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Abstract

Background

A growing body of literature has suggested that obstructive sleep apnea (OSA) and habitual

short sleep duration are linked to poor cognitive function. Neuroimaging studies may pro-

vide insight into this relation.

Objective

We tested the hypotheses that OSA and habitual short sleep duration, measured at ages

54–73 years, would be associated with adverse brain morphology at ages 67–89 years.

Methods

Included in this analysis are 312 ARIC study participants who underwent in-home overnight

polysomnography in 1996–1998 and brain MRI scans about 15 years later (2012–2013).

Sleep apnea was quantified by the apnea-hypopnea index and categorized as moderate/

severe (�15.0 events/hour), mild (5.0–14.9 events/hour), or normal (<5.0 events/hour).

Habitual sleep duration was categorized, in hours, as <7, 7 to <8,�8. MRI outcomes

included number of infarcts (total, subcortical, and cortical) and white matter hyperintensity

(WMH) and Alzheimer’s disease signature region volumes. Multivariable adjusted logistic

and linear regression models were used. All models incorporated inverse probability weight-

ing, to adjust for potential selection bias.

Results

At the time of the sleep study participants were 61.7 (SD: 5.0) years old and 54% female;

19% had moderate/severe sleep apnea. MRI imaging took place 14.8 (SD: 1.0) years later,
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when participants were 76.5 (SD: 5.2) years old. In multivariable models which accounted

for body mass index, neither OSA nor abnormal sleep duration were statistically signifi-

cantly associated with odds of cerebral infarcts, WMH brain volumes or regional brain

volumes.

Conclusions

In this community-based sample, mid-life OSA and habitually short sleep duration were not

associated with later-life cerebral markers of vascular dementia and Alzheimer’s disease.

However, selection bias may have influenced our results and the modest sample size led to

relatively imprecise associations.

Introduction
Since the 1960’s there has been a dramatic increase in the number of elderly individuals in the
U.S. and worldwide, and this trend is projected to continue.[1, 2] The aging of the population
is contributing to increasing numbers of people affected by dementia and mild cognitive
impairment.[3, 4] Yet despite the immense and growing burden, gaps exist in our understand-
ing of characteristics that lead to cognitive decline.

Accruing evidence has suggested a possible relation between abnormal sleep characteristics
and cognitive impairment due to both cerebral vascular etiologies and Alzheimer’s disease.
There are several mechanisms through which disordered sleep may lead to mild cognitive
impairment and dementia.[5, 6] These include chronic nocturnal hypoxemia,[7] [8, 9] abnor-
mal cerebral hemodynamic resulting from OSA,[10, 11] sleep fragmentation,[12] mediation
through cardiovascular disease risk factors (e.g. hypertension, diabetes, inflammation), stroke
(both clinical and subclinical),[9, 13–15] Aβ plaque build-up,[16] and interaction with the
APOE ε4 risk allele.[17, 18] Neuroimaging studies may provide further insight into putative
intermediate mechanisms. Existing human neuroimaging studies have suggested that OSA is
associated with adverse brain morphology.[19–27] Unfortunately, these studies are limited in
that they often use selected samples (e.g. from a sleep clinic), frequently have a limited number
of participants (n generally<50) and were generally not prospective thus it is unclear whether
the sleep characteristics preceded brain morphologic state.

Using data from the community-based ARIC study we explored the relation of OSA and
abnormal (short or long) sleep duration with cerebral markers of cerebrovascular disease and
Alzheimer’s disease measured via MRI as part of the ARIC neurocognitive study exam. Specifi-
cally, we tested the hypotheses that OSA and sleep duration measured at ages 54–73 years
would be associated with a higher number of infarcts (total, subcortical, and cortical) and with
greater white matter hyperintensity (WMH) and Alzheimer’s Disease signature region volumes
measured about 15 years later (at ages 67–89 years).

Methods

Study Design
ARIC is a prospective epidemiological cohort which in 1987–1989 recruited 15,792 individuals
from 4 U.S. communities.[28] Shortly after ARIC’s fourth clinical visit, which took place in
1996–1998, a total of 1,892 participants from the suburban Minneapolis, Minnesota andWash-
ington County, Maryland field centers had in-home overnight polysomnography (PSG) as part
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of the Sleep Heart Health Study (SHHS).[29] Of those who took part in the sleep exam, a total
of 1,723 had measures for OSA that met the quality control criteria.

