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Aims Coronavirus disease 2019 (COVID-19) can lead to multiorgan damage. MicroRNAs (miRNAs) in blood reflect cell
activation and tissue injury. We aimed to determine the association of circulating miRNAs with COVID-19 severity
and 28 day intensive care unit (ICU) mortality.

....................................................................................................................................................................................................
Methods and
results

We performed RNA-Seq in plasma of healthy controls (n = 11), non-severe (n = 18), and severe (n = 18) COVID-19
patients and selected 14 miRNAs according to cell- and tissue origin for measurement by reverse transcription quantita-
tive polymerase chain reaction (RT–qPCR) in a separate cohort of mild (n = 6), moderate (n = 39), and severe (n = 16)
patients. Candidates were then measured by RT–qPCR in longitudinal samples of ICU COVID-19 patients (n = 240 sam-
ples from n = 65 patients). A total of 60 miRNAs, including platelet-, endothelial-, hepatocyte-, and cardiomyocyte-
derived miRNAs, were differentially expressed depending on severity, with increased miR-133a and reduced miR-122
also being associated with 28 day mortality. We leveraged mass spectrometry-based proteomics data for corresponding
protein trajectories. Myocyte-derived (myomiR) miR-133a was inversely associated with neutrophil counts and posi-
tively with proteins related to neutrophil degranulation, such as myeloperoxidase. In contrast, levels of hepatocyte-
derived miR-122 correlated to liver parameters and to liver-derived positive (inverse association) and negative acute
phase proteins (positive association). Finally, we compared miRNAs to established markers of COVID-19 severity and
outcome, i.e. SARS-CoV-2 RNAemia, age, BMI, D-dimer, and troponin. Whilst RNAemia, age and troponin were better
predictors of mortality, miR-133a and miR-122 showed superior classification performance for severity. In binary and
triplet combinations, miRNAs improved classification performance of established markers for severity and mortality.
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Conclusion Circulating miRNAs of different tissue origin, including several known cardiometabolic biomarkers, rise with
COVID-19 severity. MyomiR miR-133a and liver-derived miR-122 also relate to 28 day mortality. MiR-133a reflects
inflammation-induced myocyte damage, whilst miR-122 reflects the hepatic acute phase response.
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1. Introduction

Coronavirus disease 2019 (COVID-19), caused by the single-stranded
RNA virus SARS-CoV-2, varies in severity from mild self-limiting disease
to critical illness with multiorgan failure. Cardiovascular involvement in
severe COVID-19 ranges from elevated cardiac damage markers, ve-
nous and arterial thrombosis to arrhythmias, and myocardial infarctions.1

Similarly, liver dysfunction is prevalent in COVID-19 patients2 and cardi-
ometabolic risk factors are associated with COVID-19 severity and

mortality.3 Therefore, analysing markers of organ damage might inform
on adverse outcomes and COVID-19 complications.

MicroRNAs (miRNAs) are small non-coding RNAs (�22 nt in length)
that repress synthesis of target proteins. miRNAs are also stably detect-
able in the circulation. Given their cell- and tissue-specific enrichment,4,5

miRNAs have been investigated as diagnostic and prognostic biomarkers
for pathologies including myocardial infarction, liver failure, and sepsis,5–9

as well as drug-induced organ injury.10 Whilst protein biomarkers for
COVID-19 have been extensively investigated,11–15 only two studies
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..measured preselected circulating miRNAs in COVID-19 patients thus
far.16–18

In this study, we performed next-generation sequencing (NGS) of
small RNAs in healthy control individuals (n = 11), non-severe (n = 18),
and severe (n = 18) COVID-19 patients. miRNAs with a defined cell- and
tissue origin (Supplementary material online, Table S1) were then vali-
dated by reverse transcription quantitative polymerase chain reaction
(RT–qPCR) in an independent cohort of COVID-19 patients with differ-
ent disease severities (n = 61). Finally, validation was performed by longi-
tudinal measurements in COVID-19 patients admitted to the intensive
care unit (ICU, n = 240 samples from n = 65 patients). Circulating
miRNAs were related to clinical parameters, 28 day ICU mortality,
SARS-CoV-2 RNAemia, and proteomics by data-independent acquisi-
tion mass spectrometry (DIA-MS).12

