring between hosts
[9,129]. Novel phylogenetic tools are increasingly being used
to assessing rates and directionality of interspecies trans-
mission, for example, of bovine tuberculosis [97] and rabies
[98], while advances in phylodynamic approaches, in which
transmission models are directly fitted to observed pathogen
phylogenies, also show much promise [65,130].

The types of empirical data to inform WAIFW matrices
mentioned above, such as on the contact patterns and infec-
tiousness of different host species, will allow transmission
rates to be scaled between versus within species. However,
one cannot usually calculate the actual magnitude of B par-
ameters from such data alone; typically, this will be done
indirectly through fitting the model to epidemiological data
collected across host species. For endemic diseases, if it can
be reasonably assumed that dynamics are at a steady-state
equilibrium, cross-sectional prevalence data across host species
will be sufficient. For example, in the case of the multi-host
zoonotic parasite S. japonicum, relatively straightforward epi-
demiological and parasitological data allowed the different
potential host species contributions to R to be quantified,
and important conclusions about transmission and the likely
effects of control measures to be made [10].

For outbreaks or emerging diseases, estimation of trans-
mission rates and Ry will probably require the model to be
fitted to longitudinal data. The difficulty here is that surveil-
lance and reporting of animal diseases is often poor,
especially in wildlife but also in livestock diseases in many
countries. For many diseases with animal reservoirs of infec-
tion, occasional spillover into the human population is often
the only indication of ongoing and poorly understood epi-
zootic or enzootic transmission, as we have seen with
outbreaks of Ebola [131] and Nipah virus [99].

(c) Quantifying transmission by transmission modes
and pathways

Conceptually, at least, extending a model to consider mul-
tiple transmission pathways (encompassing the alternative
potential modes and routes of infection) within and between
host species is relatively straightforward. This can be done by
partitioning each element of the WAIFW matrix, B, by trans-
mission mode k, such that the rate of infection from species j

to species i can be defined as:
Bi=>_ Bik
k

The next-generation matrix for the model, and thus Ry o, can
then likewise be partitioned by each transmission mode k, in
addition to each host species i. Thus, the concepts for multi-
host—pathogen systems described above can similarly be
applied to multi-mode systems, with transmission mode-
specific Ry values (Rgy) providing a basis from which to
identify ‘maintenance” and ‘essential’ transmission modes,
and differentiate between obligate versus facultative multi-
mode systems. (We should also note that, depending on the
system under investigation, k could also represent different
pathways if, for a given transmission mode, there are mul-
tiple routes the pathogen might take which should be
considered separately.)

The real challenge, once again, lies in obtaining sufficient
empirical evidence to parametrize the models and quantify
the relative importance of different transmission modes.
Nevertheless, there are approaches through which such evi-
dence can be collected (tables 2 and 3). For example, the
rate and duration of pathogen excretion and environmen-
tal persistence via different modes can, in principle, be
measured. Examples include the recently reported prolonged
shedding of Ebola virus in semen [100], and studies on dur-
ation of environmental persistence and infectivity of avian
influenza virus via aerosol and faecal-oral modes [103]. For
humans, behavioural surveys and classical epidemiological
risk factor studies can be useful in determining the relative
frequency of and risks associated with different types of
exposure. In the case of rabies, medical records and verbal
post-mortems will often provide information on history of
an animal bite and, therefore, which species most likely trans-
mitted infection [110]. For human cases of highly pathogenic
avian influenza, case investigations and interviews have been
useful in identifying which types of exposure to sick poultry
may carry the greatest risk for zoonotic transmission [132]. In
the case of sexually transmitted infections, such as HIV,
specific types of contact can be defined and measured, to
enable estimates of the probability of transmission per act
and by type of act [133]. In the few diseases where different
forms of exposure are associated with different disease
courses, surveillance and clinical data during or after an out-
break can also be used to identify most likely sources of
transmission and guide further epidemiological investigations.
Examples include anthrax, which has distinct clinical symp-
toms for different forms of exposure (inhalation, ingestion or
cutaneous), and Yersinia pestis where flea bites are more
likely to cause the bubonic form, whereas the pulmonic form
can be transmitted directly from human to human [134].