In 2011–2013 all surviving ARIC participants were invited to take part in the ARIC Neuro-
cognitive Study/ARIC Visit 5. A subset of Neurocognitive Study participants without contrain-
dications were selected for brain MRI.[15] The subset included all those with low cognitive test
scores, those with declines on longitudinally administered tests, those with a previous ARIC
research brain MRI, and an age-stratified random sample of the remaining individuals. Sam-
pling fractions for the random sample were set for participants <80 and�80 years of age to
approximate the age distribution of those selected from the cognitively suspect group. They
were modified slightly over the course of the study to achieve MRI scan completion goals. As
detailed in the statistical analysis section, all analyses used inverse probability weighting (IPW)
[30, 31] to account for attrition during follow-up, participation in the neurocognitive exam,
and likelihood of selection to have a brain MRI. As such, the final estimates can be interpreted
as being representative of all participants who had sleep study measures (n = 1723).

Of the 1,723 sleep study participants with OSA data, a total of 1,113 participated in the neu-
rocognitive exam, and of these 317 were also selected for brain MRI. We further excluded one
individual due to prevalent stroke at the time of the sleep study, two with missing brain volume
measurements, and two who were lacking complete covariate information. Thus, 312 partici-
pants were included in our final analytic sample.

The University of Minnesota Institutional Review Board approved the present ARIC study,
and all participants enrolled in the ARIC study have given their written informed consent.

Sleep Measurements
The overnight unattended PSG was conducted using a portable monitor (PS-2 System; Com-
pumedics Limited, Abbotsford, Victoria, Australia), using methods previously described.[32]
As in prior analyses of SHHS data, an apnea was considered present if there was an absence or
near absence of airflow (at least<25% of baseline) for�10 seconds.[29, 32] Hypopnea was
defined as a decrease in the amplitude of the airflow below 70% of baseline for�10 seconds.
The apnea-hypopnea index (AHI) was defined as the average number of obstructive apneas
(any apnea, regardless of the oxygen desaturation level) plus hypopneas (with at least a 4%
decrease in oxygen saturation), per hour of sleep. Participants were categorized into three OSA
severity groups according to the AHI:<5.0 events/hr (normal), 5.0–14.9 events/hr (mild sleep
apnea),� 15.0 events/hr (moderate/severe sleep apnea). In sensitivity analyses we also sepa-
rated moderate (15.0–29.9 events/hr) and severe (�30.0 events/hr) sleep apnea. Central sleep
apnea events, which were defined by the absence of airflow with no associated respiratory effort
detected, were excluded.

Habitual sleep duration during the workdays and weekends was derived from the following
questions on the SHHS Sleep Habits Questionnaire:How much sleep do you usually get at night
(or in your main sleep period): on weekdays or workdays? and on weekends or nonwork days?
We calculated average usual sleep time per night (h) with the following formula: [(habitual
total sleep time during the workdays)�5 + (habitual total sleep time during the weekends)�2]/7.

Outcomes
Details of the ARIC brain imaging protocol, and of the definition and quantification of brain
infarcts have been described previously.[15] In brief, MRI scans were performed in 2011–2013
as part of the neurocognitive exam at each site on 3 Tesla Siemens scanners (various models)
using a common set of sequences that included 3-dimensional volumetric magnetization pre-
pared gradient echo and fluid-attenuated inversion recovery sequences.
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WMH burden was measured quantitatively using an algorithm developed at Mayo Clinic,
Rochester,[33, 34] andWMH were defined as has been codified in recent guidelines.[35] All
analyses involving WMH include total intracranial volume as a covariate. Brain infarcts were
identified, counted, and measured by a trained imaging technician and confirmed by radiolo-
gists, as previously described.[36]

Freesurfer (version 5.1)[37] was used to calculate regional cortical volumes. There were 3
prespecified regions of interest: (1) the combined right and left hippocampal formations; (2)
posterior region–inclusive of regions that are part of the posterior default mode network and
are associated with Alzheimer disease from both right and left hemispheres: hippocampus,
parahippocampal gyrus, entorhinal cortex, inferior parietal lobule, precuneus and cuneus; and
(3) frontal region—including regions in the frontal lobe from both right and left hemispheres:
rostral/caudal anterior cingulate, rostral/caudal midfrontal, lateral orbital frontal, medial
orbital frontal, paracentral, pars opercularis, pars triangularis, precentral, superior frontal, and
frontal pole. All volumes are expressed in cubic centimeters, and all models adjusted for total
intracranial volume to account for differences in head size across participants.

