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Multi-host infectious agents challenge our abilities to understand, predict and

manage disease dynamics. Within this, many infectious agents are also able

to use, simultaneously or sequentially, multiple modes of transmission.

Furthermore, the relative importance of different host species and modes can

itself be dynamic, with potential for switches and shifts in host range and/

or transmission mode in response to changing selective pressures, such as

those imposed by disease control interventions. The epidemiology of such

multi-host, multi-mode infectious agents thereby can involve a multi-faceted

community of definitive and intermediate/secondary hosts or vectors, often

together with infectious stages in the environment, all of which may represent

potential targets, as well as specific challenges, particularly where disease elim-

ination is proposed. Here, we explore, focusing on examples from both human

and animal pathogen systems, why and how we should aim to disentangle and

quantify the relative importance of multi-host multi-mode infectious agent

transmission dynamics under contrasting conditions, and ultimately, how

this can be used to help achieve efficient and effective disease control.

This article is part of the themed issue ‘Opening the black box: re-examining

the ecology and evolution of parasite transmission’.
1. Introduction
Understanding the complex population biology and transmission ecology of

multi-host parasites and pathogens has been declared as one of the major chal-

lenges of biomedical sciences for the twenty-first century [1], and elucidating

and distinguishing between contrasting drivers of disease transmission mainten-

ance and outbreaks is critical in determining policy, targeting interventions and

predicting outcomes. Transmission can be defined, at its simplest, as the means

by which an infectious agent is passed from an infected host to a susceptible

host [2]. Transmission dynamics may involve multiple levels and varying degrees

of complexity (figures 1 and 3 and tables 1 and 2), from single-host species in

pathogens with direct, or simple, life cycles, such as the human-specific measles

virus, to contrasting host stages and species in indirectly transmitted agents with

complex life cycles, such as the multiple mammalian definitive hosts (human,

domestic and wild animals) and single molluscan intermediate hosts of Schisto-
soma japonicum [9–11]. Within this, many infectious agents are able to use,

simultaneously or sequentially, multiple modes of transmission, including but

not exclusive to vertical, direct contact, sexual, aerosol, vector-borne and/or

food-borne (table 1; figures 1 and 2). The relative importance of different hosts
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infectious agent

direct (simple)
life cycle

single host
single mode

multiple hosts
single mode

single host
multiple modes

multiple host
multiple modes

indirect (complex)
life cycle

single host*
single modes

multiple hosts
single modes

single host
multiple modes

multiple hosts
multiple modes

e.g. Plasmodium
falciparum,
Schistosoma
haematobium** 

e.g. influenza A
viruses, Ebola virus,
hepatitis E,
Bacillus anthracis,
Mycobacterium
bovis, Leptospira
spp., Pasturella
pestis, Brucella spp

e.g. Crimean Congo
haemorrhagic fever,
West Nile virus,
Japanese encephalitis
virus, yellow fever
virus,
borreliosis,
Plasmodium vivax,
Schistosoma
japonicum;
S. mekongi,
Opisthorchis
viverrini,
Paragonomis spp. 

e.g. measles,
rubella, influenza

e.g. HIV, bovine
viral diarrhoea,
norovirus,
Ophryocystis
elektroscirrha

e.g. rabies virus 

* including single host at one life stage in  complex life-cycle parasites.
** S. haematobium originally believed to be a human-only parasite.

e.g. Zika virus e.g. Rift Valley
fever virus,
Toxoplasma
gondii,
Trypanosoma
cruzi

Figure 1. Classification of pathogens by life cycle complexity, number of hosts and number of transmission modes. (Online version in colour.)

infected hosts transmission ‘modes’ susceptible hosts

infected infectious hosts
humans, domestic animals, wildlife

‘directly transmitted’
e.g. vertical (including

cytoplasmic, transplacental, during
vaginal birth or breast feeding; direct

contact, sexual, inoculation/blood borne)

‘indirectly transmitted’
e.g. aerosol/airborne,

vector/intermediate-host borne, vehicle
borne/fomites, water and food borne

(including predation)

new susceptible hosts
humans, domestic animals, wildlife

Figure 2. Multiplicity of pathogen transmission pathways and control opportunities. Examples include, infected infectious hosts can be targeted by: test and slaugh-
ter of livestock and domestic animals, e.g. FMDV, brucellosis; prophylactic drug treatment to reduce infectious stages transmission to environment, e.g. human MDA
for Schistsosoma spp., or to offspring, e.g. targeted use of anti-retroviral drugs to reduce the likelihood of vertical transmission of HIV; human use of condoms to
prevent sexually transmitted infections, e.g. syphilis, HIV. Indirect environmental and vector-borne transmission can be targeted by: improved health education and
sanitation programmes to minimize environmental transmission, e.g. cholera, Guinea worm; improved burial practices to reduce the risk of transmission from people
who have died due to, e.g. Ebola; vector and intermediate host control, e.g. malaria, schistosomiasis, dengue. Uninfected hosts can be targeted by: vaccination of
uninfected humans to prevent human-to-human direct transmission, e.g. measles, or of livestock or domestic animals to prevent human transmission, e.g. domestic
dogs to reduce human cases of rabies due to dog bites, or sheep and cattle to prevent brucellosis transmission to humans; health education.
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and modes can itself be dynamic, with potential for switches

and/or shifts in host range or transmission mode (table 1) of

an infectious agent to occur in response to dynamic selective

pressures, such as anthropogenic change and disease control

interventions [12,13].

The goals of many disease control programmes, including

those targeting pathogens with multiple hosts and/or trans-

mission modes, are increasingly shifting towards elimination

or even, in certain cases, eradication [14,15] (table 1). Examin-

ing how pathogens respond to such strong anthropogenic

changes as those imposed by these interventions offers
unique opportunities for ‘quasi-experimental studies’ in

adaptive management frameworks and can play a crucial

role in enriching our mechanistic understanding of trans-

mission dynamics under contrasting selective pressures [16].

Disentangling the transmission dynamics of the infecting

agent/s is particularly important, not only to identify key

hosts and modes against which interventions could or

should be targeted, but also to anticipate potential unin-

tended consequences (positive and negative) that may

occur in response to the selective pressures that elimination

efforts exert on these systems.
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Figure 3. Schematics of simplified models for systems with multiple host
species (a) and multiple transmission modes (b). Model compartments and
parameters are defined in table 2. Block arrows represent the flow of indi-
viduals between compartments; dashed and dotted arrows represent
transmission within and between species, respectively; line arrows show
release and decay of indirectly transmitted infective stages. The model in
(a) depicts a system with two host species, with the force of infection
li(t) in each host species i at time t defined as the sum of the forces of
infection that can be attributed to transmission from each infected host
species j. The model in (b) shows a single-host system with three modes
of transmission, two of which are direct and one of which is indirect via
a ‘pool’ of infective stages E, which could represent infective stages in the
environment, a vector or an intermediate host. In this multi-mode system,
the total force of infection is defined as the sum of the forces of infection
that can be attributed to each transmission mode, k.
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Here, we explore, focusing on examples from both human

and animal pathogen systems, how the complexities of multi-

host multi-mode infectious agent transmission dynamics may

challenge our abilities to understand and predict disease

dynamics, why and how we should aim to disentangle and

quantify their relative importance under contrasting con-

ditions, and ultimately, how this can be used to help

achieve efficient and effective disease control.
2. Multiple hosts, pathogens and modes of
transmission

(a) Multiple host species and stages
Most diseases globally involve multiple host species [17,18],

with an estimated 60–75% of newly emerging diseases in

humans being multi-host zoonoses, i.e. infectious diseases

that are naturally transmitted between vertebrate animals

and humans [18,19]. Many multi-host infectious agents

have the additional feature of a complex, indirect life cycle,

where different life stages of a pathogen are found in often

highly unrelated phylogenetically, definitive and intermedi-

ate (and/or secondary or vector) host species (table 1). For

example, many trematodes have both obligatory mammalian

and avian definitive host stages, as well as a molluscan inter-

mediate host stage. The epidemiology of such multi-host

infectious agents thereby involves multi-faceted communities

of definitive host species and individuals, together with

vector or intermediate species and individuals, all of which

may represent potential targets, as well as specific challenges,
in the context of disease control, particularly where elimination

is proposed [8,12]. However, the majority of epidemiological

theory to date has focused on a single-pathogen single-host

framework [20]. Even for zoonoses, if the disease is considered

to be of no economic importance or is asymptomatic in

animals, humans historically have generally been the only

species considered when designing control programmes. In

multi-host systems, a failure to understand or at least consider

the potential importance of other animal hosts when planning

interventions may mean control efforts are ineffective or at

best inefficient.