2. Methods

2.1 Clinical data
For small RNA-Seq of plasma samples, we obtained blood from COVID-
19 patients with mild to moderate disease (i.e. WHO ordinal scale <_5,
n = 18) and severe disease (i.e. WHO ordinal scale >5, n = 18) upon hos-
pitalization at the Vienna General Hospital, Austria. In addition, blood
from healthy controls (n = 11) was collected. For RT–qPCR of plasma
samples, we obtained blood from COVID-19 ward patients with mild
(i.e. WHO ordinal scale 1–2, n = 6) and moderate disease (i.e. WHO or-
dinal scale 3–5, n = 39) upon hospitalization at St Thomas’ Hospital,
London, UK. In addition, we obtained plasma samples from patients with
severe disease (i.e. WHO ordinal scale >5, n = 16) within 6 days of ad-
mission to the ICU of King’s College Hospital, London, UK. Plasma was
collected in EDTA BD VacutainerTM tubes (BD, 362799) and centrifuged
at 2000� g for 15 min. Moreover, we obtained longitudinal serum sam-
ples from severe COVID-19 ICU patients (n = 240 samples from n = 65
patients) recruited at St Thomas’ Hospital and at King’s College Hospital.
Serum from King’s College Hospital ICU patients originated from the
same blood donation as the plasma King’s College Hospital ICU samples.
Serum was collected in silica BD VacutainerTM tubes (BD, 367820) and
left to clot for 15 min, followed by centrifugation at 2000� g for 15 min.
Serum samples were collected within 6 days of admission to ICU and
thereafter during Weeks 2 and 3 of ICU admission. Recruitment of sam-
ples used for RNA-Seq occurred between August 2018 and January
2020 (healthy volunteers) and between May and December 2020
(COVID-19 patients). Recruitment of samples used for RT–qPCR oc-
curred between March 2020 and July 2020. The study was conducted in
accordance with the Declaration of Helsinki and approved by an institu-
tional review board (EK1404/2020 for COVID-19 patients and EK112/
2010 for healthy volunteers recruited at the Vienna General Hospital;
REC19/NW/0750 for patients recruited at King’s College Hospital;
REC19/SC/0187 for severe ICU patients recruited at St Thomas’
Hospital; REC19/SC/0232 for mild and moderate patients recruited at St
Thomas’ Hospital). Written informed consent was obtained directly
from patients (if mentally competent), or from the next of kin or profes-
sional consultee. The consent procedure was then completed with ret-
rospective consent if the patient regained capacity. The 28 day mortality
was used as the primary outcome measure. Baseline clinical characteris-
tics and demographics of our cohorts are shown in Supplementary mate-
rial online, Tables S2, S5, and S8.12

2.2 RNA extraction for small RNA-Seq
Total RNA was extracted from 200 lL of citrate/CTAD plasma using
the Maxwell RSC miRNA Tissue kit (Promega, AS1460) according to
the manufacturer’s protocol. Briefly, samples were thawed on ice and
centrifuged at 12 000� g for 5 min to remove cellular debris. For each
sample, 200 lL of plasma were mixed with the following reagents:
200 lL of homogenization solution, 200 lL of lysis master mix contain-
ing 1 lL of pre-diluted 1:250 RNA spike-in mix (UniSp 2, 4, 5, Qiagen,
339390), and 15 lL of Proteinase K. Next, samples were incubated for
15 min on a heat block at 37�C, 300 rpm. After the incubation, samples
were transferred to RSC cartridges followed by automated RNA ex-
traction in the Maxwell instrument. Finally, total RNA was eluted in
50 lL nuclease-free water and stored at -80�C prior to further
analyses.

2.3 Library preparation for small RNA-Seq
Library preparation was performed using RealSeq-Biofluids Plasma/
Serum miRNA Library kit for Illumina sequencing (RealSeq Biosciences,
600-00048; protocol 20181220_RealSeq-BF_CL) according to the man-
ufacturer’s protocol. Briefly, 8.5lL of extracted RNA were used as in-
put. The adapters were pre-diluted 1:4 to account for low miRNA
abundance. Adapter-ligated libraries were circularized, reverse tran-
scribed, and amplified. Library PCR was performed using 21 cycles with
Illumina primers included in the kit. In total, 47 miRNA libraries were
prepared from plasma samples and analysed for library fragments
distribution using the Agilent DNA 1000 kit (Agilent Technologies,
5067-1504) with Agilent DNA1000 reagents (Agilent Technologies,
5067-1505).

The generated libraries were pooled in an equimolar proportion and
the obtained pool was size-selected with the BluePippin system using a
3% agarose cassette, 100–250 kb (Sage Science, BDQ3010) to remove
DNA fragments outside of the target range. The pooled and purified li-
braries were analysed for fragment distribution on an Agilent High
Sensitivity DNA kit (Agilent Technologies, 5067-4626) with Agilent High
Sensitivity DNA reagents (Agilent Technologies, 5067-4627). The library
pool was then sequenced on an Illumina NextSeq550 (single-read,
75 bp) according to the manufacturer’s protocol at the Vienna
BioCenter Core Facilities, Vienna, Austria. The RNA-Seq data have been
deposited to the GEO NCBI repository with the accession number
GSE176498.

2.4 RNA isolation and heparinase
treatment
The miRNeasy Mini kit (Qiagen, 217004) was used according to the
manufacturer’s recommendations for isolation of total RNA. For nor-
malization of miRNAs, an exogenous miRNA (Cel-miR-39-3p, Qiagen,
219600) was spiked in during the first step of RNA isolation as described
previously.5 Elution of RNA was performed in 30 lL of nuclease-free
H2O by centrifugation at 8500� g for 1 min at 4�C. RNA was then
treated with heparinase to overcome the confounding effect of heparin
on qPCR,5,19 as described previously.5,12,19 Briefly, 8 lL of RNA was
added to 2 lL of heparinase 1 from Flavobacterium heparinum (Sigma,
H2519), 0.4lL RNase inhibitor (RiboLock 40 U/lL, ThermoFisher,
EO0381), 5.6 lL of heparinase buffer (pH 7.5) and incubated at 25�C for
3 h.5,12,19

Circulating cardiometabolic microRNAs in COVID-19 463

https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvab338#supplementary-data
https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvab338#supplementary-data
https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvab338#supplementary-data
https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvab338#supplementary-data


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
2.5 Reverse transcription quantitative
polymerase chain reaction
For detection of SARS-CoV-2 RNA, we performed a two-step RT–
qPCR using the LunaScriptVR RT SuperMix Kit (NEB, E3010) and the
Luna Universal Probe qPCR Master Mix (NEB, M3004), as described
previously.12 Samples were considered positive for SARS-CoV-2 if the
cycle quantification (Cq) value of either N1 or N2 primer was below 40.

