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Metabolite biomarker discovery 
for human gastric cancer 
using dried blood spot mass 
spectrometry metabolomic 
approach
Xue Wu1,2,3,4,6, Huaixuan Ao1,2,4,6, Hui Gao1,2,4* & Zhitu Zhu5*

As one of the most common malignancies, gastric cancer (GC) is the third leading cause of cancer-
related deaths in China. GC is asymptomatic in early stages, and the majority of GC mortality is due 
to delayed symptoms. It is an urgent task to find reliable biomarkers for the identification of GC in 
order to improve outcomes. A combination of dried blood spot sampling and direct infusion mass 
spectrometry (MS) technology was used to measure blood metabolic profiles for 166 patients with GC 
and 183 healthy individuals, and 93 metabolites including amino acids, carnitine/acylcarnitines and 
their derivatives, and related ratios were quantified. Multiple algorithms were used to characterize the 
changes of metabolic profiles in patients with GC compared to healthy individuals. A biomarker panel 
was identified in training set, and assessed by tenfold cross-validation and external test data set. After 
systematic selection of 93 metabolites, a biomarker panel consisting of Ala, Arg, Gly, Orn, Tyr/Cit, Val/
Phe, C4-OH, C5/C3, C10:2 shows the potential to distinguish patients with GC from healthy individuals 
in tenfold cross-validation model (sensitivity: 0.8750, specificity: 0.9006) and test set (sensitivity: 
0.9545, specificity: 0.8636). This metabolomic analysis makes contribution to the identification of 
disease-associated biomarkers and to the development of new diagnostic tools for patients with GC.
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Orn	� Ornithine
C3DC	� Malonylcarnitine
C4-OH	� Hydroxybutyrylcarnitine
C18:1	� Octadecenoylcarnitine
Ala	� Alanine
Cit	� Citrulline
C2	� Acetylcarnitine
C0	� Free carnitine
C10	� Decanoylcarnitine
C5	� Isovalerylcarnitine
C3	� Propionylcarnitine
Pro	� Proline
Met	� Methionine
Phe	� Phenylalanine
Tyr	� Tyrosine
Val	� Valine
C10:2	� Decadienoylcarnitine
ASS1	� Argininosuccinate synthase 1
ODC	� Ornithine decarboxylase
OAT	� Ornithine aminotransferase
CPT1	� Carnitine palmitoyl transferase 1

As one of the most common malignancies, gastric cancer (GC) is the third cause of cancer-related deaths in 
China1. According to GLOBOCAN 2018 data, around 1,034,000 new cases and more than 782,000 deaths 
occurred for GC in 20182. GC is a multifactorial and multistep process, beginning with active chronic gastritis 
caused by Helicobacter pylori infection3. It is often described as a stepwise progression from non-active gastritis 
via chronic active gastritis into precursor lesions of GC and finally GC4,5. Most GC is adenocarcinoma, which 
derives from glandular epithelium of gastric mucosa4. However, GC is asymptomatic in early stages, and the 
majority of GC mortality is due to the delayed symptoms. It has been found that 5-year overall survival rate for 
patients with GC diagnosed at advanced stages is reduced down to 20%6. Among screening methods for early 
detection of GC, endoscopy as a sensitive method is most commonly used7, nevertheless, the risk of complica-
tions and patient discomfort limit its wide use. Furthermore, despite traditional circulating biomarkers of cancer 
were achieved, the diagnostic efficacy was not satisfactory for patients with GC due to their low sensitivity8. 
Because of that, finding reliable biomarkers for disease identification is of highest interest to improve outcomes 
for patients with GC.

Investigating the quantity or type of molecules in organisms via metabolomics can provide better understand-
ing as to the biochemical status in a system or indicate the changes that have occurred within the metabolome9,10. 
Metabolomics technology can aid in cancer discovery and in building cancer diagnostic tools, and can provide 
opportunity to understand the molecular mechanism. Metabolic changes in blood are the key events in the 
development of carcinoma, which could be characterized by mapping global metabolic profiles, and this ana-
lytic technique has been used to interpret possible mechanisms and to identify novel metabolic biomarkers for 
GC11,12. Liquid chromatography mass spectrometry (LC–MS), one of the most commonly used platforms in 
metabolomic studies, can be applied to detect biomolecules for its peak resolution, high sensitivity, and suf-
ficient reproducibility13. It has been found that the levels of 16 metabolites detected by LC–MS were altered in 
patients with GC compared to healthy control group, involving in Gly, Ala, Pro and hexadecanoic acid, which 
showed potential for developing biomarkers and therapeutic interventions for GC14. Another study showed that 
the ratio of kynurenine/tryptophan was associated with observed metabolic changes in patients with GC, and 
the monitoring of tryptophan metabolites could be used to identify potential biomarkers for GC11. However, 
both of them were relatively small-sized studies, and further clinical sample analysis is still needed for patients 
with GC. Besides, few reports were available in characterizing metabolic profiles of amino acids and carnitine/
acylcarnitines for patients with GC. Dried blood spot (DBS) sampling is a microvolume sampling technique 
involving the collection of blood samples by heel or finger puncture. It as compared to conventional whole 
blood sampling has relatively high stability, requires a smaller blood volume, offers a simpler storage and easier 
transfer, reduces infection risk by infectious pathogens, and can be as an alternative method to metabolomics 
study15,16. The combination of DBS and MS can provide a high-throughput, reliable and stable determination for 
a broad array of analytes, which can be satisfactorily used to select high specificity and sensitivity biomarkers to 
some kinds of diseases17,18. In the present study, a combination of DBS sampling and MS was utilized to detect 
biomarkers based on altered levels of amino acids and carnitine/acylcarnitines in patients with GC compared 
to normal individuals. Nine parameters including 4 amino acids, 2 acylcarnitines and 3 related ratios were 
detected as potential biomarkers for GC in training set, which were further used to build prediction model for 
distinguishing patients with GC from healthy individuals. Hence, the changes in some amino acid and carnitine/
acylcarnitine levels might indicate the existence of GC invasion, and the study’s findings suggest new insights 
into GC detection.