In diseases with only one host species, the force of infec-

tion, defined as the instantaneous hazard or risk experienced

by a susceptible individual, is likely to be predominantly

dictated by a combination of the number or proportion

of infectious individuals in the population (depending on

whether transmission is density or frequency-dependent),

contact rate between individuals, probability of transmis-

sion given contact and the duration of infectiousness. This

becomes more complicated when multiple hosts are involved

in transmission, as each host species or stage is unlikely to

contribute equally to the force of infection due to heterogene-

ities and trade-offs in these parameters across species and

stages [6,8,21,22]. Even infectious agents with a very broad

host range are often transmitted predominantly by just a

subset of potential hosts, or key host species (table 1), and

this may vary in different contexts or ecosystems. Rabies

virus, for instance, is a pathogen with the potential to infect

all mammals, but its long-term persistence in an ecosystem

typically depends on a maintenance key host, usually a carni-

vore or bat species [23]. For example, in the Serengeti

ecosystem, rabies transmission maintenance appears to be

dependent on domestic dogs [24].

Behavioural patterns may play a role in determining the

importance of potential hosts within a system, and hence,

key hosts may not necessarily be highly abundant but have a

behavioural repertoire that places them in high contact with

other suitable host species, for example, the roosting

behaviour and habitat selection of bats and their link to

Nipah virus epidemiology [25]. Certain pathogen species

also have behavioural patterns to maximize their opportunities

for transmission to key host species. The larval propagule

stage of S. japonicum in China, for example, shows different

behavioural (and genetic) profiles in relation to the key main-

tenance host species present: in hilly regions where nocturnal

rodents are the species which predominantly maintain trans-

mission, cercariae are shed from Oncomelanaia snails in the

late afternoons and evening, whereas in lowland habitats

where bovines drive transmission, early morning shedding

occurs, coinciding with the timing of peak bovine water contact

[26,27]. Even more intriguing are cases where certain complex

life cycle pathogens manipulate their hosts’ behaviour to facili-

tate transmission from one host species and stage to another,

and there are numerous cases within parasitized invertebrates

[28]. Examples of specific manipulation of vertebrate host be-

haviour are rarer, although increased aggression is proposed

to enhance transmission, via blood and/or saliva through

biting, of viruses such as rabies, Hantaan and Seoul [29].

Toxoplasma gondii appears to enhance the likelihood of rodent

intermediate hosts being preyed upon by their feline definitive

hosts through subtle manipulation of a whole suite of predator-

risk behaviours [30–40]. Moreover, T. gondii appears to subtly

alter the rats’ cognitive perception of predation risk, turning
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their innate aversion to predator odour into a ‘suicidal’ ‘fatal

feline attraction’ and this appears specific towards their

feline definitive host [40–42]. There do, however, appear to

be differences between domestic and wild species of felines,

potentially in relation to their capacities as efficient definitive

hosts [43].

(b) Multiple modes, routes and pathways of
transmission

The terms transmission ‘mode’, ‘route’ and ‘pathways’ are

often used interchangeably and the terminology can be con-

fusing (discussed in [20]) as well as varying between public

health and evolutionary biology literature. In terms of disen-

tangling pathogen transmission dynamics and identifying

where and when to target control programme activities, the

level of resolution is likely to be important.

Modes of pathogen transmission between infected individ-

uals and susceptible hosts may be ‘direct’, via vertical

(including cytoplasmic, transplacental, during vaginal birth

or breast feeding), direct physical contact (body surface to

body surface), sexual or inoculation/blood-borne transmission,

or ‘indirect’, via aerosol/airborne, vector/intermediate-

host-borne, fomites/vehicle-borne, water and food-borne path-

ways (figures 1 and 2). Within the evolutionary literature on

disease, a major distinction between transmission modes, par-

ticularly in terms of the evolution of virulence [20,44], has

been between ‘vertical’ (as above) and ‘horizontal’, which

encompasses both direct and indirect modes. The broader

term ‘transmission pathway’ is also often used, particularly in

the context of ‘risk analyses’ in relation to, among other

issues, food-borne diseases/food safety [4]. The transmission

pathway in this context is the sequence of steps needed for

the undesirable outcome (i.e. exposure/infection of the host)

to occur. Transmission pathway thereby encompasses both

the mode by which the pathogen leaves one host and enters

the next, for example, faecal–oral, and the specific route

it takes, for example, via a fomite or via water contamination.

Toxoplasma gondii, for instance, may be transmitted to a suscep-

tible host through the indirect food-borne mode, but in terms of

managing risk or implementing control strategies, it is impor-

tant to differentiate between the different possible food-borne

routes through which the host may have been infected. The

new host will have eaten infected meat, but the meat could

have been either from an infected animal (i.e. with T. gondii
bradyzoites) or the animal was not infected, but there was

contamination of the food product at some stage (e.g. with

T. gondii oocysts). Thus, in this example, the transmission

pathway encompasses different routes but the same mode of

transmission. Conceptualizing exposure in this way is con-

venient as it allows an overall evaluation of risk of exposure

by combining the probabilities (P) of the series of events

occurring, for example: P (animal is infected) � P (infected

animal is not detected and removed from the food chain) � P
(viable pathogen is present in the meat of infected animal) �
P (pathogen not inactivated by processing) � P (food with

viable pathogen consumed by a susceptible person). By

decomposing transmission into multiple steps, it may be poss-

ible to intervene with control measures and evaluate effects at

different levels.

Disentangling transmission dynamics becomes even more

complex, however, as many infectious agents have the poten-

tial to be transmitted to susceptible individuals via more than
one mode of transmission and pathogens may use all poss-

ible transmission modes simultaneously or even switch

according to conditions [20]. For example, Rift Valley fever

virus (RVFV) is usually transmitted among livestock,

specifically cattle, sheep and goats, via mosquitoes bites,

but can also be transmitted vertically between animals,

even in the absence of detectable maternal viraemia [45].

Transmission of RVFV from domestic animals to humans

occurs mainly through direct contact with blood, excreta,

meat, milk or other secretions of infected animals, but in a

few cases, zoonotic transmission can also occur through

mosquito vectors [46,47]. It is unclear which, if any, animal

species maintain RVFV during the wet seasons and interepi-

demic periods, but it is believed that RVFV can be

maintained during these periods solely within the mosquito

population via alternative transmission pathways, including

via transovarial vertical transmission within certain

mosquito species [48].