For miRNAs, the miRCURY LNA RT kit (Exiqon, 339340) was used
for RT, whilst the miRCURY SYBR Green qPCR (Exiqon, 339347) in
combination with miRCURY LNA miRNA PCR Assays (both Qiagen,
Supplementary material online, Table S1) were used for qPCR detection,
as described previously.5 Reactions were loaded using a Bravo
Automated Liquid Handling Platform (Agilent). qPCR was performed on
a ViiA7 Real-Time PCR System (Applied Biosystems) at 95�C for 2 min
followed by 40 cycles of 95�C for 10 s and 56�C for 1 min. Relative quan-
tification (RQ) of miRNAs was based on the 2-DDCq method,4 using Cel-
miR-39-3p for DCq and a calibrator sample consisting of two identical
replicates of equal volumes from all samples for DDCq. RQ was per-
formed using Microsoft Excel, version 15.32 for MacOS.

2.6 DIA-MS analysis
As described before,12 serum destined for DIA-MS analysis was inacti-
vated using 1% (v/v) Triton X-100 and 1% (v/v) tributyl phosphate.
Inactivated serum was denatured, reduced, and alkylated before enzy-
matic digestion with Trypsin/LysC (Promega, V5072). Digested peptide
solutions were acidified and cleaned up using a Bravo AssayMAP Liquid
Handling Platform equipped with C18 Cartridges (Agilent). PQ500
Reference Peptides (Biognosys, Ki-3019-96) were added to the cleaned
serum peptide solutions. Peptides were analysed using a capillary flow
reversed-phase liquid chromatography (LC)-MS system consisting of an
UltiMate 3000 LC system (Thermo Scientific) and an Orbitrap Fusion
Lumos Tribrid mass spectrometer (Thermo Scientific). Higher-energy
C-trap dissociation was used to sequentially fragment precursors
grouped into 30 isolation windows. Orbitrap MS1 and MS2 spectra were
analysed using the PQ500 analysis plug-in provided in Spectronaut 14
(Biognosys). Quality control of peptide identifications was achieved by
introducing Q-value, signal-to-noise ratio, and missing value thresholds.
Quantification was based on MS2 peak area and target-to-reference ra-
tio, i.e. the abundance ratio of a given serum peptide and its correspond-
ing PQ500 reference peptide. Protein abundances were calculated by
adding up quality-controlled peptide abundances. The mass spectrome-
try proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier
PXD024089.12

2.7 Statistical analysis
2.7.1 RNA-Seq
Analysis of RNA-Seq data was performed with the software package
MiND, a data analysis pipeline that generates overall QC data, unsuper-
vised clustering analysis, normalized miRNA count matrices, and differ-
ential expression analysis based on raw NGS data. Overall quality of the
NGS data was evaluated automatically and manually with fastQC
v0.11.820 and multiQC v1.7.21 Reads from all passing samples were
adapter trimmed and quality filtered (min Phred score of 30) using cuta-
dapt v2.322 and filtered for a minimum length of 17 nt. Mapping steps
were performed with bowtie v1.2.223 and miRDeep2 v2.0.1.2,24 whereas
reads were mapped first against the genomic reference GRCh38.p12
provided by Ensembl25 allowing for two mismatches and subsequently

miRBase v22.1,26 filtered for miRNAs of Homo sapiens only, allowing for
one mismatch. For a general RNA composition overview, non-miRNA
mapped reads were mapped against RNAcentral27 and then assigned to
various RNA species of interest. Statistical analysis of preprocessed NGS
data was done with R v3.6 and the packages ‘corrplot’, ‘Hmisc’, and ‘gen-
efilter v1.68’. Differential expression analysis with edgeR v3.2828 used
the quasi-likelihood negative binomial generalized log-linear model func-
tions provided by the package. The independent filtering method of
DESeq229 was adapted for use with edgeR to remove low abundant
miRNAs and thus optimize the Benjamini–Hochberg false discovery rate
(FDR) correction.

2.7.2 RT–qPCR, proteomics, and clinical data
Missing values of variables were imputed if <30% of the values were
missing using K nearest neighbours-based imputation with K = 5.
Variables with >_30% missing values were excluded or analysed as binary
variables in the case of RT–qPCR measurements of miRNAs (i.e. detect-
able vs. undetectable). Normal distribution of data was assessed after
logarithmic (log2) transformation using the Shapiro–Wilk test.
Significance between two groups of continuous variables was assessed
using Student’s t-tests if data were normally distributed and using Mann–
Whitney U tests if data were not normally distributed. Significance be-
tween more than two groups of continuous variables was assessed using
ANOVA if data were normally distributed and Kruskal–Wallis if data
were not normally distributed. The v2 test was used to compare binary
variables. A P-value threshold of 0.05 was used to infer significant
changes. Benjamini and Hochberg’s correction was used to correct for
multiple testing. Corrections for age, sex, and body mass index (BMI)
were applied using the limma package.30 Spearman correlation was used
to determine correlations between continuous variables. Point-biserial
correlation was used to determine correlations between continuous
and binary variables. All statistical analyses were two-tailed. Longitudinal
miRNA trajectories were fitted using generalized alternative models.
Generalized linear mixed models (binomial family) were fitted to com-
bine binary and triplet signatures for the classification of severity or 28
days outcome of COVID-19 ICU patients using the ‘glmer’ R package.
Empirical receiver operating characteristic (ROC) plots were created to
calculate the area under the curves (AUC) using five-fold cross validation
and bootstrapping to better assess their generalization properties.
Kaplan–Meier analyses were conducted using the ‘survminer’ R library.
GraphPad Prism (version 9.1.1) and R programming environment (v3.6)
were used for statistical analysis and to generate associated figures.
Schematic diagrams were created with Biorender.com.