Materials and methods
Study design and participants.  In this study, a total of 349 participants, including 183 healthy controls 
(HC) and 166 patients with GC, were enrolled between 2015 and 2019 from the First Affiliated Hospital of Jin-
zhou Medical University. Among all participants, 161 healthy individuals and 144 patients with GC were defined 
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as training set. Other participants (22 healthy individuals and 22 patients with GC) were used as test set. Poten-
tial biomarker selection and prediction model building were performed in the training set. The external test set 
was used to evaluate biomarker candidates. The clinicopathologic characteristics of the whole participants were 
shown in Table 1. As shown in Table 1, the stages for all patients with GC were determined according to TNM 
(tumor-node-metastasis): stage I, 87 patients; stage II, 45 patients; stage III, 25 patients; stage IV, 9 patients. 
There were no significant differences identified in gender, age, BMI, blood pressure between HC and GC groups 
in training set and test set. The individuals with diabetes, hypertension, cardiovascular disease, tumor, infection 
or other diseases that can influence biological indicators or gastric function were excluded in HC group. The 
exclusion criteria for GC group were: (1) metabolic diseases or other digestive diseases; (2) severe liver, kidney, 
heart, lung, and nervous and mental diseases; (3) other types of malignant diseases and acute diseases. All the 
subjects with missing data were excluded. The project was approved by Ethics Committee of the First Affiliated 
Hospital of Jinzhou Medical University. Written informed consent was obtained from each participants. This 
study was conducted in accordance with tenets of the Declaration of Helsinki, and followed relevant Ethics 
Committee of the First Affiliated Hospital of Jinzhou Medical University guidelines and regulations.

Blood sample collection and pretreatment.  Labeled amino acid and relevant carnitine/acylcarnitine 
internal standards were mixed with pure methanol, individually. Stock solutions were prepared by the mixture of 
these dissolved isotope standards, and stored at 4 °C. The 100-fold dilution of stock solution was used as working 
solution. In quality control (QC) process, a pooled QC sample was obtained by the mixture of equal volumes (10 
μL) from all collected samples.

Blood samples were collected after an overnight fasting for each participants in order to eliminate the dis-
turbance of diet. DBS samples were collected by fingertip puncture. After wiping off the first drop of blood, 3–5 
drops were collected onto a DBS card. A disc of 3 mm diameter was punched from a DBS card. The collected 
discs were put into Millipore MultiScreen HV 96-well plate (Millipore, Billerica, MA, USA) aimed at extracting 
metabolites. A working solution of 100 μL was added into a well containing a DBS disc. After 20 min gentle 
shaking, the plate was centrifuged at 1500 rpm for 2 min and, afterwards, the filtrate was collected into a new 
flat-bottom 96-well plate. In order to monitor the stability of MS analysis, 2 low-level and 2 high-level QC sample 
solutions were randomly put into 4 blank wells. The filtrate and QC solution were dried in pure nitrogen gas flow 
at 50 °C, and then these samples were derivatized with 60 μL mixture of acetyl chloride/1-butanol (10:90, v/v) 
at 65 °C for 20 min. After derivatized solution dried again, 100 μL mobile phase solution was mixed with each 
dried sample for the following metabolomics analysis.

Metabolomics analysis.  The direct injection MS was used for quantitative metabolomic analysis on an 
AB Sciex 4000 QTrap system (AB Sciex, Framingham, MA) coupled with an electrospray ionization source, and 
the MS analysis was conducted under positive mode. A sample volume of 20 μL was injected into the system. 
The 80% acetonitrile aqueous was used as mobile phase. An initial flow rate was set to be 0.2 mL/min. Flow rate 
was decreased to 0.01 mL/min within 0.08 min, and remained stable until 1.5 min. Subsequently, the flow rate 
reverted back to 0.2 mL/min within 0.01 min, and maintained for 0.5 min. MS parameters were set as follows: 
ion spray voltage 4.5 kV, curtain gas pressure 20 psi, auxiliary gas temperature 350 °C. Sheath and auxiliary gas 
pressure was set at 35 psi. The scan modes and scan parameters were referred to previous report19. Analyst 1.6.0 
software (AB Sciex) was applied to control system, align spectrum, and collect MS data. ChemoView 2.0.2 (AB 
Sciex) was used for absolute quantification purposes.

Table 1.   Clinicopathologic characteristics of the whole participants. HC, healthy control; GC, gastric cancer; 
BMI: body-mass index.