Another classic example is T. gondii. While having only

one definitive host, a member of the Felidae, which shed

oocysts within the stool, all warm blooded organisms can

become infected by this protozoan, either via the consump-

tion of vegetation or water contaminated with the highly

resistant oocysts or by consuming raw or undercooked

meat containing bradyzoite cyst stages. Moreover, in spite

of causing substantial abortion or mortality in certain second-

ary host species such as sheep and humans, some species, in

particular mice and rats, appear to maintain infection

through congenital or neonatal transmission [49–51]. Several

cases of successful sexual transmission, many with conse-

quent vertical transmission to their progeny, have also been

documented in experimental studies involving, but not exclu-

sive to, rats [52], dogs [53], sheep [54,55] and goats [56,57].

Sexual transmission through T. gondii tachyzoites in semen

has also been proposed as a potential transmission mode

for human toxoplasmosis [58,59], but it remains unknown

how prevalent or successful these different modes are

under natural conditions.

Such a multiplicity of modes, routes and pathways

through which a pathogen can spread presents additional

challenges during disease outbreaks in terms of identifying

the source or sources of infection. Foot-and-mouth disease

(FMD) virus, for example, which causes an acute vesicular

disease of domesticated and wild ruminants and pigs, can

be spread through the movements of infected animals or

their bodily fluid, faeces, urine, contaminated persons,

objects and aerosols [60]. While some host species, such as

cattle and sheep, are believed to be primarily infected

through respiratory modes such as aerosol, other potential

host species, such as pigs, are believed to be more likely to

be infected through wounds or ingestion [61]. Furthermore,

some species can serve as carriers of FMD, remaining infec-

tious for up to 5 years [62]. Transmission can be further

amplified through anthropogenic means such as vehicles

and humans serving as mechanical vectors, as well as via

environmental waterways and animal products. The multiple

potential transmission pathways of this persistent disease

have repeatedly served to complicate FMD outbreak control

and prevention strategies [63].

Considering all potential modes, routes and overall path-

ways of transmission is, therefore, imperative when it comes

to planning or implementing disease control interventions.

However, we often know so little about their relative
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importance or the forces of selection acting on them at

different times.
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(c) Dynamic hosts, pathogens and pathways
An additional challenge for disease control or elimination is

the capacity of pathogens to evolve in the face of changing

pressures, which may mean, for instance, an alteration in or

expansion of the key hosts and host range within a system,

or even an alteration or expansion of the transmission

modes and pathways available.

Host switches, whereby a pathogen successfully jumps

from one host species to another (table 1), are thought to

have been a major process in the evolution of many infectious

agents and can be an unpredictable consequence of the chan-

ging evolutionary pressures, including those exerted by

disease control interventions. Biological and epidemiological

features of the disease, modes of transmission and host sus-

ceptibility can all influence an infectious agent’s ability to

switch host species [64,65]. Pathogens, particularly those

with high mutation rates, antigenic diversity and short gener-

ation times, may rapidly adapt to new host species [66–68]

and evidence suggests that RNA viruses are the most likely

group of infectious agents to switch hosts and establish in

humans [1]. This is illustrated by influenza A viruses, for

which avian and swine hosts are the main reservoirs. Spora-

dic human infections with zoonotic influenza viruses are

well documented, particularly for avian influenza subtypes

A/H5N1 and, more recently A/H7N9. Human-to-human

transmission is typically limited following these spillover

events, but genetic re-assortment between influenza strains

within co-infected humans, birds or pigs, and acquisition of

human-specific respiratory epithelium receptors, can lead to

novel, human-adapted strains with pandemic potential [69].

Similarly, canine distemper virus (CDV) is also an RNA

virus with global distribution and an expanding range of

host species, including domestic and wild canids, marine

mammals, felids, procyonids and ursids, and non-human

primates. The propensity of CDV for host-switching has

raised concerns about both potential risks for humans and

extinction threats to endangered wildlife [70].

The strength of the selective pressures imposed upon

the pathogen will also impact its likelihood to switch and

adapt to new host species. There are numerous examples

where agricultural intensification and environmental change

have been proposed as key anthropogenic drivers for zoonotic

disease emergence (reviewed in [71]), but pressures exerted by

control interventions themselves could also lead to host or

transmission mode shifts. An important potential example is

Dracunculiasis, caused by the Guinea worm Dracunculus
medinensis, that has been targeted for eradication since the

early 1990s [72]. Dracunculiasis was rediscovered in Chad in

2010 after an apparent absence of human cases for 10 years,

and it appears that dogs may now serve as keys hosts for sus-

taining transmission in this setting, with potentially an

additional aberrant life cycle pathway involving a paratenic

host involved in ongoing transmission to both humans and

dogs [73,74]. This particular example may also, therefore, high-

light the potential for interdependencies between switches

and/or shifts in host species and transmission pathways.

Host-switching also enhances opportunities for novel inter-

actions between multiple infectious agents in co-infected

individuals. Co-infecting pathogens can have profound effects
on pathogen ecology and evolution, both through direct inter-

pathogen interactions and/or via the host’s immune response

[75–77]. A particular challenge regarding elimination of multi-

host pathogens is the phenomenon of hybridizations and intro-

gressions (table 1), which can contribute to adaptation and

even the expansion of key host range [78,79]. Evidence for

hybridizations and introgressions between a broad range of

pathogen species is gathering, partly in line with improve-

ments in molecular diagnostics and genome sequencing of

these organisms [12,13]. One example is schistosomiasis in

West Africa, where it had previously been thought that the

human and animal schistosomes were separate, and control

and surveillance efforts have subsequently focused entirely

on the human population alone. However, molecular tech-

niques have revealed that within certain regions, a large

proportion of both the human definitive and the snail intermedi-

ate host populations are infected with introgressions between

the human schistosome species Schistosoma haematobium with

the ruminant species Schistosoma bovis and/or Schistosoma
curassoni [80,81]. This raises the important question of whether,

at least in certain settings in Africa, the role of non-human mam-

malian hosts in the transmission dynamics of human

schistosomiasis has been severely underestimated.

Mode switches, whereby a pathogen successfully switches

to a new mode of transmission (or mode shift, whereby a

pathogen successfully alters the predomination of one mode

to another; table 1), in contrast with that of host switches and

shifts, have rarely been documented in the evolutionary and

disease literature. Of the few, in addition to the T. gondii in

rodents example cited above [49], there is evidence from the

1991 cholera epidemic in South America that Vibrio cholera
can shift towards predominantly foodborne transmission

modes under conditions of and in countries with high

sanitation, while its more virulent waterborne mode predomi-

nates under conditions of poor sanitation [82,83]. It has also

been proposed that the endemic syphilis may have switched

mode from the direct skin contact mode, usually transmitted

during childhood, of the endemic syphiles (Treponema pallidum
subsp. pertenue, the causative agent of yaws, and T. pallidum
subsp. endemicum, the causative agent of bejel) in tropical

developing countries to the sexually transmitted mode of

venereal syphilis (T. pallidum subsp. pallidum) in temperate

developed countries. The original ‘unified’ theory proposed

that all three treponemal diseases were caused by the

same aetiological agent and that the mode of transmission

and clinical characteristics of infection were dictated by the

environment and opportunities [84]. There are recent sequen-

cing data both in support (and contradiction) of this [85].