Confounders and effect modifiers
Covariate information was collected at ARIC visit 4, which took place shortly before the sleep
study, unless otherwise noted. Information on age, sex, field center, and educational attainment
(visit 1), physical activity (visit 3), ethanol intake, and smoking status were collected by ques-
tionnaire. BMI was calculated as weight (kg) over height2 (m). Diabetes was defined by fasting
glucose�126 mg/dl, non-fasting glucose�200 mg/dL, self-reported physician diagnosis, or
current use of medications for diabetes. Hypertension was defined by measured blood pressure
>140/90 mmHg or use of anti-hypertensive medications. High-sensitivity C-reactive protein
was measured using a nephelometric method on the Siemens Dade Behring BN II analyzer
(Siemens Healthcare Diagnostics, Deerfield, IL). Prevalent CHD was defined by self-reported
prior physician diagnosis of MI or coronary revascularization, prevalent MI by 12 lead ECG at
visit 1, or an incident adjudicated CHD event between ARIC visits 1 and 4. Details of the mea-
surement and classification of the APOE ε4 risk allele have been described previously.[38]

Data analysis
Participant characteristics (% or mean ± SD) are provided stratified by OSA severity and, sepa-
rately, by follow-up neurocognitive exam participation status. To evaluate the relation of
abnormal sleep characteristics with cerebral markers of cerebrovascular disease and Alzhei-
mer’s disease, logistic regression was used for dichotomous outcomes (i.e. any infarct, subclini-
cal infarcts, large cortical infarcts, small cortical infarcts, or microhemorrhages) and linear
regression was used for brain volume measurements. OSA and sleep duration were modeled
categorically; indicator variables were included in the regression model.

If participants with brain MRI data are different from those without brain MRI data, selec-
tion bias may be present (see Figure 1 in reference by Wueave et al.[30]). In order to account
for this potential selection bias, all primary analyses used IPW [30, 31] to adjust for a) selection
for brain MRI and b) attrition due to either death or failure to attend the follow-up neurocogni-
tive exam (censoring). Weights for each individual were the inverse of the product of the esti-
mated probabilities of i) being alive at the time of the follow-up neurocognitive exam, ii)
attending the follow-up neurocognitive examination (conditional on being alive at the time of
the neurocognitive exam), and iii) being selected for the brain MRI (conditional on being alive
at the time of the neurocognitive exam and participating in the neurocognitive examination).
Characteristics included in the IPWmodels are provided in S1 Methods.
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Analysis. A series of nested models were estimated. Model 1 adjusted for age, sex, field
center, and educational attainment. Model 2 further adjusted for ethanol intake, smoking sta-
tus, leisure time physical activity, and APOE ε4 risk allele. Model 3 additionally adjusted for
body mass index. Model 4 also adjusted for characteristics believed to be on the causal pathway
between OSA and cognitive decline (i.e. high-sensitivity C-reactive protein (CRP), diabetes
mellitus, hypertension, and prevalent coronary heart disease).

Results
Table 1 presents baseline characteristics of sleep study participants (n = 1,723) categorized by
whether they were included in the present analysis (18%; n = 312), attended the neurocognitive
exam but did not have adequate information to be included in this analysis of brain MRI out-
comes (46%; n = 801) or did not attend the neurocognitive study (35%; n = 610). Of those who
did not attend the neurocognitive study, 63% had died. Relative to participants who attended
the follow-up neurocognitive examination, those who did not tended to be, at the time of the
sleep study, older, male, current smokers, more overweight, and have a worse overall cardiovas-
cular risk factor profile. In spite of the sampling approach for selection into the brain MRI sam-
ple, participant characteristics at the time of the sleep study were similar for those who had
brain MRI’s versus those who did not. Similarly, in terms of baseline cognitive test scores,
among those who attended the neurocognitive exam, scores were similar between those who
were selected for the brain MRI and those who were not (p all>0.05). However, participants
who did not attend the neurocognitive exam scored more poorly on baseline cognitive tests
than those who attended the neurocognitive exam (p all<0.05).