3. Results

3.1 NGS of small RNAs in patients with
different COVID-19 severity and healthy
controls
To assess circulating miRNA changes, libraries of small RNAs were gen-
erated from plasma of healthy controls (n = 11) and patients with mild/
moderate (n = 18) and severe (n = 18) COVID-19 (admitted to the
Vienna General Hospital, Austria, Supplementary material online, Table
S2). Patients with non-severe and severe COVID-19 had similar comor-
bidities and did not differ in age and sex. Patients with severe COVID-19
had a marginally higher BMI [26.8 IQR (24.3, 30.8) vs. 30.1 IQR (27.7,
36.7), P = 0.07, Supplementary material online, Table S2].
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Without distinguishing between isomiRs, 333 miRNAs were consis-
tently identified in all samples, including miRNAs for which a role in criti-
cally ill patients or a tissue-specific origin has been shown previously
(Supplementary material online, Table S1). Differences in the plasma
miRNome of healthy controls (n = 11), non-severe (n = 18), and severe
(n = 18) COVID-19 were visualized by principal component (PC) analy-
ses (Figure 1A). A total of 94 and 60 miRNAs differed significantly
(FDR < 0.05) between healthy controls and patients with severe
COVID-19 (Figure 1B and Supplementary material online, Table S3) and
between patients with mild/moderate COVID-19 and severe COVID-
19 (Figure 1C and Supplementary material online, Table S4), respectively.
A total of 109 miRNAs were different (FDR < 0.05) between healthy
controls and patients with mild/moderate COVID-19 (Supplementary
material online, Figure S1). Two tissue-specific miRNAs, liver-derived
miR-122,6 and myocyte-derived (myomiR) miR-133a,5,9,31 were among
the most up-regulated miRNAs in severe COVID-19 and remained sig-
nificant after adjusting for BMI (miR-122: adjusted P = 0.0096,
FDR = 0.036, miR-133a: adjusted P = 0.013, FDR = 0.044,
Supplementary material online, Table S4).

We then performed a hierarchical clustering analysis on the miRNAs
in COVID-19 patients that were found to be differentially expressed be-
tween non-severe and severe COVID-19 patients and for which a role
in critically ill patients or a tissue-specific origin had been shown previ-
ously (Figure 2). As expected, miRNAs with a defined cellular origin clus-
tered and correlated together. Liver-derived miR-122 clustered with and
strongly correlated to other well-known liver-derived miRNAs, such as
miR-192 (r = 0.90, P < 0.0001) and miR-885 (r = 0.79, P < 0.0001).6

Similarly, myocyte-derived miR-133a clustered with and strongly corre-
lated to other well-known myomiRs, i.e. miR-1 (r = 0.71, P < 0.0001) and
miR-208b (r = 0.59, P < 0.0001).5

3.2 RT–qPCR validation of miRNAs in
COVID-19 patients with different disease
severity
In an independent cohort of patients with mild (n = 6), moderate
(n = 39), and severe (n = 16) COVID-19 (admitted to King’s College
Hospital, London, UK, Supplementary material online, Table S5), we se-
lected 14 plasma miRNAs with different cellular and tissue origin
(Supplementary material online, Table S1) for validation by RT–qPCR. Of
them, 11 miRNAs were detectable in >70% of samples (Figure 3 and
Supplementary material online, Table S6). Three tissue-specific miRNAs
(miR-187, miR-208b, and miR-124; Figure 3 and Supplementary material
online, Table S7) showed poor detectability and were analysed as binary
variables based on detectability. In line with the NGS results, most
miRNAs with a defined tissue origin; including miRNAs previously
implicated as markers of the cardiometabolic system, such as platelet-,
endothelial-, myocyte-, and hepatocyte-derived miRNAs; rose with
COVID-19 severity (Figure 3 and Supplementary material online, Tables
S6 and S7). Others, i.e. miR-150, showed pronounced changes by RNA-
Seq in comparison to healthy controls, but were not significantly chang-
ing with COVID-19 severity by RT–qPCR. In agreement with the NGS
results, liver-derived miR-1226 and myocyte-derived miR-133a5,9,31

showed the largest fold change (FC) in mild vs. severe disease (miR-122
log2-FC = 3.66, FDR = 0.0008; miR-133a log2-FC = 2.84, FDR = 0.0008;
Figure 3 and Supplementary material online, Table S6). After adjustment
for age, sex, and BMI, miR-122 and miR-133a were the only miRNAs be-
sides platelet- and endothelium-derived miR-1264,32–34 that remained
significant and were reliably detectable by RT–qPCR. Unlike most