However, recent studies have also identified, for example,

cases of venereal syphilis in temperate counties caused by

the yaws subspecies [85]. Thus, these treponemes may be

potentially indicative of dynamic mode shifts rather than

true mode switches under contrasting environments and

pressures. Even more intriguing perhaps is recent evidence of

Treponema subspecies hybridization, which could be hypo-

thesized to further enhance the potential for multiple-mode

transmission dynamics [13,86]. There are current fears and

gathering evidence that Zika virus may also increase and/or

continue to be transmitted, despite increased vector control,

through a mode switch (or shift) towards sexual transmission

[87,88]. Similarly, in the recent Ebola epidemic, there

were fears that the Ebola virus might evolve aerosol

transmission, given greater opportunities for this mode of
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transmission in crowded human situations, especially as aero-

sol transmission of filoviruses has been demonstrated in

laboratory experiments [89].
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3. Disentangling and quantifying transmission
(a) Conceptualizing and modelling multi-host

transmission
Although much epidemiological theory has focused on single-

host systems, a number of conceptual frameworks have been

put forward to aid our understanding of multi-host–pathogen

systems. As with single-host systems, the basic reproduction

number, R0, is often central to these frameworks [6–8],

with R0 being defined as the expected number of secondary

infections generated by a typical infectious individual in a

totally susceptible population [90]. In particular, for a multi-

host–parasite to persist in a system, the overall basic reproduc-

tion number across the host community (denoted R0,tot) must

be greater than 1, giving a useful threshold for parasite elimin-

ation (i.e. R0,tot , 1). Within that system, R0,tot will depend on

the basic reproduction number within each host species, i
(R0,i), as well as the level of heterogeneous ‘structuring’ of

transmission (that is transmission between host species relative

to that within host species, relating to the issue of ‘who acquires

infection from whom’ (WAIFW), which we return to below) [6].

Only those host species for which R0,i is greater than 1 will be

capable of independently sustaining transmission in the

absence of other host species; these hosts can be referred to

as ‘maintenance hosts’, using terminology proposed by

Haydon et al. [8]. If there are several maintenance host species

(R0,i . 1 for more than one host), this can be referred to as a

system with ‘facultative multi-host parasitism’. If there are no

maintenance hosts (R0,i , 1 for all hosts) in a system, but a com-

munity of hosts can together maintain transmission (R0,tot . 1),

this can be termed ‘obligate multi-host parasitism’, under the

framework proposed by Fenton et al. [6]. Another type of key

host, termed an ‘essential host’, can be defined as one for

which transmission cannot be sustained (R0.tot , 1) in the

absence of its contribution to transmission. (Note that

the terms maintenance host and essential host are not mutually

exclusive but neither are they synonymous.)

Since R0,i and R0,tot cannot be measured directly, they

must typically be derived through mathematical models.

The structure and assumptions of a multi-host model, and

thus the mathematical expressions for R0,i and R0,tot and

types of data needed for their estimation, will depend on

the specific multi-host–pathogen system under investigation

(a generic model of a system with two host species is given in

figure 3a). In general, however, for a model with n host

groups, R0,tot can be derived from the largest eigenvalue of

the n � n next-generation matrix of the model, the elements

of which represent the number of new infections in host

group i generated by a single infected host in group j
[7,90]. (Thus, the diagonal elements of this matrix, i ¼ j, rep-

resent R0,i.) The elements of the next-generation matrix will

depend on: (i) rates of transmission within and between host

species, described by the WAIFW matrix; (ii) duration of infec-

tiousness for each host group (and, for indirectly transmitted

pathogens, the persistence of infective stages in the environ-

ment, vector or intermediate host); and (iii) the relative

abundance or density of each host species. (See [7,90] for full
details on how the next-generation matrix and R0 are derived

from models with heterogeneous transmission.)

(b) Empirical approaches for quantifying transmission
by host species

While models can help us identify the types of factors that are

important for determining multi-host transmission dynamics,

empirical data are essential in order to parametrize models

and gain quantitative insights into the relative importance

of different host species and thus, the potential impact of

different interventions (tables 2 and 3). Parameters for dur-

ation of infectiousness and host densities (components

(ii) and (iii) mentioned above) can often be measured directly.

Host population sizes are typically observable for human and

livestock populations and, although more challenging, can

usually be estimated for wildlife populations using, for

example, mark/recapture studies. The duration of infectious-

ness in each host individual and/or group (which should

account for both recovery and mortality rates) can usually

be estimated from clinical, veterinary and/or epidemiological

data, and where diseases have an environmental source of

transmission, such as waterborne infections [83,118,119], per-

sistence of the pathogen in the environment can also often be

directly measured [103]. This persistence in the environment

can be considered as an extension of the infectious period, a

reservoir of the infectious agent or a combination of the two

[120], and models of diseases with environmental source of

transmission often explicitly include an environmental com-

partment contributed to by infectious individuals [121]

(figure 3b).

The main challenge for quantifying multi-host trans-

mission dynamics typically lies in parametrization of the

WAIFW matrix, as the transmission rates, bij, within and

between species which make up the elements of the matrix

again cannot normally be measured directly (see [122]). How-

ever, the relative magnitudes of values in a WAIFW matrix will

depend largely on the relative infectiousness of each host

species and contact rates within and between host groups, on

which empirical evidence can, in many cases, be obtained.

For example, the relative infectiousness of each species can

sometimes be quantified by comparing pathogen shedding

rates across host species, as has been achieved through examin-

ations of the relative presence of bovine tuberculosis

Mycobacterium bovis in the faeces, urine and tracheal aspirates

of free-living wildlife in the UK [105], through comparative

measurements of the eggs of S. japonicum shed per day in the

stools of domestic and wild animals in China [106,123], and

likewise comparative measurements of T. gondii oocysts shed

per day in the stool of domestic and wild cats [107,108]. Hetero-

geneities in levels of infectiousness within, as well as between,

host species can also be important to consider, given that

parasite aggregation among hosts and the potential for

‘super-spreaders’ are common phenomena that can have

important implications for disease dynamics and control.

In terms of measuring contact rates, at least within human

populations, this can be done through questionnaires and contact

diaries, for example, to identify age-assortative mixing patterns

[113,124–126]. However, a contact that has the potential to effec-

tively transmit infection can be hard to define, and will vary

between diseases. Interhost species mixing patterns, particularly

between animal populations, can be even more challenging to

measure, although if largely dependent on spatial structuring



Ta
bl

e
3.

Em
pi

ric
al

ap
pr

oa
ch

es
to

di
se

nt
an

gl
in

g
m

ul
ti-

ho
st

an
d/

or
m

ul
ti-

m
od

e
tra

ns
m

iss
ion

.

ke
y

qu
es

tio
n

em
pi

ric
al

ap
pr

oa
ch

es
ex

am
pl

es

1.
w

hi
ch

ho
sts

ar
e

po
te

nt
ial

ly
in

vo
lve

d
in

tra
ns

m
iss

ion
(k

ey
ho

sts
)?/

w
hi

ch
sp

ec
ies

in
th

e
ec

os
ys

te
m

ar
e

in
fe

cte
d?

ep
id

em
iol

og
ica

ls
tu

di
es

,s
uc

h
as

se
ro

pr
ev

ale
nc

e,
pa

ra
sit

ol
og

ica
la

nd
/o

rm
ol

ec
ul

ar
ty

pi
ng

stu
di

es
fro

m
hu

m
an

s
an

d
an

im
als

ca
n

be
us

ed
to

id
en

tif
y

po
te

nt
ial

ho
sts

.

[7
0,

81
,9

1–
93

]

co
m

pa
ris

on
of

hu
m

an
an

d
ve

te
rin

ar
y

su
rv

eil
lan

ce
da

ta
ca

n
pr

ov
id

e
ea

rly
in

di
ca

tio
n

th
at

an
ou

tb
re

ak
of

di
se

as
e

in
hu

m
an

s
m

ay

ha
ve

a
zo

on
ot

ic
or

ig
in

.