The 312 participants making up our final analytic sample were, at baseline, 61.7 (SD: 5.0)
years old, and 54% female. A total of 60 (19%) had moderate/severe OSA (AHI�15), 88 (28%)
had mild OSA (AHI�5–15), and 164 (53%) had no evidence of OSA (AHI<5). Relative to par-
ticipants with no evidence of sleep disordered breathing, those with moderate/severe OSA tended
to be male, had higher BMI’s and were more likely to be hypertensive (Table 2). Baseline scores
on the Digit Symbol Substitution tests were slightly better in those with a normal sleep breathing
pattern as compared to those with mild or moderate/severe sleep apnea (p all<0.05). Baseline
scores on the DelayedWord Recall andWord Fluency tests did not vary by sleep apnea category.
By the time of the MRI exam, participants were on average 76.5 (SD: 5.2) years old.

Table 3 presents odds ratios and 95% confidence intervals from the weighted logistic regres-
sion models for total, subcortical and cortical infarcts, stratified by OSA categories. Contrary to
our initial hypothesis, OSA was associated with lower odds of infarcts, particularly subcortical
infarcts. Associations of OSA severity with brain MRI volume measurements are shown in
Table 4 and S1 Table. Estimates and 95% confidence intervals in z-scores from inverse proba-
bility weighted linear regression models for Brain MRI volume measurement z-scores (2011–
2013), stratified by OSA categories (1996–1998). OSA severity was not related to any of the
brain volumes explored (i.e. total brain volume, deep gray matter, hippocampal volume, and
cortical volumes of the temporal, parietal, occipital and frontal lobes.

For both categorical (Table 3) and continuous (Table 4 and S1 Table. Estimates and 95%
confidence intervals in z-scores from inverse probability weighted linear regression models for
Brain MRI volume measurement z-scores (2011–2013), stratified by OSA categories (1996–
1998) brain outcomes, in sensitivity analyses we ran unweighted analyses, and explored alter-
nate weighting options. Results were similar regardless of whether or how the weighting was
specified. For instance, in unweighted analyses with model 3 adjustments and relative to those
with a normal sleep breathing pattern, the OR for any infarct associated with moderate/severe
OSA was 0.42 (0.17–1.02). We also conducted analyses separating moderate and severe OSA.
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However, as only 24 individuals had severe OSA precision was poor (data not shown); there-
fore we retained the combined moderate/severe OSA category for the primary analyses.

In this population means (SD) hours if sleep per night was 7.2 ± 1.0 hours per night. Of our
sample 22.8% reported>7 hours/night, 40.8% 7 to<8 hours per night, and 36.5%�8 hours
per night. Habitually short or long sleep duration was not related to either brain infarcts or
brain volume measurements (Tables 5 and 6).

Table 1. Characteristics of the 1,723 participants at the time of the sleep exam (visit 4; 1996–1998), and over follow-up (1996–2012) stratified by
neurocognitive follow-up exam (visit 5; 2011–2013) participation status.

Neurocognitive exam and brain
MRI (n = 312)

Neurocognitive exam but no brain
MRI* (n = 801)

Did not participate in neurocognitive exam
thus no Brain MRI (n = 610)

Sleep Exam (1996–1998)

Age, years 61.7 ± 5.0 61.3 ± 5.1 65.3 ± 5.4

Female 53.6 54.4 47.9

Education < high school
graduate

8.5 8.3 16.1

Leisure time physical activity 2.6 ± 0.8 2.6 ± 0.8 2.5 ± 0.8

Smoking status

Current 7.6 8.9 13.8

Former 50.8 47.6 47.4

Never 41.6 43.5 38.9

Usual ethanol intake, g/week 43.1 ± 72.5 37.6 ± 70.3 37.7 ± 79.6

BMI, kg/m2 28.6 ± 5.0 28.5 ± 4.8 29.1 ± 5.4

Hypertension 32.5 35.3 48.5

Diabetes mellitus 8.8 9.1 18.0

Prior heart failure 0 0.8 2.6

Prior coronary heart disease 4.4 6.7 13.4

C-reactive protein 3.6 ± 4.6 3.7 ± 5.6 4.6 ± 6.2

Cognitive test scores, mean
(SD)

DelayedWord Recall 7.0 (5.3) 6.9 (1.5) 6.5 (2.1)