As with multi-host transmission dynamics, genetic and/
or genomic data can also provide important insights into the
relative importance of different modes and pathways. For
example, some modes of transmission may tend to involve a
larger pathogen inoculum dose than others (e.g. ingestion of
a heavily contaminated food source compared with aerosol
infection), for which one may expect to observe higher intra-
host microbial diversity [135]. For livestock diseases, the
reconstruction of interfarm outbreak spread based on phylo-
genetic and epidemiological data, along with data on factors
such as animal and human movements, road networks, wind
direction and distance between farms, can give insights into
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the potential role of different interfarm transmission pathways
(e.g. wind- versus human-mediated transmission) [136,137].
One advantage in the case of animal diseases is the possi-
bility to use experimental infections to inform estimates of
probability of transmission for different forms of exposure,
and the relative importance of different transmission routes.
For avian influenza, studies have involved exposing suscep-
tible birds to experimentally inoculated birds in such a way
that either only aerosol or only faecal-oral transmission
could occur [103,138,139]. Similarly, experimental studies on
FMD virus have been used to estimate the relative importance
of direct versus indirect transmission on farms, by exposing
groups of susceptible calves either directly to infected individ-
uals or by housing them in buildings that had previously held
inoculated individuals [104]. A semi-naturalist captive study
examining mode of transmission of T. gondii in wild brown
rats, Rattus norvegicus, in the UK aimed to determine if the
congenital transmission route alone could be successful and
sufficient at maintaining transmission [49]. The study found
that, in the absence of oocyst (faecal) contamination from the
feline definitive host or bradyzoite exposure through contami-
nated meat, the seroprevalence remained stable over several
generations of rats, suggesting that congenital transmission
might be a ‘maintenance’ transmission mode for T. gondii.
However, other modes of transmission, such as cannibalism,
sexual transmission or even importation of oocysts into the
enclosure by paratenic hosts (e.g. earthworms), could not
be fully ruled out, illustrating the difficulty of controlling all
possible transmission modes even in experimental studies.

4. Implications for disentangling transmission in
the ‘elimination era’

We live in a time where disease ‘elimination as a public
health problem’” and even ‘eradication” have been proposed
as Millennium Development Goals and more recently, the
Sustainable Development Goals [15,140]. These goals are dif-
ficult to achieve for any infectious disease, as reflected by the
fact that only one human and one animal pathogen (smallpox
and rinderpest, respectively) have been globally eradicated to
date [141]. The distinct biological features of different infec-
tious agents and the technical factors for dealing with them
make their potential eradication or elimination more or less
likely. Three indicators may be considered to be of primary
importance: an effective intervention is available to interrupt
transmission of the agent; practical diagnostic tools with
sufficient sensitivity and specificity are available to detect
levels of infection that can lead to transmission; and a
single-host species, be it human or animal, is essential for
the life cycle of the infectious agent, which has no other ver-
tebrate reservoir and does not amplify in the environment. In
addition, the importance of socio-economic and political con-
text (including factors such as health system infrastructure,
intersectoral cooperation, financial resources, political will
and public acceptance to ensure effective implementation
of interventions) in determining the success of elimination
programmes must be stressed.

The challenges of elimination are magnified for multi-host
and undoubtedly even more so for multi-mode pathogens.
Interventions may need to identify and target multiple host
species, and/or block or manipulate available transmission
pathways [83,118]. For instance, Brucella melitensis causes

febrile disease in humans and production losses/morbidity [ 12 |

in both small (sheep and goat) and large (cattle) ruminants in
many parts of the world. Vaccination of sheep and goats
alone is, however, the mainstay of current control programmes.
Recent mathematical models suggest that the current practice
of limiting vaccination to sheep/small ruminants alone
would take 16.8 years to achieve elimination on a mixed-
species B. melitensis-endemic farm, but combining this with
cattle vaccination would reduce the time to 3.5 years [142].

The set of tools required for control are also likely to be
more diverse for those pathogens for which multiple host
species and/or multiple transmission modes exist. Such
infectious agents may, for instance, show genetic diversity
across different host species, such that a vaccine or drug effec-
tive in one host species may not be in another [12]. Drug
treatment of animal reservoirs, even with different drugs to
those used in humans, may also lead to the development of
cross-resistance, rendering human drug treatment less effec-
tive [143]. Social and economic challenges may also be
specific to, or amplified for, pathogens with multiple hosts
and/or transmission pathways. For instance, livestock
owners may feel disinclined to report disease in their
animals (especially if it may lead to culling), or to treat/or
vaccinate their animals, if there is a risk and/or insufficient
compensation or perceived benefit from such measures [144].

An additional challenge in multi-host and multi-mode
systems in the context of elimination is the capacity of patho-
gens and transmission dynamics to evolve and change in the
face of changing pressures, which may mean an alteration in
the key hosts within a system, an expansion of host range
and/or an expansion or opportunities for transmission. It
remains a matter of urgency to determine with confidence
whether new transmission modes (mode switches) may
evolve in extant disease threats, or if currently minor trans-
mission modes could become major modes (mode shifts),
given new circumstances and opportunities [20].

5. Condlusion

Pathogens which have the capacity to be transmitted by mul-
tiple hosts and/or via multiple modes may pose the greatest
challenge when it comes to disease control and ultimately
elimination. Identifying those key hosts and transmission path-
ways, and thus where interventions would most effectively
be targeted, is not straightforward, but important insights
can be gained through continued application and development
of theoretical and empirical approaches for disentangling trans-
mission dynamics, such as those presented above. Interventions
need to be meticulously designed, implemented and monitored
to optimize the immediate short-term benefits to the target
population(s). Given that such pathogens might be especially
able to adaptively switch hosts and transmission modes,
particularly in our current era of profound and rapid anthropo-
genic change, advancing our understanding of evolutionary, as
well as ecological, dynamics of multi-host and multi-mode
pathogens is also crucial for anticipating and maximizing the
ongoing success of elimination programmes.
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