[9
4–

96
]

2.
is

th
er

e
po

te
nt

ial
fo

re
ffe

cti
ve

co
nt

ac
tb

et
we

en
ho

st
sp

ec
ies

an
d,

if
so

,

ho
w

do
co

nt
ac

tr
at

es
co

m
pa

re
be

tw
ee

n
ve

rsu
s

w
ith

in
sp

ec
ies

?

GP
S

tra
ck

in
g

ca
n

be
us

ed
to

as
se

s
co

nt
ac

tb
et

we
en

w
ild

lif
e

sp
ec

ies
an

d
be

tw
ee

n
w

ild
lif

e
an

d
do

m
es

tic
liv

es
to

ck
.

[9
4]

ec
ol

og
ica

ls
tu

di
es

of
w

ild
lif

e
ho

sts
ca

n
id

en
tif

y
po

te
nt

ial
in

te
rsp

ec
ies

tra
ns

m
iss

ion
pa

th
wa

ys
to

hu
m

an
s.

[2
5]

3.
is

th
er

e
ev

id
en

ce
of

cro
ss

-sp
ec

ies
tra

ns
m

iss
ion

an
d

ho
st

sh
ift

s?
po

pu
lat

ion
ge

no
m

ic
an

d
ge

ne
tic

stu
di

es
ca

n
ty

pe
in

fe
cti

ng
pa

th
og

en
sp

ec
ies

an
d

de
m

on
str

at
e

ge
ne

flo
w

ac
ro

ss
kn

ow
n

ho
st

sp
ec

ies
.S

eq
ue

nc
e

da
ta

ca
n

be
co

m
bi

ne
d

w
ith

in
bi

os
ta

tis
tic

al
an

d/
or

m
at

he
m

at
ica

lf
ra

m
ew

or
ks

(e
.g

.s
pa

ce
sta

te
m

od
ell

in
g)

to
re

co
ns

tru
ct

cro
ss

-sp
ec

ies
tra

ns
m

iss
ion

ev
en

ts.
Th

e
lat

te
rc

an
be

pa
rti

cu
lar

ly
us

ef
ul

to
als

o
di

sc
rim

in
at

e
be

tw
ee

n
re

ce
nt

cro
ss

-sp
ec

ies
tra

ns
m

iss
ion

s,
m

an
y

of
w

hi
ch

m
ay

re
su

lt
in

de
ad

-e
nd

in
fe

cti
on

s,
an

d
ho

st
sh

ift
s

th
at

re
fle

ct
su

cc
es

sfu
lo

nw
ar

ds

tra
ns

m
iss

ion
in

th
e

ne
w

ho
st

sp
ec

ies
.

[9
,8

1,
97

–
99

]

4.
w

ha
ta

re
th

e
po

te
nt

ial
m

od
es

of
tra

ns
m

iss
ion

/tr
an

sm
iss

ion
pa

th
wa

ys
?

stu
di

es
of

th
e

pr
es

en
ce

of
pa

th
og

en
in

di
ffe

re
nt

bo
dy

flu
id

s/e
xc

re
ta

ca
n

id
en

tif
y

or
co

nfi
rm

zo
on

ot
ic

so
ur

ce
s

of
in

fe
cti

on
s

an
d

in
di

ca
te

un
co

nv
en

tio
na

lo
rp

re
vio

us
ly

un
kn

ow
n

tra
ns

m
iss

ion
pa

th
wa

ys
aid

in
g

th
e

un
de

rst
an

di
ng

of
tra

ns
m

iss
ion

pa
th

wa
ys

an
d

pr
ov

id
in

g
fo

cu
s

fo
re

pi
de

m
iol

og
ica

ls
tu

di
es

.

[1
00

–
10

2]

ex
pe

rim
en

ta
li

nf
ec

tio
ns

ca
n

de
m

on
str

at
e

po
te

nt
ial

fo
ra

lte
rn

at
ive

pa
th

wa
ys

th
at

m
ay

no
th

av
e

be
en

co
ns

id
er

ed
,a

nd
m

ay

id
en

tif
y

w
hi

ch
m

od
es

of
tra

ns
m

iss
ion

ar
e

m
os

ti
m

po
rta

nt
.

[4
9,

10
3,

10
4]

5.
w

hi
ch

po
te

nt
ial

ho
st

is
m

os
ti

nf
ec

tio
us

?
stu

di
es

of
pa

th
og

en
sh

ed
di

ng
by

di
ffe

re
nt

sp
ec

ies
,i

nc
lu

di
ng

am
ou

nt
of

pa
th

og
en

sp
re

ad
an

d
du

ra
tio

n
of

sh
ed

di
ng

ca
n

be

us
ed

to
as

se
ss

th
e

po
te

nt
ial

re
lat

ive
co

nt
rib

ut
ion

of
di

ffe
re

nt
ho

st
sp

ec
ies

to
tra

ns
m

iss
ion

.

[1
05

–
10

9]

6.
w

ho
is

ac
qu

iri
ng

in
fe

cti
on

fro
m

w
ho

m
an

d
ho

w
?

in
te

rv
iew

s,
co

nt
ac

tt
rac

in
g

an
d

ris
k

fac
to

rs
tu

di
es

ca
n

fo
rs

om
e

di
se

as
es

in
di

ca
te

ho
w

th
e

m
ajo

rit
y

of
tra

ns
m

iss
ion

ev
en

ts
ar

e

oc
cu

rri
ng

,t
he

re
by

id
en

tif
yin

g
th

e
m

os
ti

m
po

rta
nt

tra
ns

m
iss

ion
pa

th
wa

ys
an

d
en

ab
lin

g
ta

rg
et

in
g

of
in

te
rv

en
tio

ns
.

[1
10

–
11

2]

m
ixi

ng
stu

di
es

,f
or

ex
am

pl
e,

of
co

nt
ac

tr
at

es
be

tw
ee

n
ag

e
gr

ou
ps

in
hu

m
an

po
pu

lat
ion

s,
ca

n
pr

ed
ict

w
hi

ch
ag

e
gr

ou
p

w
ou

ld

co
nt

rib
ut

e
m

os
tt

o
sp

re
ad

of
in

fe
cti

on
in

a
di

se
as

e
ou

tb
re

ak
,w

hi
ch

ca
n

be
ex

tre
m

ely
us

ef
ul

fo
rp

lan
ni

ng
an

d
pr

ep
ar

ed
ne

ss
,

e.g
.v

ac
cin

e
sto

ck
pi

lin
g.

[1
13

]

m
ol

ec
ul

ar
te

ch
ni

qu
es

su
ch

as
w

ho
le

ge
no

m
e

se
qu

en
cin

g
ca

n
fo

rs
om

e
di

se
as

es
be

us
ed

to
tra

ce
tra

ns
m

iss
ion

ev
en

ts.
[1

14
]

7.
w

hi
ch

tra
ns

m
iss

ion
pa

th
wa

y
or

gr
ou

p
is

dr
ivi

ng
tra

ns
m

iss
ion

,a
nd

th
er

ef
or

e
w

he
re

sh
ou

ld
in

te
rv

en
tio

ns
be

ta
rg

et
ed

?

m
at

he
m

at
ica

lm
od

els
of

di
se

as
e

dy
na

m
ics

,i
nf

or
m

ed
by

m
an

y
of

th
e

ab
ov

e
fo

rm
s

of
stu

dy
,c

an
be

us
ed

to
id

en
tif

y
ke

y
an

d

m
ain

te
na

nc
e

ho
sts

,a
nd

als
o

to
pr

ed
ict

th
e

im
pa

ct
of

in
te

rv
en

tio
ns

.