Figure 1 NGS of small RNAs in patients with different COVID-19
patients with different disease severity and healthy controls. (A) PC
analysis based on RNA-Seq in plasma of healthy controls (n = 11), non-
severe (n = 18), and severe (n = 18) COVID-19 patients. PC1 (x-axis)
and PC2 (y-axis) explain 15.62% and 13.31% of the variance, respec-
tively. (B) Volcano plot showing plasma miRNAs that are differentially
expressed between healthy controls (n = 11) and severe (n = 18)
COVID-19 patients. (C) Volcano plot showing plasma miRNAs that are
differentially expressed between non-severe (n = 18) and severe
(n = 18) COVID-19 patients. Highlighted are miRNAs that have previ-
ously been attributed a role in critically ill patients or are miRNAs with
a tissue-specific origin (Supplementary material online, Table S1).
Differential expression analysis of RNA-Seq data was performed using
edgeR and applying the independent filtering method of DESeq2 to re-
move low abundant miRNA to optimize the Benjamini–Hochberg FDR
correction. All statistical analyses are two-tailed.
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..miRNAs (Supplementary material online, Figure S2), miR-122 (r = 0.96,
P < 0.0001; Supplementary material online, Figure S2A) and miR-133a
(r = 0.62, P < 0.0001; Supplementary material online, Figure S2C) levels
were also highly correlated in serum and plasma. Given their strong as-
sociation with COVID-19 severity and their consistency in plasma and
serum, we further assessed the associations of miR-122 and miR-133a
with 28 day ICU mortality.

3.3 Association of miR-133a levels with
proteomics data, clinical parameters,
and outcome
Serum from 65 COVID-19 patients was sampled within 6 days of ICU
admission (St Thomas’ Hospital and King’s College Hospital, London,
UK, Supplementary material online, Table S8) and thereafter during
Weeks 2 and 3 of ICU admission. Baseline levels of myomiR miR-133a
were higher in non-survivors (unadjusted P = 0.039; age and sex-

adjusted P = 0.058; age, sex and BMI-adjusted P = 0.0545; Figure 4A) and
negatively correlated with neutrophil count (r = -0.27, P = 0.040) and to-
tal white cell count (r = -0.28, P = 0.035; Figure 4B). In longitudinal meas-
urements as a function of days post onset of symptoms, miR-133a
showed an increasing trajectory in non-survivors compared with survi-
vors (age, sex, and BMI-adjusted P = 0.019, Figure 4C). Correlating miR-
133a to longitudinal DIA-MS proteomics data,12 myeloperoxidase
(MPO) showed the strongest positive correlation to miR-133a (r = 0.21,
P = 0.001, Figure 4D and Supplementary material online, Table S9) along-
side other neutrophil degranulation proteins (i.e. matrix
metalloproteinase-9), complement (mannan-binding lectin serine prote-
ase 2, complement component C8 alpha, C1-inhibitor, complement fac-
tor H), and coagulation proteins (thrombin, protein Z). The protein with
the strongest negative association was pulmonary surfactant-associated
protein B (SFTPB) (r = -0.14, P = 0.03, Figure 4D and Supplementary ma-
terial online, Table S9), a lung-derived serum protein.

Figure 2 Clusters and correlations of circulating miRNAs measured by RNA-Seq in COVID-19 patients. The heat map represents a hierarchical cluster
analysis conducted upon a Spearman correlation network of miRNA levels in COVID-19 patients (n = 36) that were found to be differentially expressed
between non-severe and severe COVID-19 patients and for which a role in critically ill patients or a tissue-specific origin has been shown previously
(highlighted in red, Supplementary material online, Table S1).
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..3.4 Association of miR-122 levels with
proteomics data, clinical parameters,
and outcome
In contrast to myomiR miR-133a, hepatocyte-derived miR-122 baseline
levels were significantly lower in non-survivors in an unadjusted analysis
(P = 0.021, Figure 5A). Due to a strong inverse correlation of miR-122
with age (r = -0.51, P < 0.0001, Figure 5B), this association of baseline lev-
els did not withstand adjustment for age, sex, and BMI (age and sex-
adjusted P = 0.69; age, sex, and BMI-adjusted P = 0.65). Baseline levels of
miR-122 correlated positively with alanine aminotransferase (r = 0.47,
P = 0.0007), bilirubin (r = 0.29, P = 0.025) and inversely with sodium
(r = -0.31, P = 0.016) and the APACHE II score (r = -0.35, P = 0.005,
Figure 5B). In longitudinal measurements as a function of days post onset
of symptoms, miR-122 was decreased in non-survivors and significance
was retained after adjustment for age, sex, and BMI (adjusted P = 0.0003,
Figure 5C). Levels of miR-122 correlated positively with afamin, apolipo-
proteins, complement, and coagulation factors, including three proteins
that we previously found to have an inverse association with 28 day mor-
tality: fibronectin 1, plasminogen and Vitamin-K-dependent protein C
(Figure 5D and Supplementary material online, Table S10).12 Circulating
miR-122 was inversely related to hepatic acute phase proteins (APPs)
that increase upon infections (positive APPs, i.e. alpha 2-macroglobulin,
lipopolysaccharide (LPS)-binding protein, C-reactive protein, serum am-
yloid A-1, and serum amyloid A-2).35 Accordingly, circulating miR-122

levels were positively correlated to hepatic APPs that decrease upon
infections (negative APPs, i.e. serotransferrin, transthyretin, retinol-
binding protein 4 and corticosteroid-binding globulin).