Word Fluency 37.0 (11.1) 37.5 (10.9) 34.4 (11.4)

Digit Symbol Substitution 49.9 (10.1) 50.9 (10.2) 44.8 (11.0)

APOE ε4 risk allele

0 74.8 73.9 71.0

1 22.4 24.5 24.9

2 2.8 1.6 4.1

Prevalent stroke, n (%) 0 8 (1.0) 19 (3.2)

Over Follow-Up (1996–2012)

Incident stroke, n (%) 10 (3.2) 27 (3.4) 62 (10.2)

Person-years 4858 12038 6453

Incidence rate (95% CI),
per 1,000 p-y

2.1 (1.0–3.8) 2.2 (1.5–3.3) 9.6 (7.4–12.3)

Incident HF, n (%) 13 (4.1) 55 (6.9) 124 (20.3)

Incident CHD, n (%) 10 (3.2) 48 (6.0) 69 (11.3)

Dead by 2012, n (%) 0 16 (2.0) 384 (63.0)

Values correspond to mean ± SD or %

*Also included in this group are 5 individuals who had brain MRI but were not included in the primary analysis due to prevalent stroke at the time of the sleep

study (n = 1), missing brain volume measurements (n = 2), or lacking complete covariate information (n = 2).

doi:10.1371/journal.pone.0158758.t001
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Table 2. Demographic and clinical characteristics of the final analytic sample (n = 312) at the sleep exam (visit 4; 1996–1998), at the neurocognitive
exam (2011–2013) and over follow-up (1996–2012), stratified by sleep exam obstructive sleep apnea categories.

Normal Mild Moderate / Severe

AHI <5 AHI 5 to <15 AHI�15

(n = 164) (n = 88) (n = 60)

Sleep Exam (1996–1998)

Age, years 61.1 ± 5.2 62.4 ± 4.9 62.5 ± 4.5

Female 70.1 37.5 31.7

Education� high school graduate 92.7 89.8 91.7

Leisure time physical activity 2.7 ± 0.8 2.5 ± 0.8 2.6 ± 0.8

Smoking status

Current 11.6 1.1 6.7

Former 43.9 61.4 55.0

Never 44.5 37.5 38.3

Usual ethanol intake, g/week 42.3 ± 73.2 47.6 ± 79.1 40.2 ± 62.0

BMI, kg/m2 27.0 ± 4.7 29.3 ± 4.2 31.7 ± 5.3

Hypertension 29.9 37.5 33.3

Diabetes mellitus 7.3 11.4 8.3

Prior heart failure 0 0 0

Prior coronary heart disease 4.3 3.4 5.0

C-reactive protein 3.9 ± 5.5 3.0 ± 2.9 4.0 ± 4.0

Cognitive test scores, mean (SD)

DelayedWord Recall 7.4 (7.2) 6.6 (1.4) 6.6 (1.4)

Word Fluency 37.6 (11.9) 36.6 (11.1) 36.4 (8.8)

Digit Symbol Substitution 51.4 (10.2) 48.2 (10.8) 48.4 (8.1)

APOE ε4 risk allele

0 70.7 79.6 76.7

1 25.0 18.2 23.3

2 4.3 2.3 0

Neuroimaging (2011–2013)

Any infarction 23.8 27.3 16.7

Subcortical Infarction 18.9 18.2 10.0

Large cortical Infarction 2.4 4.6 3.3

Small cortical infarction 5.5 8.0 8.3

Microhemorrhage 24.4 27.3 18.3

White matter hyperintensity volume, cm3 16.7 ± 16.2 19.1 ± 19.5 15.5 ± 17.8

Estimated intracranial volume in cm3 1397.3 ± 156.9 1454.1 ± 156.2 1460.4 ± 132.8

Total brain volume in cm3 1024.6 ± 105.9 1049.3 ± 114.3 1066.2 ± 100.6

Temporal lobe cortical volume in cm3 102.8 ± 11.1 105.6 ± 12.2 105.1 ± 11.0

Parietal lobe cortical volume in cm3 108.1 ± 11.8 110.3 ± 12.4 111.1 ± 11.4

Occipital lobe cortical volume in cm3 41.7 ± 5.3 41.9 ± 5.8 44.1 ± 5.4

Frontal lobe cortical volume in cm3 151.4 ± 15.2 155.2 ± 15.2 156.9 ± 13.9

Deep grey matter in cm3 42.9 ± 4.3 43.6 ± 4.1 43.7 ± 4.1

AD signature region volume in cm3 60.2 ± 6.8 61.2 ± 6.8 61.7 ± 6.4

Hippocampal volume in cm3 6.9 ± 1.0 6.9 ± 1.0 6.8 ± 0.9

Over follow-up (1996–2012)