Characteristics

Training set Test set

HC GC p-value HC GC p-value

Total number 161 144 22 22

Male 104 99
0.4427

12 12
1.0000

Female 57 45 10 10

Age (mean, sd) 55.9627 ± 11.1147 58.1389 ± 9.7798 0.1360 55.9091 ± 8.6845 56.0909 ± 8.0647 0.9430

Weight (mean, sd) 64.5404 ± 8.4609 63.7986 ± 7.9029 0.3216 64.9545 ± 7.5181 62.6818 ± 9.9350 0.3971

Height (mean, sd) 168.5963 ± 8.6822 169.3264 ± 8.3656 0.4193 167.9091 ± 8.1761 167.2273 ± 8.4173 0.7865

BMI (mean, sd) 22.6560 ± 2.0273 22.2415 ± 2.1597 0.0920 23.0368 ± 2.0542 22.4045 ± 3.0318 0.5416

Systolic 124.7019 ± 11.0152 125.7778 ± 8.0056 0.6186 122.8636 ± 8.5149 124.5909 ± 10.9225 0.5617

Diastolic 75.6770 ± 9.4846 74.4375 ± 8.1599 0.1732 72.8636 ± 9.6525 72.1364 ± 12.1275 0.4704

I 75 12

II 39 6

III 22 3

IV 8 1
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Data analysis.  A multivariate analysis for metabolomics data was performed using SIMCA-P 12.0 software 
(Umetrics AB, Umea, Sweden). A principal component analysis (PCA) was used to supervise holistic metabo-
lome alterations between patients with GC and healthy individuals and to inspect the stability of this study. In 
addition, a partial least squares discriminant analysis (PLS-DA) was applied to differentiate patients with GC 
from healthy individuals and to determine the important variables contributing to this classification based on 
variable importance in projection (VIP) values. Subsequently, a permutation test was used to evaluate the risk of 
over-fitting for PLS-DA model. T-test statistical analysis was used to identify the differential metabolites between 
HC and GC groups for parametric variables. Wilcoxon–Mann–Whitney test was performed for nonparametric 
variables. Benjamini–Hochberg false discovery rate (FDR) was used to adjust p-values for multiple hypothesis 
testing. Volcano plots were generated to screen important variables (VIP > 1, fold change (FC) > 1.2 or < − 1.2, 
adjusted p-value < 0.05) in GC group compared to HC group. In order to further investigate metabolite changes 
in GC group compared to HC group, significance analysis of microarrays (SAM) method was performed. Ulti-
mately, potential biomarkers were selected by a stepwise selection method. These selected potential biomarkers 
were included to build a binary logistic regression model for distinguishing patients with GC from healthy indi-
viduals. The performance of this model was assessed by tenfold cross validation and external test set. Receiver-
operating characteristic (ROC) curve was created to measure the ability of potential biomarkers to discriminate 
between patients with GC and healthy individuals. Statistical analysis was performed using SAS software. Online 
software MetaboAnalyst 5.0 was used for pathway analysis based on differential metabolites between HC and 
GC groups.

Results
Demographics of study samples.  The workflow for this study was shown in Fig. 1. A total of 305 par-
ticipants, including 161 healthy individuals (mean age 55.96 ± 11.11, range 27–82 years) and 144 patients with 
GC (mean age 58.13 ± 9.78, range 28–85 years), were recruited as training set to define biomarker candidates. In 
the training set, 104 (64.60%) males and 57 (35.40%) females for healthy individuals, and 99 (68.75%) males and 
45 (31.25%) females for patients with GC, were included. In order to evaluate biomarker candidates, 44 blood 
samples (22 healthy individuals and 22 patients with GC) were collected as test set.

Metabolic differences between LC and HC groups.  A total of 93 variables including 23 amino acids, 
26 carnitine/acylcarnitines, and 44 derived parameters and related ratios19 were detected from healthy partici-
pants and patients with GC for subsequent univariate and multivariate analyses. All detected variables were 
provided in Supplementary Table S1. Unsupervised PCA was executed for metabolomics data from blood sam-
ples of HC and GC groups in order to investigate the altered metabolites. There was a trend that GC group was 
separated from HC group based on 93 parameters in the training set (Fig. 2A). Furthermore, supervised PLS-DA 
was performed to determine the separations between HC and GC groups by all 93 variables. The PLS-DA score 
plot (Fig. 2B) showed the apparent separations between patients with GC and healthy individuals without over-
fitting (Fig. 2C) in the training set.

The screening of significantly differential metabolites.  Systematic screening of important metabo-
lites was executed by multiple approaches. Firstly, a total of 29 metabolites were selected with VIP > 1, which can 
contribute to the classification between HC and GC groups according to PLS-DA score plot (Fig. 3A). Secondly, 
significant differences for all metabolites were evaluated with Wilcoxon–Mann–Whitney test or t-test, and FDR 
was controlled in order to adjust significance levels for hypothesis testing. A total of 45 parameters were retained 
with adjusted p-value < 0.05 (Fig. 3B). Thirdly, FC was calculated, and 30 features with FC > 1.2 or < − 1.2 were 
significantly altered in GC group compared to HC group. Together, 25 of these metabolites with VIP > 1, adjusted 
p-value < 0.05, and FC > 1.2 or < − 1.2 exhibited significant alterations in patients with GC compared to healthy 
individuals in the training set (Fig. 3C). All detected variables and their adjusted p-value, VIP, and FC values 
were shown in Supplementary Table S1.