[6
,1

0,
11

5–
11

7]

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160091

10



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160091

11
can be inferred from degree of overlap in host ranges or habitats,

as was done in a modelling study to identify key animal reser-

voirs of African trypanosomiasis [115]. Technological advances

such as video-capture, radio-tracking and GPS tracking have

also provided useful insights into wildlife population contact

rates, both within species, for example, deer [127], and between

species, such as in study on risk of Hendra virus transmission

between flying-foxes and horses in Australia [94].

Evidence to inform relative rates of transmission between

versus within species can also be obtained through molecular

epidemiological approaches. For clusters of avian influenza

infections in humans, the relatedness of virus genomes

between cases can help ascertain whether any cases with no

history of exposure to sick poultry may represent human–

human transmission events [128]. Meanwhile, population

genetics studies of schistosomiasis have been used to estimate

levels of parasite genetic differentiation across host species in

China and the Philippines, to give at least qualitative insights

into the degree of transmission structuring between hosts

[9,129]. Novel phylogenetic tools are increasingly being used

to assessing rates and directionality of interspecies trans-

mission, for example, of bovine tuberculosis [97] and rabies

[98], while advances in phylodynamic approaches, in which

transmission models are directly fitted to observed pathogen

phylogenies, also show much promise [65,130].

The types of empirical data to inform WAIFW matrices

mentioned above, such as on the contact patterns and infec-

tiousness of different host species, will allow transmission

rates to be scaled between versus within species. However,

one cannot usually calculate the actual magnitude of b par-

ameters from such data alone; typically, this will be done

indirectly through fitting the model to epidemiological data

collected across host species. For endemic diseases, if it can

be reasonably assumed that dynamics are at a steady-state

equilibrium, cross-sectional prevalence data across host species

will be sufficient. For example, in the case of the multi-host

zoonotic parasite S. japonicum, relatively straightforward epi-

demiological and parasitological data allowed the different

potential host species contributions to R0,tot to be quantified,

and important conclusions about transmission and the likely

effects of control measures to be made [10].

For outbreaks or emerging diseases, estimation of trans-

mission rates and R0 will probably require the model to be

fitted to longitudinal data. The difficulty here is that surveil-

lance and reporting of animal diseases is often poor,

especially in wildlife but also in livestock diseases in many

countries. For many diseases with animal reservoirs of infec-

tion, occasional spillover into the human population is often

the only indication of ongoing and poorly understood epi-

zootic or enzootic transmission, as we have seen with

outbreaks of Ebola [131] and Nipah virus [99].
(c) Quantifying transmission by transmission modes
and pathways

Conceptually, at least, extending a model to consider mul-

tiple transmission pathways (encompassing the alternative

potential modes and routes of infection) within and between

host species is relatively straightforward. This can be done by

partitioning each element of the WAIFW matrix, bij, by trans-

mission mode k, such that the rate of infection from species j
to species i can be defined as:

bij ¼
X

k

bijk:

The next-generation matrix for the model, and thus R0,tot, can

then likewise be partitioned by each transmission mode k, in

addition to each host species i. Thus, the concepts for multi-

host–pathogen systems described above can similarly be

applied to multi-mode systems, with transmission mode-

specific R0 values (R0,k) providing a basis from which to

identify ‘maintenance’ and ‘essential’ transmission modes,

and differentiate between obligate versus facultative multi-

mode systems. (We should also note that, depending on the

system under investigation, k could also represent different

pathways if, for a given transmission mode, there are mul-

tiple routes the pathogen might take which should be

considered separately.)

The real challenge, once again, lies in obtaining sufficient

empirical evidence to parametrize the models and quantify

the relative importance of different transmission modes.

Nevertheless, there are approaches through which such evi-

dence can be collected (tables 2 and 3). For example, the

rate and duration of pathogen excretion and environmen-

tal persistence via different modes can, in principle, be

measured. Examples include the recently reported prolonged

shedding of Ebola virus in semen [100], and studies on dur-

ation of environmental persistence and infectivity of avian

influenza virus via aerosol and faecal–oral modes [103]. For

humans, behavioural surveys and classical epidemiological

risk factor studies can be useful in determining the relative

frequency of and risks associated with different types of

exposure. In the case of rabies, medical records and verbal

post-mortems will often provide information on history of

an animal bite and, therefore, which species most likely trans-

mitted infection [110]. For human cases of highly pathogenic

avian influenza, case investigations and interviews have been

useful in identifying which types of exposure to sick poultry

may carry the greatest risk for zoonotic transmission [132]. In

the case of sexually transmitted infections, such as HIV,

specific types of contact can be defined and measured, to

enable estimates of the probability of transmission per act

and by type of act [133]. In the few diseases where different

forms of exposure are associated with different disease

courses, surveillance and clinical data during or after an out-

break can also be used to identify most likely sources of

transmission and guide further epidemiological investigations.

Examples include anthrax, which has distinct clinical symp-

toms for different forms of exposure (inhalation, ingestion or

cutaneous), and Yersinia pestis where flea bites are more

likely to cause the bubonic form, whereas the pulmonic form

can be transmitted directly from human to human [134].

As with multi-host transmission dynamics, genetic and/

or genomic data can also provide important insights into the

relative importance of different modes and pathways. For

example, some modes of transmission may tend to involve a

larger pathogen inoculum dose than others (e.g. ingestion of

a heavily contaminated food source compared with aerosol

infection), for which one may expect to observe higher intra-

host microbial diversity [135]. For livestock diseases, the

reconstruction of interfarm outbreak spread based on phylo-

genetic and epidemiological data, along with data on factors

such as animal and human movements, road networks, wind

direction and distance between farms, can give insights into
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the potential role of different interfarm transmission pathways

(e.g. wind- versus human-mediated transmission) [136,137].

One advantage in the case of animal diseases is the possi-

bility to use experimental infections to inform estimates of

probability of transmission for different forms of exposure,

and the relative importance of different transmission routes.

For avian influenza, studies have involved exposing suscep-

tible birds to experimentally inoculated birds in such a way

that either only aerosol or only faecal–oral transmission

could occur [103,138,139]. Similarly, experimental studies on

FMD virus have been used to estimate the relative importance

of direct versus indirect transmission on farms, by exposing

groups of susceptible calves either directly to infected individ-

uals or by housing them in buildings that had previously held

inoculated individuals [104]. A semi-naturalist captive study

examining mode of transmission of T. gondii in wild brown

rats, Rattus norvegicus, in the UK aimed to determine if the

congenital transmission route alone could be successful and

sufficient at maintaining transmission [49]. The study found

that, in the absence of oocyst (faecal) contamination from the

feline definitive host or bradyzoite exposure through contami-

nated meat, the seroprevalence remained stable over several

generations of rats, suggesting that congenital transmission

might be a ‘maintenance’ transmission mode for T. gondii.
However, other modes of transmission, such as cannibalism,

sexual transmission or even importation of oocysts into the

enclosure by paratenic hosts (e.g. earthworms), could not

be fully ruled out, illustrating the difficulty of controlling all

possible transmission modes even in experimental studies.
4. Implications for disentangling transmission in
the ‘elimination era’

We live in a time where disease ‘elimination as a public

health problem’ and even ‘eradication’ have been proposed

as Millennium Development Goals and more recently, the

Sustainable Development Goals [15,140]. These goals are dif-

ficult to achieve for any infectious disease, as reflected by the

fact that only one human and one animal pathogen (smallpox

and rinderpest, respectively) have been globally eradicated to

date [141]. The distinct biological features of different infec-

tious agents and the technical factors for dealing with them

make their potential eradication or elimination more or less

likely. Three indicators may be considered to be of primary

importance: an effective intervention is available to interrupt

transmission of the agent; practical diagnostic tools with

sufficient sensitivity and specificity are available to detect

levels of infection that can lead to transmission; and a

single-host species, be it human or animal, is essential for

the life cycle of the infectious agent, which has no other ver-

tebrate reservoir and does not amplify in the environment. In

addition, the importance of socio-economic and political con-

text (including factors such as health system infrastructure,

intersectoral cooperation, financial resources, political will

and public acceptance to ensure effective implementation

of interventions) in determining the success of elimination

programmes must be stressed.