3.5 Circulating miRNAs as part of
COVID-19 severity and outcome
classification signatures
Finally, we explored the classification performance of miRNAs for
COVID-19 severity and mortality, using binary and triplet combinations
of miR-133a and miR-122 with established markers of COVID-19 sever-
ity and mortality, i.e. age, SARS-CoV-2 RNAemia, BMI, D-dimer, and tro-
ponin T.12,36,37 None of the miRNAs measured by RT–qPCR associated
with SARS-CoV-2 RNAemia (Figures 4B and 5B and Supplementary ma-
terial online, Figure S3). As single variables, RT–qPCR measurements of
miR-122 (AUC = 0.75, P = 0.003) and miR-133a (AUC = 0.79, P = 0.014)
outperformed RNAemia, age, BMI, and troponin T in classifying patients
into severe (n = 16) and non-severe (i.e. mild or moderate, n = 45)
COVID-19 cases, whilst D-dimer had a higher AUC of 0.84 (P = 0.003,
Figure 6 and Supplementary material online, Table S11). Binary and triplet
combinations provided a further uplift in classification performance, with
‘D-dimer þ miR-122’ being the best binary signature (AUC = 0.94,
P < 0.0001) and ‘D-dimer þ miR-122þRNAemia’ being the best triplet
signature (AUC = 0.94, P < 0.0001).

In contrast, age, RNAemia, and troponin T were better in pre-
dicting 28 day ICU mortality than miRNAs (Figure 7 and

Figure 3 RT–qPCR validation of miRNAs in COVID-19 patients with different disease severity. RT–qPCR of miRNAs in plasma of mild (n = 6), moder-
ate (n = 39), and severe (n = 16) COVID-19 patients. Tukey boxplots depict the median (horizontal line), interquartile range (box borders), and 1.5�
interquartile range (whiskers). Lung-derived miR-187, cardiomyocyte-derived miR-208b, and neuron-derived miR-124 had poor plasma RT–qPCR de-
tectability and were therefore analysed as binary variables. Significance between the three severity groups was determined using ANOVA tests for contin-
uous variables, v2 tests for binary variables and then applying Benjamini and Hochberg’s correction for the 14 comparisons. *FDR <0.05. **FDR <0.01.
***FDR <0.001. A list of the FDR uncorrected and corrected for age, sex, and BMI is presented in Supplementary material online, Tables S6 and S7. All sta-
tistical analyses are two-tailed.
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Figure 4 Association of miR-133a levels with proteomics data, clinical parameters and outcome. (A) Baseline miR-133a serum levels in COVID-19 ICU
survivors (n = 48) and non-survivors (n = 17). Lines inside violin plots show median (continuous line) and interquartile range (dotted lines). A two-tailed,
unpaired Student’s t-test was used to determine statistical significance. (B) Heatmap showing correlations of miR-133a levels with clinical characteristics
of COVID-19 ICU patients (n = 65) at baseline. Spearman correlation was used to determine correlations between continuous variables. Point-biserial
correlation was used to determine correlations between continuous and binary variables. Significant (P < 0.05) correlations are highlighted in bold font.
(C) Trajectory of miR-133a in COVID-19 ICU survivors (n = 48) and non-survivors (n = 17) as a function of days post onset of symptoms. Lines show fit-
ted generalized additive models with grey bands indicating the 95% CI, correcting for age, sex, and BMI. (D) Longitudinal protein correlations with miR-
133a (n = 240 samples from n = 62 COVID-19 ICU patients). Significant (P < 0.05) correlations are shown in blue (negative) and red (positive).
Highlighted are neutrophil degranulation proteins and SFTPB. All statistical analyses are two-tailed. Alb, albumin; ALP, alkaline phosphatase; ALT, alanine
aminotransferase; Antidiab, antidiabetic pre-medication; Antihypert, antihypertensive pre-medication; APACHEII, acute physiology and chronic health
evaluation score; Bil, bilirubin; BMI, body mass index; COPD, chronic obstructive pulmonary disease; Crea, creatinine; CRP, C-reactive protein; DMII,
type II diabetes mellitus; FiO2, fraction of inspired oxygen; Hb, haemoglobin; Hct, haematocrit; Heart r, heart rate; HTN, hypertension; IgG ratio, anti-
SARS-CoV-2 IgG ratio measured by ELISA;12 Kþ, potassium; Lymph, lymphocytes; MAP, mean arterial pressure; Monoc, monocytes; MPO, myeloperoxi-
dase; Naþ, sodium; Neutral, anti-SARS-CoV-2 neutralization capacity measured by the surrogate virus neutralization test;12 Neutrop, neutrophils; MMP9,
matrix metalloproteinase-9; Renal dis, renal disease; Resp r, respiratory rate; SFTPB, pulmonary surfactant-associated protein B; SOFA, sequential organ
failure assessment score; Temp, body temperature; WCC, white cell count.
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..Supplementary material online, Table S12). Here, the binary com-
bination of ‘age þ RNAemia’ achieved an AUC of 0.85
(P < 0.0001). Only the binary combination ‘miR-133a þ age’
achieved a similarly high classification performance (AUC = 0.82,

P < 0.0001). When triplet combinations were explored, ‘age þ
miR-122þRNAemia’ provided an uplift to ‘age þ RNAemia’ and
showed the highest overall classification performance
(AUC = 0.89, P < 0.0001).