SAM was used to further supervise and define the significant metabolite changes in patients with GC com-
pared to healthy individuals (Fig. 4). Finally, 23 metabolites contribute to the discrepancy between the two groups 
(Table 2). Among these metabolites, the levels of 15 features were significantly increased and, conversely, the 
levels of 8 features were distinctively decreased in patients with GC compared to healthy individuals.

Figure 1.   Design of the study. GC, gastric cancer; HC, healthy control.
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To further clarify the metabolic pathways which may be affected by GC, the differential metabolites between 
healthy individuals and patients with GC (Table 2) were imported into MetaboAnalyst 5.0 for pathway analysis. 
As shown in Fig. 5, 8 metabolic pathways were highlighted focusing on amino acid metabolism, urea cycle, 
malate-aspartate shuttle, lipid metabolism, and so on.

Building prediction model.  A stepwise logistic regression was conducted towards 23 selected metabo-
lites (Table 2) in the training set. Finally, 9 features were identified including Ala, Arg, Gly, Orn, Tyr/Cit, Val/
Phe, C4-OH, C5/C3, C10:2 (Fig.  6). A logistic regression model was developed as follows: Logit probabil-
ity = 2.05  −  1.35 × Ala + 5.68 × Orn + 1.80 × Arg + 2.39 × C4-OH  −  0.90 × Tyr/Cit  −  0.62 × Val/Phe + 1.20 × C5/
C3  −  1.35 × C10:2 + 0.76 × Gly. The diagnostic performance of this metabolic panel was evaluated by tenfold 
cross validation and external test set (Table 3). Furthermore, ROC curve was drawn to assess the potential of 
metabolic panel to distinguish between patients with GC and healthy individuals (Fig. 7). The area under ROC 
curve (AUC) is 0.9586 (95%CI 0.9384–0.9788) in the training set. The sensitivity and specificity were 0.8611 
and 0.9565 in the training set, respectively. During the process of tenfold cross validation, all samples in the 
training set were randomly divided into 10 partitions in order to cross-validate the predicted model. Addition-
ally, 44 blood samples including 22 patients with GC and 22 healthy individuals were used as test set to further 
assess the diagnostic potential of 9 selected metabolic biomarkers. As shown in Table  3, the AUC of 0.9438 
(95%CI 0.9163–0.9714) and 0.9318 (95%CI 0.8525–1.0000) was determined in tenfold cross validation and test 
set, respectively. Additionally, both of sensitivity and specificity were also satisfactory in tenfold cross validation 
(sensitivity: 0.8750; specificity: 0.9006) and test set (sensitivity: 0.9545; specificity: 0.8636).

Figure 2.   Score plots of PCA and PLS-DA analyses based on 93 metabolites for patients with GC and healthy 
individuals in the training set. (A) Score plot of PCA analysis, suggesting separating trend between GC and HC 
groups. The colors and shapes display the participants from different groups (healthy individuals and patients 
with gastric cancer). (B) Score plot of PLS-DA analysis, showing differential metabolic profiles in patients with 
GC compared to healthy individuals. (C) 200-times permutation test for evaluating the performance of PLS-DA 
model. The y-axis intercepts in test plot were R2 = (0.0, 0.109), Q2 = (0.0, -0.176).
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Discussion
Currently, identification of novel blood biomarkers remains a pivotal goal for GC, and the limitations of mod-
ern technology for the detection and treatment of the disease emphasize the necessity of finding novel poten-
tial biomarkers. However, few biomarker candidates can be translated into clinical applications due to limited 
diagnostic performance or study cohorts20. Specific physiological or pathological conditions are able to perturb 
blood metabolites, which can be used as potential biological indicators in normal and pathological biological 

Figure 3.   Identification of potential biomarkers for distinguishing patients with GC from healthy individuals 
in training set. (A) The plot of VIP value versus fold change (FC). The differential metabolites were defined 
with VIP > 1 and FC > 1.2 or < -1.2 between patients with GC and healthy individuals. The selected metabolites 
were colored in blue. (B) The plot of adjusted p-value versus FC. The changed metabolites were displayed 
with adjusted p-value < 0.05 and FC > 1.2 or < -1.2 in patients with GC compared to healthy individuals. (C) 
Venn diagram demonstrates differential metabolites in GC group compared with healthy group. Twenty-five 
differential metabolites were selected with VIP > 1 and adjusted p-value < 0.05 and FC > 1.2 or < − 1.2.

Figure 4.   Significance analysis of microarrays for a comparison of patients with GC and healthy individuals 
in training set at false discovery rate of zero. The levels of 9 metabolites were significantly decreased, and 18 
metabolites were significantly increased in patients with GC compared to healthy individuals.
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processes. Thus, the detection of perturbed small molecular metabolites can provide a powerful tool for cancer 
diagnosis. In the present study, a total of 349 subjects were recruited, including 183 healthy individuals and 166 
patients with GC, and were divided into training set of 305 subjects and test set of 44 subjects. A combination 
of DBS sampling and direct injection MS analysis was performed to detect metabolite biomarkers for GC. After 
systematic selection, there were significant differences in the levels of 23 metabolites between patients with GC 
and healthy individuals (Table 2). Furthermore, independent predictors was identified by a stepwise logistic 
regression analysis, and a biomarker panel consisting of Ala, Arg, Gly, Orn, Tyr/Cit, Val/Phe, C4-OH, C5/C3, 
C10:2 was used to construct prediction model for GC.