Incident stroke 3.7 4.6 0

Incident HF 3.7 4.6 5.0

(Continued)

Sleep and Brain MRI Markers of Cerebral Vascular Disease and Alzheimer's Disease

PLOS ONE | DOI:10.1371/journal.pone.0158758 July 14, 2016 7 / 13



Discussion
Intriguing prior evidence has suggested that abnormal indices of sleep quality and quantity
may lead to adverse brain morphologic changes. However, in this community-based sample of
312 individuals there was no evidence that OSA or abnormal habitual sleep duration were asso-
ciated with greater likelihood of cerebral markers of cerebrovascular disease or Alzheimer’s dis-
ease, which were measured 15 years later. We consider the 15-year follow-up an important
strength of our study, since dementia and mild cognitive impairment are believed to have a
long pre-clinical phase and the etiologically relevant stage of life may be middle-age, as has
been suggested with other risk factors for cognitive decline (e.g. hypertension,[39–41] diabetes,
[41–45] smoking[41, 46]).

Counter to our findings, several prior studies have supported the hypothesis that sleep dis-
ordered breathing is associated with adverse brain morphological changes. Small neuroimaging
studies have reported that silent infarcts are more common among patients with obstructive
sleep apnea (OSA) than among controls,[26, 27] and white matter disease severity is correlated

Table 2. (Continued)

Normal Mild Moderate / Severe

AHI <5 AHI 5 to <15 AHI�15

(n = 164) (n = 88) (n = 60)

Incident CHD 1.8 4.6 5.0

Values correspond to mean ± SD or %

doi:10.1371/journal.pone.0158758.t002

Table 3. Odds ratio and 95% confidence interval from inverse probability weighted logistic regression models for Brain MRI measures (2011–
2013), stratified by OSA categories (1996–1998).

Normal Mild Moderate / Severe

AHI < 5 AHI 5 to <15 AHI�15 P for trend*

(n = 164) (n = 88) (n = 60)

Any infarct, N (%) 39 (23.7) 24 (22.7) 10 (16.7)

Model 1 Reference 0.55 (0.25–1.19) 0.45 (0.16–1.25) 0.07

Model 2 Reference 0.51 (0.23–1.12) 0.38 (0.13–1.05) 0.05

Model 3 Reference 0.52 (0.24–1.17) 0.41 (0.13–1.25) 0.08

Model 4 Reference 0.52 (0.24–1.14) 0.44 (0.15–1.31) 0.10

Subcortical Infarct, N (%) 31 (18.9) 16 (18.2) 6 (10.0)

Model 1 Reference 0.52 (0.23–1.18) 0.35 (0.10–1.27) 0.08

Model 2 Reference 0.47 (0.20–1.09) 0.28 (0.08–0.95) 0.03

Model 3 Reference 0.50 (0.22–1.14) 0.32 (0.09–1.15) 0.05

Model 4 Reference 0.51 (0.23–1.17) 0.33 (0.09–1.17) 0.05

Cortical Infarction (either small and/or large), N (%) 11 (6.7) 9 (10.2) 7 (11.7)

Model 1 Reference 1.43 (0.47–4.33) 2.29 (0.62–8.38) 0.22

Model 2 Reference 1.35 (0.45–4.06) 2.14 (0.67–6.89) 0.21

Model 3 Reference 1.36 (0.44–4.19) 2.15 (0.57–8.06) 0.27

Model 4 Reference 1.25 (0.42–3.76) 2.42 (0.68–8.63) 0.21

*P for trend from logistic regression model with obstructive sleep apnea modeled as an ordinal variable

Model 1 adjusted for age, sex, field center, and educational ascertainment; Model 2 adjusted for Model 1 and ethanol intake, smoking status, leisure time

physical activity, and APOE ε4 risk allele; Model 3 adjusted for Model 2 and body mass index; Model 4 adjusted for Model 3 and high-sensitivity C-reactive

protein, diabetes mellitus, hypertension, and prevalent coronary heart disease.

doi:10.1371/journal.pone.0158758.t003
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with the number of apnea/hypopnea events in patients with prevalent stroke.[19] Numerous
other small studies have reported OSA patients to have smaller gray-matter volumes/densities
than controls in a variety of brain regions,[20–25] with the hippocampus most frequently

Table 4. Estimates and 95% confidence intervals in z-scores from inverse probability weighted linear regression models for Brain MRI volume
measurements (2011–2013), stratified by OSA categories (1996–1998).