Figure 5 Association of miR-122 levels with proteomics data, clinical parameters, and outcome. (A) Baseline miR-122 levels in COVID-19 ICU survi-
vors (n = 48) and non-survivors (n = 17). Lines inside violin plots show median (continuous line) and interquartile range (dotted lines). Two-tailed, un-
paired Student’s t-test was used to determine statistical significance. (B) Heatmap showing correlations of miR-122 levels with clinical characteristics of
COVID-19 ICU patients (n = 65) at baseline. Spearman correlation was used to determine correlations between continuous variables. Point-biserial cor-
relation was used to determine correlations between continuous and binary variables. Significant (P < 0.05) correlations are highlighted in bold font. (C)
Trajectory of miR-122 in COVID-19 ICU survivors (n = 48) and non-survivors (n = 17) as a function of days post onset of symptoms. Lines show fitted
generalized additive models with grey bands indicating the 95% CI, correcting for age, sex, and BMI. (D) Longitudinal protein correlations with miR-122
(n = 240 samples from n = 62 COVID-19 ICU patients). Significant (P < 0.05) correlations are highlighted in blue (negative) and red (positive). Highlighted
are positive and negative APPs. All statistical analyses are two-tailed. A2M, alpha-2-macroglobulin; CRP, C-reactive protein; LBP, lipopolysaccharide-bind-
ing protein; RBP4, retinol-binding protein 4; SAA1, serum amyloid A-1 protein; SAA2, serum amyloid A-2 protein; SERPINA6, corticosteroid-binding
globulin; TF, serotransferrin; TTR, transthyretin.
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..4. Discussion

In this study, we identified miRNA-based signatures of disease severity
and 28 day ICU mortality in COVID-19 patients. Using RNA-Seq of small
RNAs, we identified miRNAs of different cell- and tissue origin that dif-
fered in patients with increasing COVID-19 severity. Several of these
miRNAs have previously been implicated in cardiovascular4,5,38 and met-
abolic diseases6,32 and have also been associated with outcomes and
organ dysfunction in critically ill patients (Supplementary material online,
Table S1). Using RT–qPCR, we associated the best performing miRNAs
with 28 day mortality in an ICU cohort of COVID-19 patients.

Among the miRNAs associated with COVID-19 severity were
lung-derived miR-18739,40 as well as cardiomyocyte-derived miR-
208b,5 which were both only detectable by RT–qPCR in patients
with severe disease. Endothelial-derived miR-1264,32 levels also rose
with severity, in line with the reported systemic activation of the en-
dothelium in COVID-19.41 Similarly, all platelet-derived miRNAs, i.e.
miR-21, miR-197, and miR-223,4 rose with COVID-19 severity. This
is consistent with the findings for miR-21 reported by Garg et
al.18,42,43 Circulating platelet-derived miRNA levels are known to be
associated with platelet reactivity and to be responsive to antiplatelet

therapy.4,33,34 The broad up-regulation of platelet-derived miRNAs
therefore likely reflects the reported prothrombotic state in
COVID-19.44 The most pronounced change of organ-specific
miRNAs in severe COVID-19 was seen with myomiR miR-133a5,9,31

and liver-derived miR-122,6 which also associated with 28 day ICU
mortality. This is in line with recent proteomics data: Filbin et al.13

reported that liver protein signatures are reduced with increasing
COVID-19 severity, whilst protein signatures related to myocyte
damage increased in the circulation.13 Similar to miR-133a, elevated
baseline levels of myocyte proteins also related to poor survival.13

Thus, there is concordance between protein and miRNA biomarkers.
Compared to age and SARS-CoV-2 RNAemia,12 miR-122 and miR-
133a performed well as severity markers but were inferior in out-
come prediction. The advantage of miRNAs, however, is their con-
sistent detectability in patients with lower COVID-19 severity and
less dependence on sampling time. In contrast, RNAemia is only
detectable in the early stages of patients with severe COVID-19.12

Another important feature of miR-1226 and miR-133a5,9,31,45–48 is
their exquisite tissue specificity that offers insight into the underly-
ing pathophysiology. Moreover, the integration of miRNAs into
biomarker signatures may improve the performance of established

Figure 6 COVID-19 severity classification. (A and B) ROC plots for the best three binary (A) and best three triplet (B) severity signatures are shown.
The non-severe cohort (n = 45) consisted of n = 6 mild and n = 39 moderate patients, whilst the severe cohort consisted of n = 16 patients. All statistical
analyses are two-tailed.
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biomarkers, as demonstrated for binary and triplet combinations
with D-dimer, Troponin T, SARS-CoV-2 RNAemia, age, and
BMI.12,36,37

MiR-133a has been previously shown to be elevated in sepsis
patients45,47 and to predict mortality in critically ill patients (n = 223).45 A
rise of miR-133a is also observed in murine sepsis models.45–47 Similarly,
myocardial injury5,9,31 and chronic obstructive pulmonary disease
(COPD)48 are known to increase circulating miR-133a levels.
Accordingly, among critically ill patients without sepsis, miR-133a levels
were highest in patients with cardiopulmonary diseases.45 Interestingly,
we found miR-133a levels to be inversely correlated to neutrophil
counts. MPO, a neutrophil activation marker associated with cardiovas-
cular outcomes,49 endothelial cell apoptosis,50 and matrix metallopro-
tease activation,51 was positively correlated to miR-133a. Thus,
neutrophil degranulation and extravasation resulting in myocyte damage
is a likely cause for the rise of circulating miR-133a.52–54 Moreover, there
is evidence that neutrophils may be a secondary source of miR-133a in
the circulation.55