Metabolic reprogramming was regarded as a central hallmark of cancer. The amino acid and lipid metabolic 
pathways were disturbed in patients with GC as revealed by differential pathway analysis (Fig. 5). Identifying 

Table 2.   The differential parameters between patients with GC and healthy individuals. HC, healthy 
control; GC, gastric cancer; Asp, aspartic acid; Arg, arginine; Gly, glycine; Ser, serine; Orn, ornithine; C3DC, 
malonylcarnitine; C4-OH, hydroxybutyrylcarnitine; C18:1, octadecenoylcarnitine; Ala, alanine; Cit, citrulline; 
C2, acetylcarnitine; C0, free carnitine; C10, decanoylcarnitine; C5, isovalerylcarnitine; C3, propionylcarnitine; 
Pro, proline; Met, methionine; Phe, phenylalanine; Tyr, tyrosine; Val, valine; C10:2, decadienoylcarnitine. 
a Defined as the increased (upward arrow) or decreased (downward arrow) levels of metabolites in patients with 
GC compared to healthy individuals.

No Parameters HC (mean ± SD) GC (mean ± SD) Statusa Adjusted p-value

1 Asp 28.9299 ± 12.3803 44.2080 ± 31.3087 ↑  < 0.0001

2 Arg 6.9661 ± 4.5362 19.7555 ± 19.3990 ↑  < 0.0001

3 Gly 187.0274 ± 54.2258 255.2199 ± 112.4842 ↑  < 0.0001

4 Ser 52.8482 ± 15.5849 67.8629 ± 29.7788 ↑  < 0.0001

5 Orn 17.3904 ± 7.5393 53.694 ± 64.3894 ↑  < 0.0001

6 C3DC 0.0681 ± 0.0462 0.1107 ± 0.0920 ↑  < 0.0001

7 C4-OH 0.0620 ± 0.0338 0.1293 ± 0.1688 ↑  < 0.0001

8 C18:1 0.5388 ± 0.2005 0.7210 ± 0.3814 ↑  < 0.0001

9 Gly/Ala 1.1504 ± 0.5417 1.9130 ± 0.9737 ↑  < 0.0001

10 Orn/Cit 0.7861 ± 0.4212 1.8922 ± 1.8845 ↑  < 0.0001

11 C2/C0 0.3841 ± 0.1422 0.5307 ± 0.2511 ↑  < 0.0001

12 C3DC/C10 0.5130 ± 0.4537 1.0268 ± 0.9963 ↑  < 0.0001

13 C5/C3 0.0765 ± 0.0339 0.1235 ± 0.1010 ↑  < 0.0001

14 C2 12.3469 ± 3.5780 15.4624 ± 8.7437 ↑ 0.0069

15 C5 0.1167 ± 0.0464 0.1480 ± 0.0884 ↑ 0.0354

16 Ala 182.8131 ± 58.0390 150.6334 ± 60.2686 ↓  < 0.0001

17 Pro 492.3674 ± 166.7648 408.097 ± 231.8517 ↓  < 0.0001

18 Cit/Arg 5.3826 ± 4.3734 2.8778 ± 2.9849 ↓  < 0.0001

19 Met/Phe 0.4766 ± 0.1452 0.3931 ± 0.1275 ↓  < 0.0001

20 Tyr/Cit 1.4338 ± 0.6711 1.0788 ± 0.5934 ↓  < 0.0001

21 Val/Phe 3.7288 ± 0.9200 2.8610 ± 0.7869 ↓  < 0.0001

22 C3/C2 0.1397 ± 0.0522 0.1088 ± 0.0529 ↓  < 0.0001

23 C10:2 0.7606 ± 0.4541 0.5502 ± 0.3974 ↓  < 0.0001

Figure 5.   A pathway impact analysis based on differential metabolites between GC and HC groups in training 
set. Eight perturbed metabolic pathways were indicated for patients with GC.
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how metabolism shifts in patients with cancer can contribute to disease diagnosis and prediction. Amino acids 
were disturbed by the imbalance in protein metabolism due to the influences of host-tumor interactions and 
metabolic requirements of tumor cells to specific amino acids21, which exhibited potential usage in improving 
diagnosis and detection of early-stage cancer22. In the present study, 23 metabolites were significantly altered 
with VIP > 1, adjusted p-value < 0.05, and FC > 1.2 or < − 1.2 in patients with GC compared to healthy individu-
als, involving Asp, Arg, Gly, Ser, Orn, Ala, and Pro. Interestingly, the levels of Asp, Arg, Gly, Ser, and Orn were 
increased in patients with GC compared to healthy individuals (Table 2). As a non-essential amino acid, Asp is 
the basic substrate for the synthesis of pyrimidine and purine nucleosides. Furthermore, Ser is also involved in 
the synthesis of purine nucleotides via Gly, and it can influence cell growth and invasion of cancer cells23. The 
increased uptake rates of Asp and Ser imply that these amino acids are needed in fueling nucleoside biosynthesis 
for tumor proliferation24. As a semi-essential amino acid, Arg is a key component in the body and involved in 
cell division, immune system, and hormone biosynthesis, and contributes to immunosurveillance, tumor growth 
and metastasis25, which implies that Arg is required to fuel tumor cell metabolism. Its metabolism may be influ-
enced by the overexpressed argininosuccinate synthase 1 (ASS1) in GC26. The high expression of ASS1 can lead 
to increased NO production, which promotes gluconeogenesis via S-nitrosylation of pyruvate carboxylase and 
phosphoenolpyruvate carboxykinase 2. The increased gluconeogenesis may further enhance the levels of Ser 

Figure 6.   Blood concentrations for potential metabolic biomarkers contributing to the building of prediction 
model in training set.