Normal Mild Moderate / Severe

AHI < 5 AHI 5 to <15 AHI�15 P for trend*

(n = 164) (n = 88) (n = 60)

White matter hyperintensity volume

Model 1 Reference -0.12 (-0.34 to 0.11) -0.25 (-0.51 to 0.01) 0.06

Model 2 Reference -0.13 (-0.35 to 0.10) -0.28 (-0.52 to -0.03) 0.03

Model 3 Reference -0.08 (-0.31 to 0.14) -0.18 (-0.46 to 0.10) 0.21

Model 4 Reference -0.07 (-0.29 to 0.15) -0.18 (-0.45 to 0.10) 0.20

AD signature region (gray matter) volume

Model 1 Reference 0.02 (-0.17 to 0.21) 0.12 (-0.09 to 0.34) 0.31

Model 2 Reference -0.01 (-0.21 to 0.19) 0.11 (-0.10 to 0.33) 0.40

Model 3 Reference -0.00 (-0.20 to 0.20) 0.13 (-0.11 to 0.37) 0.35

Model 4 Reference -0.00 (-0.19 to 0.19) 0.12 (-0.12 to 0.36) 0.39

*P for trend from linear regression model with obstructive sleep apnea modeled as an ordinal variable

Model 1 adjusted for age, sex, field center, and educational ascertainment + TIV; Model 2 adjusted for Model 1 and ethanol intake, smoking status, leisure

time physical activity, and APOE ε4 risk allele; Model 3 adjusted for Model 2 and body mass index; Model 4 adjusted for Model 3 and high-sensitivity C-

reactive protein, diabetes mellitus, hypertension, and prevalent coronary heart disease.

doi:10.1371/journal.pone.0158758.t004

Table 5. Odds ratio and 95% confidence intervals from inverse probability weighted logistic regression models for Brain MRI measures (2011–
2013), stratified by sleep duration categories (1996–1998).

<7 hours 7 to <8 hours �8 hours P for trend*

(n = 71) (n = 127) (n = 114)

Any infarct, N (%) 12 (16.9) 31 (24.4) 26 (22.8)

Model 1 0.63 (0.25–1.57) Reference 0.99 (0.48–2.05) 0.99

Model 2 0.65 (0.27–1.62) Reference 0.99 (0.48–2.03) 0.99

Model 3 0.64 (0.26–1.56) Reference 0.99 (0.48–2.04) 0.99

Model 4 0.69 (0.29–1.63) Reference 0.97 (0.45–2.09) 0.92

Subcortical Infarct, N (%) 9 (12.7) 25 (19.7) 19 (16.7)

Model 1 0.50 (0.17–1.47) Reference 0.75 (0.34–1.65) 0.50

Model 2 0.59 (0.19–1.78) Reference 0.79 (0.36–1.70) 0.56

Model 3 0.58 (0.20–1.69) Reference 0.78 (0.36–1.69) 0.54

Model 4 0.64 (0.24–1.69) Reference 0.73 (0.31–1.72) 0.47

Cortical Infarction (either small and/or large), N (%) 5 (7.0) 12 (9.5) 10 (8.8)

Model 1 0.81 (0.23–2.90) Reference 0.84 (0.26–2.66) 0.76

Model 2 0.82 (0.28–2.43) Reference 0.79 (0.26–2.39) 0.68

Model 3 0.83 (0.28–2.48) Reference 0.79 (0.26–2.38) 0.67

Model 4 0.75 (0.25–2.30) Reference 0.78 (0.25–2.38) 0.66

*P for trend from linear regression model with obstructive sleep duration categories modeled as an ordinal variable