In our recent proteomics analysis of inflammation signatures in endo-
toxaemia, time course analysis showed a time-dependent increase in
MPO upon LPS treatment.35 Neutrophil-derived proteins were also de-
posited in the vessel wall upon LPS injection.35 A negative correlation

with miR-133a levels was observed for pulmonary SFTPB, a lung protein
responsible for alveolar stability. Mendelian randomization studies have
shown that single-nucleotide polymorphisms associated with higher se-
rum surfactant protein levels impart a lower risk for COPD and lung
function decline.56,57 In COPD patients, miR-133a levels are known to
be increased.48 Given that SFTPB is not a predicted target of miR-
133a,58–60 the inverse association between SFTPB and miR-133a is likely
a consequence of the same pathological mechanism that leads to their in-
crease in blood rather than a functional relationship.

In contrast to miR-133a, levels of miR-122 were reduced in non-
survivors. This is consistent with the notion that early depression of liver
function is associated with poor outcome in COVID-19 patients.11–15

Moreover, miR-122 levels were positively associated with liver-derived
negative APPs, which decrease upon infection to favour synthesis of pos-
itive APPs. MiR-122 was inversely associated with the latter. In our re-
cent plasma proteomics study to assess inflammation signatures in
endotoxemia,35 positive APPs increased at 24 h following neutrophil de-
granulation within 6 h post-endotoxin administration.35 Recent evidence
suggests that miR-122 might be involved in both the hepatic and pulmo-
nary host response to viral infections. For instance, a recent study sur-
prisingly detected miR-122 in the lungs and reported that
intrapulmonary miR-122 increases neutrophilic inflammation during

Figure 7 The 28 day ICU mortality in COVID-19 patients. (A and B) Kaplan–Meier plots for the best three binary (A) and best three triplet signatures
(B) for 28 day ICU mortality classification are shown. Low- and high-risk groups in the Kaplan–Meier analysis are based on the default 0.5 threshold of the
logistic regression. The outcome analysis is based on n = 17 COVID-19 ICU non-survivors and n = 48 ICU survivors. All statistical analyses are two-tailed.
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rhinovirus infection.61 In hepatocytes, miR-122 also plays an important
role for innate immunity during viral infections.62 MiR-122 promotes
type I and II interferon (IFN) expression in response to a variety of viral
nucleic acids.62 Patients with severe COVID-19 present with a paradoxi-
cal antiviral immune response: their IFN-response is delayed or sup-
pressed and often preceded by an excessive pro-inflammatory response
that aggravates disease.63,64 Suppression of liver metabolism in critically
ill COVID-19 patients as indicated by lower liver-derived miRNA levels
in non-survivors,16 and elderly patients in particular, might be a distin-
guishing pathophysiological feature of COVID-19 compared with other
critical conditions, such as sepsis or acute respiratory distress syndrome.

Studies of miR-122 in sepsis65 or acute respiratory distress syn-
drome66 reported an increase in non-survivors, which has been attrib-
uted to acute liver injury.67 Similarly, miR-122 is part of a recently
reported prognostic model for acetaminophen-induced acute liver fail-
ure.68 We believe that the discrepancy of miR-122 directionality can be
attributed to the fact that miR-122 levels are a readout of two distinct
pathophysiological processes, i.e. liver injury vs. liver metabolism. Our
previous findings in the community-based Bruneck study revealed ele-
vated miR-122 to be a strong predictor for metabolic syndrome over a
10–15 year observation period.69 Similar to COVID-19 patients,6 miR-
122 levels were highly correlated to many liver-derived plasma or serum
proteins.69

In conclusion, baseline levels of myocyte-derived miR-133a and liver-
derived miR-122 are associated with COVID-19 severity and 28 day ICU
mortality, reflecting inflammation-induced myocyte damage and the he-
patic acute phase response. Based on the comparison to protein correla-
tions in COVID-19, miR-122 shows a trajectory that is similar to
negative APPs. Future studies are needed to clarify whether miR-133a or
miR-122 measurement have the potential to aid in prognosis assessment
by monitoring organ damage and resolution of inflammation that might
inform treatment decisions.
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proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier
PXD024089.12 All other data underlying this article are available in the
article and in its Supplementary material online.
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Martin JF, Barbé F; CIBERESUCICOVID Project (COV20/00110, ISCIII). Circulating
microRNA profiles predict the severity of COVID-19 in hospitalized patients. Transl
Res 2021;236:147–159.

17. Badimon L, Robinson EL, Jusic A, Carpusca I, DeWindt LJ, Emanueli C, Ferdinandy P,
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Translational perspective
Adding biomarkers to conventional scores for illness severity and mortality could improve prognostic performance in COVID-19 patients.
Circulating miRNAs are emerging as promising biomarkers with tissue-specific origins but have only sparsely been investigated in COVID-19.
We quantified circulating miRNAs of different tissue origin in COVID-19 patients, identifying several miRNAs of the cardiometabolic system to be
associated with severity. Myocyte-derived miR-133a and liver-derived miR-122 also associated with mortality. Through longitudinal proteomics
measurements, we related myomiR miR-133a release to neutrophil activation and miR-122 release to the hepatic acute phase response. Our
findings highlight key pathophysiological changes and provide first evidence on the performance of miRNA biomarkers in COVID-19.
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