Table 3.   Performance of metabolite biomarker panel for distinguishing patients with GC from healthy 
individuals in the training set, tenfold cross validation, and test set. GC, gastric cancer; AUC, area under 
receiver operating characteristic curve.

Training set tenfold cross validation Test set

AUC (95%CI) 0.9586 (0.9384–0.9788) 0.9438 (0.9163–0.9714) 0.9318 (0.8525–1.0000)

Sensitivity 0.8611 0.8750 0.9545

Specificity 0.9565 0.9006 0.8636
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and Gly in nucleotide synthesis27. Increased level of Arg can lead to decreased ratio of Cit/Arg, and this ratio has 
been found to reflect NO production28. Orn acts both as a substrate of ornithine decarboxylase (ODC) to pro-
duce polyamines and as a substrate of ornithine aminotransferase (OAT) to produce Pro, and all these products 
are involved in the promotion of cancer progression29. Therefore, altered levels of Orn and Pro suggested the 
disorders of ODC and OAT metabolism and the requirements of these amino acids in GC progression. It has 
been found that ratio of Orn/Cit can reflect a shift in arginine metabolism30. This ratio is influenced by increased 
level of Orn, reconfirming the altered arginine metabolism in GC.

The upregulated glycolysis in cancer metabolism, also known as the Warburg effect, promotes compensatory 
pathways, especially oxidation of fatty acids31. Carnitine/acylcarnitines, intermediates of fatty acid oxidation, 
are essential for fatty acid oxidation and energy metabolism, and accumulated as a consequence of metabolic 
defect. Considering these adaptations, carnitine pool is uniquely positioned to supervise the perturbations of 
carnitine/acylcarnitine metabolism, and it is useful to discover the disturbed metabolic pathways during cancer 
development and progression32. Carnitine palmitoyl transferase 1 (CPT1) is associated with metabolism of 
acylcarnitines by catalyzing the conversion of acyl-CoA into acylcarnitine, and controls the entry of long-chain 
fatty acid into mitochondrial matrix for energy production via fatty acid β-oxidation. A recent study reported 
that CPT1A is upregulated in patients with GC, and is involved in GC progression33, which may account for the 
distinct accumulations of acylcarnitines in GC. In addition, the expression of carnitine acetyltransferase (CrAT) 
has been reported to be upregulated in cancer, which may also promote alterations in carnitine metabolism34. In 
this study, the levels of 4 short-chain acylcarnitines (C2, C3DC, C4-OH, C5) and one long-chain acylcarnitine 
(C18:1) were increased in patients with GC compared to healthy individuals (Table 2), and the accumulations of 
acylcarnitine metabolites may be due to the abnormal expression of these enzymes. Ratio C2/C0 was enhanced 
in patients with GC, which further indicated the increased fatty acyl mitochondrial transport and β-oxidation 
of fatty acids in GC35. Furthermore, it has been reported that short-chain carnitine-acylcarnitine translocase in 
mitochondria and short-chain acylcarnitine levels may be related to the metabolism of branched-chain amino 
acids (BCAA)36, and changed ratio of C3/C5 implicates altered flux through BCAA metabolic pathways37. The 
abnormal levels of short-chain acylcarnitines may further influence ratio Val/Phe. Several studies reported that 
free carnitine and short-, medium-, and long-chain acylcarnitines were disturbed in patients with cancer, and 
showed potential as candidate biomarkers for the development of certain cancers38,39. Taken together, these 
findings suggested that the detection of carnitine/acylcarnitine changes may provide a promising new strategy 
against GC.

A high-performance biomarker panel consisting of Ala, Arg, Gly, Orn, Tyr/Cit, Val/Phe, C4-OH, C5/C3, 
C10:2 was identified and validated for separating patients with GC from healthy individuals, as displayed in 
Table 3. The tenfold cross-validation was performed to evaluate classifier performance by using the data in 
training set, which showed that the diagnostic performance of this biomarker panel was satisfactory (AUC: 
0.9438). An independent test data set of 44 subjects, including 22 patients with GC and 22 healthy individuals, 
was applied to assess reliability of this metabolite biomarker panel. It showed that this biomarker panel can 
effectively discriminate patients with GC from healthy individuals (AUC: 0.9318). These results highlighted that 
the metabolite biomarker panel may act as a potential valuable tool to detect GC.

In this single-center case-control study, a combination of DBS sampling and MS was utilized for high-
throughput detection of metabolites. A metabolite biomarker panel was identified with diagnostic potential for 
GC. Whereas, there were some limitations in this study. Firstly, since GC is considered as a stepwise progres-
sion from non-active gastritis4,5, we believe that this study will be more systematic when a reasonable amount 
of patients with gastritis can be recruited. Secondly, in this study, the detected metabolites were limited for the 
trade-off between coverage and cost, and more metabolites such as fatty acids will be detected in order to select 
more potential biomarkers. Thirdly, more patients with advanced GC will be recruited in order to perform 
metabolomics analysis based on the patients in different stages. Finally, a multi-institution study with a larger 
sample size is still required in order to further assess this study’s results.