The challenges of elimination are magnified for multi-host

and undoubtedly even more so for multi-mode pathogens.

Interventions may need to identify and target multiple host

species, and/or block or manipulate available transmission

pathways [83,118]. For instance, Brucella melitensis causes
febrile disease in humans and production losses/morbidity

in both small (sheep and goat) and large (cattle) ruminants in

many parts of the world. Vaccination of sheep and goats

alone is, however, the mainstay of current control programmes.

Recent mathematical models suggest that the current practice

of limiting vaccination to sheep/small ruminants alone

would take 16.8 years to achieve elimination on a mixed-

species B. melitensis-endemic farm, but combining this with

cattle vaccination would reduce the time to 3.5 years [142].

The set of tools required for control are also likely to be

more diverse for those pathogens for which multiple host

species and/or multiple transmission modes exist. Such

infectious agents may, for instance, show genetic diversity

across different host species, such that a vaccine or drug effec-

tive in one host species may not be in another [12]. Drug

treatment of animal reservoirs, even with different drugs to

those used in humans, may also lead to the development of

cross-resistance, rendering human drug treatment less effec-

tive [143]. Social and economic challenges may also be

specific to, or amplified for, pathogens with multiple hosts

and/or transmission pathways. For instance, livestock

owners may feel disinclined to report disease in their

animals (especially if it may lead to culling), or to treat/or

vaccinate their animals, if there is a risk and/or insufficient

compensation or perceived benefit from such measures [144].

An additional challenge in multi-host and multi-mode

systems in the context of elimination is the capacity of patho-

gens and transmission dynamics to evolve and change in the

face of changing pressures, which may mean an alteration in

the key hosts within a system, an expansion of host range

and/or an expansion or opportunities for transmission. It

remains a matter of urgency to determine with confidence

whether new transmission modes (mode switches) may

evolve in extant disease threats, or if currently minor trans-

mission modes could become major modes (mode shifts),

given new circumstances and opportunities [20].
5. Conclusion
Pathogens which have the capacity to be transmitted by mul-

tiple hosts and/or via multiple modes may pose the greatest

challenge when it comes to disease control and ultimately

elimination. Identifying those key hosts and transmission path-

ways, and thus where interventions would most effectively

be targeted, is not straightforward, but important insights

can be gained through continued application and development

of theoretical and empirical approaches for disentangling trans-

mission dynamics, such as those presented above. Interventions

need to be meticulously designed, implemented and monitored

to optimize the immediate short-term benefits to the target

population(s). Given that such pathogens might be especially

able to adaptively switch hosts and transmission modes,

particularly in our current era of profound and rapid anthropo-

genic change, advancing our understanding of evolutionary, as

well as ecological, dynamics of multi-host and multi-mode

pathogens is also crucial for anticipating and maximizing the

ongoing success of elimination programmes.
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can be a sexually transmitted infection with serious
clinical consequences. Not all routes of infection are
created equal. Med. Hypotheses 83, 286 – 289.
(doi:10.1016/j.mehy.2014.05.019)

59. Disko R, Braveny I, Vogel P. 1971 Studies on the
occurrence of Toxoplasma gondii in the human
ejaculate. Z. Tropenmed. Parasitol. 22, 391 – 396. [In
German.]

60. Cottam E et al. 2008 Transmission pathways of foot-
and-mouth disease virus in the United Kingdom in
2007. PLoS Pathog. 4, e1000050. (doi:10.1371/
journal.ppat.1000050)

61. Alexandersen S, Zhang Z, Donaldson AI, Garland
AJM. 2003 The pathogenesis and diagnosis of foot-
and-mouth disease. J. Comp. Pathol. 129, 1 – 36.
(doi:10.1016/S0021-9975(03)00041-0)

62. Salt J. 1993 The carrier state in foot and
mouth disease—an immunological review. Br.
Vet. J. 149, 207 – 223. (doi:10.1016/S0007-
1935(05)80168-X)

63. Smith MT, Bennett AM, Grubman MJ, Bundy BC.
2014 Foot-and-mouth disease: technical and
political challenges to eradication. Vaccine 32,
3902 – 3908. (doi:10.1016/j.vaccine.2014.04.038)

64. Parrish CR et al. 2008 Cross-species virus
transmission and the emergence of new epidemic
diseases. Microbiol. Mol. Biol. Rev. 72, 457 – 470.
(doi:10.1128/MMBR.00004-08)

65. Lamberton PHL, Crellen T, Cotton JA, Webster JP.
2015 Modelling the dynamics of mass drug
administration selective pressures on schistosome
population genetics and genomics. Adv. Parasitol.
87, 293 – 327. (doi:10.1016/bs.apar.2014.12.006)

66. Whitlock MC. 1996 The red queen beats the jack-of-
all-trades: the limitations on the evolution of
phenotypic plasticity and niche breadth. Am. Nat.
148, S65 – S77. (doi:10.1086/285902)

67. Gupta S, Ferguson N, Anderson R. 1998 Chaos,
persistence, and evolution of strain structure in
antigenically diverse infectious agents. Science 280,
912 – 915. (doi:10.1126/science.280.5365.912)

68. Woolhouse MEJ, Webster JP, Domingo E,
Charlesworth B, Levin BR. 2002 Biological and
biomedical implications of the coevolution of
pathogens and their hosts. Nat. Genet. 32,
569 – 577. (doi:10.1038/ng1202-569)

69. Webby RJ, Webster RG. 2003 Are we ready for
pandemic influenza? Science 302, 1519 – 1522.
(doi:10.1126/science.1090350)

70. Vianaa M et al. 2015 Dynamics of a morbillivirus at
the domestic – wildlife interface: canine distemper
virus in domestic dogs and lions. Proc. Natl Acad.
Sci. USA 112, 1464 – 1469. (doi:10.1073/pnas.
1411623112)

71. Jones BA et al. 2013 Zoonosis emergence linked to
agricultural intensification and environmental
change. Proc. Natl Acad. Sci. USA 110, 8399 – 8404.
(doi:10.1073/pnas.1208059110)

72. World Health Assembly Geneva SWHO. 1991
Eradication of dracunculiasis: resolution of the 44th
World Health Assembly. Geneva, Switzerland: World
Health Organization.