Model 1 adjusted for age, sex, field center, and educational ascertainment + TIV; Model 2 adjusted for Model 1 and ethanol intake, smoking status, leisure

time physical activity, and APOE ε4 risk allele; Model 3 adjusted for Model 2 and body mass index; Model 4 adjusted for Model 3 and high-sensitivity C-

reactive protein, diabetes mellitus, hypertension, and prevalent coronary heart disease.

doi:10.1371/journal.pone.0158758.t005
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noted. The consistency with which structural differences have been observed between those
with OSA and controls is intriguing; however, existing studies are limited in that they are not
prospective, often use selected populations (e.g. from a sleep clinic), and have small sample
sizes (n generally<50). In concordance with the human literature, animal models have shown
that both intermittent hypoxia[47, 48] and sleep fragmentation[49, 50] can independently lead
to neuronal loss in the hippocampus and prefrontal cortex. However, similar to the findings
presented herein, in a prior analysis of nearly 2,000 ARIC participants who had sleep studies,
there was no association of OSA or sleep quantity and quality with 15-year change in cognitive
test scores.[51]

When interpreting our results, issues of power and selection bias require careful consider-
ation. Although our sample of over 300 individuals is large relative to most prior studies, only 24
participants had severe OSA. As such, this necessitated aggregating moderate and severe OSA,
which may have masked associations only appearing at the severe end of the spectrum. Addition-
ally, our modest sample size resulted in effect estimates that had relatively little precision. Selec-
tion bias may also have hampered our ability to detect an association between midlife sleep
characteristics and late-life brain morphology, since of the original SHHS participants, one-third
did not attend the follow-up neurocognitive exam due to either death or attrition. We attempted
to account for selection bias by employing IPWmodels. A limitation of this approach is that
including weights can may increase the variance.[52] Overall, however, results of the IPW analy-
ses were similar to those from standard analyses. Other limitations include a single assessment of
sleep and incomplete information on OSA treatment during the follow-up period.

Despite these limitations our data is unique in that a) the design was prospective, therefore
unlike cross-sectional studies temporality is clear, with midlife sleep characteristics assessed
about 15 years prior to brain MRI indices, b) the time-span from mid-life to late-life is hypoth-
esized to be etiologically relevant in considerations of risk factors for cognitive decline and
dementia, c) objective sleep measurements were conducted though in-home polysomnogra-
phy, and d) state-of-the-art brain MRI assessment was used.

In conclusion, in this community-based sample we found no evidence that midlife OSA and
short sleep duration increase risk of late-life brain morphologic indices of vascular dementia
and Alzheimer’s disease.

Table 6. Estimates and 95% confidence intervals in z-scores from inverse probability weighted linear regression models for Brain MRI volume
measurements (2011–2013), stratified by sleep duration categories (1996–1998).

<7 hours (n = 71) 7 to <8 hours (n = 127) �8 hours (n = 114) P for trend*

White matter hyperintensity volume

Model 1 0.014 (-0.238 to 0.265) Reference -0.079 (-0.285 to 0.127) 0.45

Model 2 0.014 (-0.254 to 0.282) Reference -0.114 (-0.317 to 0.089) 0.27

Model 3 0.002 (-0.264 to 0.268) Reference -0.110 (-0.309 to 0.090) 0.28

Model 4 0.009 (-0.253 to 0.272) Reference -0.117 (-0.314 to 0.081) 0.24

AD signature region volume

Model 1 -0.168 (-0.376 to 0.041) Reference -0.070 (-0.242 to 0.102) 0.44

Model 2 -0.192 (-0.404 to 0.021) Reference -0.108 (-0.276 to 0.061) 0.22

Model 3 -0.191 (-0.403 to 0.021) Reference -0.108 (-0.287 to 0.060) 0.22

Model 4 -0.180 (-0.390 to 0.030) Reference -0.119 (-0.291 to 0.055) 0.19

*P for trend from linear regression model with obstructive sleep duration categories modeled as an ordinal variable

Model 1 adjusted for age, sex, field center, and educational ascertainment + TIV; Model 2 adjusted for Model 1 and ethanol intake, smoking status, leisure

time physical activity, and APOE ε4 risk allele; Model 3 adjusted for Model 2 and body mass index; Model 4 adjusted for Model 3 and high-sensitivity C-

reactive protein, diabetes mellitus, hypertension, and prevalent coronary heart disease.

doi:10.1371/journal.pone.0158758.t006
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