Figure 7.   Receiver operating characteristic (ROC) curve was established to examine the performance of 
metabolite biomarker panel in distinguishing patients with GC from healthy individuals. ROC curve was 
marked with blue star for training set, red line for tenfold cross validation, and cyan dot for test set.
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Conclusion
In summary, a combination of DBS sampling and direct injection MS technology was used to detect metabo-
lites for patients with GC and healthy individuals. Results obtained displayed significantly altered metabolomic 
profiles in patients with GC compared to healthy individuals. A metabolite biomarker panel of Ala, Arg, Gly, 
Orn, Tyr/Cit, Val/Phe, C4-OH, C5/C3, C10:2 was determined as an effective tool with satisfactory sensitivity 
and specificity for discriminating patients with GC from healthy individuals. Therefore, we believe that these 
selected metabolites have potential as novel biomarkers in the detection of GC.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 27 January 2022; Accepted: 24 August 2022

References
	 1.	 Wu, C. et al. Analysis of status and countermeasures of cancer incidence and mortality in China. Sci. China Life Sci. 62(5), 640–647 

(2019).
	 2.	 Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 

countries. CA Cancer J. Clin. 68(6), 394–424 (2018).
	 3.	 Amieva, M. & Peek, R. M. Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology 150, 64–78 (2016).
	 4.	 Yakirevich, E. & Resnick, M. B. Pathology of gastric cancer and its precursor lesions. Gastroenterol. Clin. North Am. 42(2), 261–284 

(2013).
	 5.	 Lario, S. et al. Plasma sample based analysis of gastric cancer progression using targeted metabolomics. Sci. Rep. 7(1), 17774 (2017).
	 6.	 Park, Y. H. & Kim, N. Review of atrophic gastritis and intestinal metaplasia as a premalignant lesion of gastric cancer. J. Cancer 

Prev. 20, 25–40 (2015).
	 7.	 Dohi, O. et al. Diagnostic ability of magnifying endoscopy with blue laser imaging for early gastric cancer: A prospective study. 

Gastric Cancer 20(2), 297–303 (2017).
	 8.	 He, C. Z. et al. Combined use of AFP, CEA, CA125 and CAl9-9 improves the sensitivity for the diagnosis of gastric cancer. BMC 

Gastroenterol. 13, 87–91 (2013).
	 9.	 Kaushik, A. K. & DeBerardinis, R. J. Applications of metabolomics to study cancer metabolism. Biochim. Biophys. Acta Rev. Cancer 

1870(1), 2–14 (2018).
	10.	 Simonian, M., Mosallayi, M. & Mirzaei, H. Circulating miR-21 as novel biomarker in gastric cancer: Diagnostic and prognostic 

biomarker. J. Cancer Res. Ther. 14(2), 475 (2018).
	11.	 Choi, J. M., Park, W. S., Song, K. Y., Lee, H. J. & Jung, B. H. Development of simultaneous analysis of tryptophan metabolites in 

serum and gastric juice-an investigation towards establishing a biomarker test for gastric cancer diagnosis. Biomed. Chromatogr. 
30(12), 1963–1974 (2016).

	12.	 Aa, J. et al. Metabolic features of the tumor microenvironment of gastric cancer and the link to the systemic macroenvironment. 
Metabolomics 8, 164–173 (2012).

	13.	 Huang, Q. et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res. 73(16), 
4992–5002 (2013).

	14.	 Liang, Q., Wang, C. & Li, B. Metabolomic analysis using liquid chromatography/mass spectrometry for gastric cancer. Appl. 
Biochem. Biotechnol. 176(8), 2170–2184 (2015).

	15.	 Lu, W. H. et al. Using matrix-induced ion suppression combined with LC-MS/MS for quantification of trimethylamine-N-oxide, 
choline, carnitine and acetylcarnitine in dried blood spot samples. Anal. Chim. Acta 1149, 338214 (2021).

	16.	 Kirwan, J. A. et al. Preanalytical processing and biobanking procedures of biological samples for metabolomics research: A white 
paper, community perspective (for “precision medicine and pharmacometabolomics task group”-the metabolomics society initia-
tive). Clin. Chem. 64(8), 1158–1182 (2018).

	17.	 Sriwi, D. et al. Metabolomics profiling of cystic renal disease towards biomarker discovery. Biology 10(8), 770 (2021).
	18.	 Zhao, G. et al. A metabolomic study for chronic heart failure patients based on a dried blood spot mass spectrometry approach. 

RSC Adv. 10, 19621–19628 (2020).
	19.	 Wang, Q. et al. A dried blood spot mass spectrometry metabolomic approach for rapid breast cancer detection. Onco Targets Ther. 

9, 1389–1398 (2016).
	20.	 Polanski, M. & Anderson, N. L. A list of candidate cancer biomarkers for targeted proteomics. Biomark. Insights 1, 1–48 (2007).
	21.	 Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer 

cells. Nat. Commun. 8, 15267 (2017).
	22.	 Eniu, D. T. et al. The decrease of some serum free amino acids can predict breast cancer diagnosis and progression. Scand. J. Clin. 