73. Eberhard ML et al. 2014 The peculiar epidemiology
of Dracunculiasis in Chad. Am. J. Trop. Med. Hyg. 90,
61 – 70. (doi:10.4269/ajtmh.13-0554)

74. Biswas G, Sankara DP, Agua-Agum J, Maiga A.
2013 Dracunculiasis (guinea worm disease):
eradication without a drug or a vaccine. Phil.
Trans. R. Soc. B 368, 20120146. (doi:10.1098/rstb.
2012.0146)

75. Alizon S, de Roode JC, Michalakis Y. 2013 Multiple
infections and the evolution of virulence. Ecol. Lett.
16, 556 – 567. (doi:10.1111/ele.12076)

76. Pedersen AB, Fenton A. 2007 Emphasizing the
ecology in parasite community ecology. Trends Ecol.
Evol. 22, 133 – 139. (doi:10.1016/j.tree.2006.11.005)

http://dx.doi.org/10.1080/00034983.1980.11687376
http://dx.doi.org/10.1017/S0031182000065902
http://dx.doi.org/10.1017/S0031182000065902
http://dx.doi.org/10.1017/S0031182000076460
http://dx.doi.org/10.1016/S1286-4579(01)01459-9
http://dx.doi.org/10.1016/S1286-4579(01)01459-9
http://dx.doi.org/10.1093/schbul/sbl073
http://dx.doi.org/10.1093/schbul/sbl073
http://dx.doi.org/10.1017/S0031182008004666
http://dx.doi.org/10.1098/rspb.2005.3413
http://dx.doi.org/10.1098/rspb.2000.1182
http://dx.doi.org/10.1098/rspb.2000.1182
http://dx.doi.org/10.1073/pnas.0608310104
http://dx.doi.org/10.1093/icb/icu060
http://dx.doi.org/10.1093/icb/icu060
http://dx.doi.org/10.1111/j.1420-9101.2008.01658.x
http://dx.doi.org/10.1111/j.1420-9101.2008.01658.x
http://dx.doi.org/10.1089/vbz.2012.1160
http://dx.doi.org/10.3201/eid1408.080082
http://dx.doi.org/10.3201/eid1408.080082
http://dx.doi.org/10.1186/1471-2334-10-65
http://dx.doi.org/10.1111/j.1365-3156.2006.01746.x
http://dx.doi.org/10.1111/j.1365-3156.2006.01746.x
http://dx.doi.org/10.1017/S0031182000075958
http://dx.doi.org/10.1017/S0031182000075958
http://dx.doi.org/10.1038/1831348a0
http://dx.doi.org/10.1038/1831348a0
http://dx.doi.org/10.1645/GE-2372.1
http://dx.doi.org/10.1371/journal.pone.0027229
http://dx.doi.org/10.1016/j.exppara.2009.07.003
http://dx.doi.org/10.1016/j.vetpar.2012.12.056
http://dx.doi.org/10.1590/s1984-29612010000300010
http://dx.doi.org/10.1590/s1984-29612010000300010
http://dx.doi.org/10.1645/12-126.1
http://dx.doi.org/10.1016/j.mehy.2014.05.019
http://dx.doi.org/10.1371/journal.ppat.1000050
http://dx.doi.org/10.1371/journal.ppat.1000050
http://dx.doi.org/10.1016/S0021-9975(03)00041-0
http://dx.doi.org/10.1016/S0007-1935(05)80168-X
http://dx.doi.org/10.1016/S0007-1935(05)80168-X
http://dx.doi.org/10.1016/j.vaccine.2014.04.038
http://dx.doi.org/10.1128/MMBR.00004-08
http://dx.doi.org/10.1016/bs.apar.2014.12.006
http://dx.doi.org/10.1086/285902
http://dx.doi.org/10.1126/science.280.5365.912
http://dx.doi.org/10.1038/ng1202-569
http://dx.doi.org/10.1126/science.1090350
http://dx.doi.org/10.1073/pnas.1411623112
http://dx.doi.org/10.1073/pnas.1411623112
http://dx.doi.org/10.1073/pnas.1208059110
http://dx.doi.org/10.4269/ajtmh.13-0554
http://dx.doi.org/10.1098/rstb.2012.0146
http://dx.doi.org/10.1098/rstb.2012.0146
http://dx.doi.org/10.1111/ele.12076
http://dx.doi.org/10.1016/j.tree.2006.11.005


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160091

15
77. Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe
S, Paterson S, Begon M. 2010 Species interactions in
a parasite community drive infection risk in a
wildlife population. Science 330, 243 – 246. (doi:10.
1126/science.1190333)

78. Mavarez J, Salazar CA, Bermingham E, Salcedo C,
Jiggins CD, Linares M. 2006 Speciation by
hybridization in Heliconius butterflies. Nature 441,
868 – 871. (doi:10.1038/nature04738)

79. Pardo-Diaz C et al. 2012 Adaptive introgression
across species boundaries in Heliconius butterflies.
PLoS Genet. 8, e1002752. (doi:10.1371/journal.
pgen.1002752)

80. Huyse T, Webster BL, Stothard JR, Diaw OT,
Polman K, Rollinson D, Kazura JW. 2009
Bidirectional introgressive hybridisation between a
cattle and human schistosome species. PLoS
Pathog. 5, e1000571. (doi:10.1371/journal.ppat.
1000571)

81. Webster BL, Diaw OT, Seye MM, Webster JP,
Rollinson D. 2013 Introgressive hybridization of
Schistosoma haematobium group species in Senegal:
species barrier break down between ruminant and
human schistosomes. PLoS Neglect. Trop. Dis. 7,
e2110. (doi:10.1371/journal.pntd.0002110)

82. Ewald P. 1987 Transmission modes and the
evolution of the parasitism-mutualism continuum.
Ann. NY Acad. Sci. 503, 295 – 306. (doi:10.1111/j.
1749-6632.1987.tb40616.x)

83. Ewald PW. 1991 Transmission modes and the
evolution of virulence. Hum. Nat. 2, 1 – 30. (doi:10.
1007/BF02692179)

84. Hudson EH. 1963 Treponematosis and anthropology.
Ann. Intern. Med. 58, 1037 – 1048. (doi:10.7326/
0003-4819-58-6-1037)

85. Lukehart SA, Giacani L. 2014 When is syphilis not
syphilis? Or is it? Sex. Transm. Dis. 41, 554 – 555.
(doi:10.1097/OLQ.0000000000000179)

86. Centurion-Lara A, Giacani L, Godorne SC, Molini B,
Brinck Reid T, Lukehart SA. 2013 Fine analysis of
genetic diversity of the tpr gene family among
treponemal species, subspecies and strains. PLoS
Neglect. Trop. Dis. 7, e2222. (doi:10.1371/journal.
pntd.0002222)

87. Mansuy JM et al. 2016 Zika virus: high infectious
viral load in semen, a new sexually transmitted
pathogen? Lancet Infect. Dis. 3099, 138 – 139.
(doi:10.1016/s1473-3099(16)00138-9)

88. Matheron S, D’Ortenzio E, Leparc-Goffart I, Hubert
B, de Lamballerie X, Yazdanpanah Y. 2016 Long
lasting persistence of Zika virus in semen. Clin.
Infect. Dis. 63, 1264. (doi:10.1093/cid/ciw509)

89. Twenhafel NA et al. 2013 Pathology of experimental
aerosol Zaire ebola virus infection in rhesus
macaques. Vet. Pathol. 50, 514 – 529. (doi:10.1177/
0300985812469636)

90. Diekmann O, Heesterbeek JAP, Metz JAJ. 1990 On
the definition and the computation of the basic
reproduction ratio R0 in models for infectious
diseases in heterogeneous populations. J. Math.
Biol. 28, 365 – 382. (doi:10.1007/BF00178324)

91. Yob JM et al. 2001 Nipah virus infection in bats
(order Chiroptera) in peninsular Malaysia. Emerg.
Infect. Dis. 7, 439 – 441. (doi:10.3201/eid0703.
017312)

92. Allela L, Bourry O, Pouillot R, Délicat A, Yaba P,
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