Lab. Investig. 79(1–2), 17–24 (2019).
	23.	 Li, J. et al. Genetic profiles affect the biological effects of serine on gastric cancer cells. Front. Pharmacol. 11, 1183 (2020).
	24.	 Wang, L. B., Shen, J. G., Zhang, S. Z., Ding, K. F. & Zheng, S. Amino acid uptake in arterio-venous serum of normal and cancerous 

colon tissues. World J. Gastroenterol. 10(9), 1297–1300 (2004).
	25.	 Al-Koussa, H., El Mais, N., Maalouf, H., Abi-Habib, R. & El-Sibai, M. Arginine deprivation: A potential therapeutic for cancer cell 

metastasis? A review. Cancer Cell Int. 20, 150 (2020).
	26.	 Delage, B. et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer 126(12), 

2762–2772 (2010).
	27.	 Keshet, R. et al. Targeting purine synthesis in ASS1-expressing tumors enhances the response to immune checkpoint inhibitors. 

Nat. Cancer 1, 894–908 (2020).
	28.	 Benedetto, C. et al. Increased l-citrulline/l-arginine plasma ratio in severe preeclampsia. Obstet. Gynecol. 96(3), 395–399 (2000).
	29.	 Sivashanmugam, M., Jaidev, J., Umashankar, V. & Sulochana, K. N. Ornithine and its role in metabolic diseases: An appraisal. 

Biomed. Pharmacother. 86, 185–194 (2017).
	30.	 Kövamees, O., Shemyakin, A. & Pernow, J. Amino acid metabolism reflecting arginase activity is increased in patients with type 

2 diabetes and associated with endothelial dysfunction. Diab. Vasc. Dis. Res. 13(5), 354–360 (2016).
	31.	 Vyas, S., Zaganjor, E. & Haigis, M. C. Mitochondria and cancer. Cell 166(3), 555–566 (2016).
	32.	 McCann, M. R., George De la Rosa, M. V., Rosania, G. R. & Stringer, K. A. l-Carnitine and acylcarnitines: Mitochondrial biomark-

ers for precision medicine. Metabolites 11(1), 51 (2021).
	33.	 Wang, L., Li, C., Song, Y. & Yan, Z. Inhibition of carnitine palmitoyl transferase 1A-induced fatty acid oxidation suppresses cell 

progression in gastric cancer. Arch. Biochem. Biophys. 696, 108664 (2020).



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14632  | https://doi.org/10.1038/s41598-022-19061-3

www.nature.com/scientificreports/

	34.	 Sun, C., Wang, F., Zhang, Y., Yu, J. & Wang, X. Mass spectrometry imaging- based metabolomics to visualize the spatially resolved 
reprogramming of carnitine metabolism in breast cancer. Theranostics 10(16), 7070–7082 (2020).

	35.	 Jourdan, C. et al. Associations between thyroid hormones and serum metabolite profiles in an euthyroid population. Metabolomics 
10(1), 152–164 (2014).

	36.	 Roe, D. S., Roe, C. R., Brivet, M. & Sweetman, L. Evidence for a short-chain carnitine-acylcarnitine translocase in mitochondria 
specifically related to the metabolism of branched-chain amino acids. Mol. Genet. Metab. 69(1), 69–75 (2000).

	37.	 Jachthuber Trub, C. et al. Impact of lifestyle intervention on branched-chain amino acid catabolism and insulin sensitivity in 
adolescents with obesity. Endocrinol. Diabetes Metab. 4(3), e00250 (2021).

	38.	 Enooku, K. et al. Altered serum acylcarnitine profile is associated with the status of nonalcoholic fatty liver disease (NAFLD) and 
NAFLD-related hepatocellular carcinoma. Sci. Rep. 9(1), 10663 (2019).

	39.	 Li, S., Gao, D. & Jiang, Y. Function, detection and alteration of acylcarnitine metabolism in hepatocellular carcinoma. Metabolites 
9(2), 36 (2019).

Author contributions
X.W. wrote the main manuscript text. X.W. and H.A. did the statistical analysis. H.G. and Z.Z. provided supervi-
sion for data analysis and manuscript preparation. All authors reviewed the manuscript.

Funding
This study is supported by grants from Science and Technology Planning Project of Guiyang, Guizhou Province, 
China (Grant No. [2019]-9-4-28), research project in the Second Affiliated Hospital of Guizhou University 
of Traditional Chinese Medicine (Grant No. GZEYK[2020]6), Science and Technology Foundation of Health 
Commission of Guizhou Province (Grant No. gzwjkj2020-1-185), Science and Technology planning project of 
Guizhou Province(Grant No. ZK[2022] General 494).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​19061-3.

Correspondence and requests for materials should be addressed to H.G. or Z.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-19061-3
https://doi.org/10.1038/s41598-022-19061-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Metabolite biomarker discovery for human gastric cancer using dried blood spot mass spectrometry metabolomic approach
	Materials and methods
	Study design and participants. 
	Blood sample collection and pretreatment. 
	Metabolomics analysis. 
	Data analysis. 

	Results
	Demographics of study samples. 
	Metabolic differences between LC and HC groups. 
	The screening of significantly differential metabolites. 
	Building prediction model. 

	Discussion
	Conclusion
	References


