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Abstract: Mediators of cardiac injury in preeclampsia are not well understood. Preeclamptic women
have decreased cardiac global longitudinal strain (GLS), a sensitive measure of systolic function
that indicates fibrosis and tissue injury. GLS is worse in preeclampsia compared to gestational
hypertension, despite comparable blood pressure, suggesting that placental factors may be involved.
We previously showed that Activin A, a pro-fibrotic factor produced in excess by the placenta in
preeclampsia, predicts impaired GLS postpartum. Here, we hypothesized that chronic excess levels
of Activin A during pregnancy induces cardiac dysfunction. Rats were assigned to sham or activin
A infusion (1.25–6 µg/day) on a gestational day (GD) 14 (n = 6–10/group). All animals underwent
blood pressure measurement and comprehensive echocardiography followed by euthanasia and the
collection of tissue samples on GD 19. Increased circulating activin A (sham: 0.59 ± 0.05 ng/mL,
6 µg/day: 2.8 ± 0.41 ng/mL, p < 0.01) was associated with impaired GLS (Sham: −22.1 ± 0.8%,
6 µg/day: −14.7 ± 1.14%, p < 0.01). Activin A infusion (6 µg/day) increased beta-myosin heavy
chain expression in heart tissue, indicating cardiac injury. In summary, our findings indicate that
increasing levels of activin A during pregnancy induces cardiac dysfunction and supports the concept
that activin A may serve as a possible mediator of PE-induced cardiac dysfunction.

Keywords: preeclampsia; cardiac dysfunction; placental factors; activin A

1. Introduction

During normal gestation, the woman’s cardiovascular system endures major structural
and hemodynamic alterations to meet the demands of the developing fetus. The pregnancy-
induced hemodynamic shift usually initiates prior to placentation, peaks in the second
trimester of gestation, and persists until delivery [1]. However, disturbed cardiovascular
adaptations may lead to adverse pregnancy outcomes, including peripartum cardiomy-
opathy and preeclampsia (PE). PE is a syndrome characterized by new-onset hypertension
and significant end-organ damage in the last half of gestation or immediate postpartum
period [2]. It affects 3–5% of pregnancies worldwide, with incidence increasing over the
recent decades due to the higher prevalence of risk factors such as advanced maternal
age, obesity, and other chronic health conditions [3–5]. In addition to low plasma volume,
high peripheral vascular resistance, and reduced cardiac output [6–8], the heart of PE
women often exhibits impaired global longitudinal strain (GLS) [9–15]–a sensitive measure
of systolic function that indicates cardiac injury and fibrosis. Although hypertension and
cardiac dysfunction generally resolve after delivery, PE is associated with a significant
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risk of mortality as well as short- and long-term morbidity for both mother mothers and
offspring [16]. Despite the negative clinical, social, and public health impact of PE, the only
definitive treatment is early delivery [17]. Therefore, it is imperative to determine the mech-
anisms underlying cardiovascular dysfunction during pregnancies complicated by PE in
order to advance the discovery of novel therapies to improve maternal and fetal outcomes.

The cardiovascular adaptations of pregnancy are mainly regulated by hormonal and
neural mechanisms, with multiple pathways interacting to control blood pressure [18].
However, as an initial step in the pathophysiology of PE, abnormal placental morphogenesis
and perfusion stimulate the release of placental factors into the maternal circulation, and
compelling evidence indicates that vascular and cardiac dysfunction in PE are also induced
by many of these placental factors [17]. Indeed, it was found that GLS gradually deteriorates
from normotensive pregnancy to gestational hypertension (GH, allegedly without placental
compromise) to PE [9,14,15], despite comparable blood pressure in these hypertensive
groups [14]. Additionally, GLS remains impaired postpartum even after adjustment for
blood pressure and other clinically and biologically relevant variables [19–21], further
supporting a role for placental factors in the development of cardiac dysfunction in PE.

One potential placental factor that may contribute to detrimental changes to the heart
in PE is activin A [22]. Activin A is a glycoprotein member of the transforming growth
factor β superfamily involved in multiple biological functions, including reproduction,
embryogenesis, inflammation, and fibrosis. While the placenta is the major source of activin
A in the maternal circulation, the pituitary gland, ovaries, uterus, and inflammatory cells
are also able to produce activin A [23]. Increased expression of activin A was reported
in patients with heart failure as well as in experimental animal models of myocardium
infarction and dilated cardiomyopathy [24–26]. Furthermore, activin A was implicated
in cardiac remodeling and fibrosis by promoting the release of atrial natriuretic peptide
(ANP), brain natriuretic peptide (BNP), reactive oxygen species, and cytokines from cardiac
myocytes in vitro [27,28].

Dysregulation of the activin A signaling pathway is linked to the manifestation and
prediction of PE. Activin A is increased in the blood and placental tissue of PE patients
compared with both GH and normal pregnant women [29–43]. Moreover, circulating levels
of activin A are higher from 10 to 26 weeks of gestation in women who subsequently
developed PE [33,35,44–50]. We previously showed that serum activin A levels during the
third trimester in normotensive pregnancy, gestational or chronic hypertension, and PE
correlate positively with abnormal GLS at one year postpartum [21] and this relationship
persists 10 years after pregnancy [20]. Earlier studies demonstrated sustained infusion of
activin A-induced PE-like features in pregnant mice, including hypertension, proteinuria,
preterm birth, and fetal growth restriction [51]. However, the importance of activin A in
mediating cardiac dysfunction related to PE is not known. Thus, the present study aimed
to test the hypothesis that chronic excess levels of activin A induce cardiac dysfunction in
pregnant rats.

2. Materials and Methods
2.1. Experimental Animals and Protocols

All experiments were approved by the Institutional Animal Care and Use Committee
at the University of Mississippi Medical Center (UMMC) and conducted in accordance with
the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals.
Female Sprague Dawley rats were received from Charles River Laboratories (Wilmington,
MA, USA) on gestational day (GD) 10 and housed in the Center for Comparative Research
facility at the UMMC. On GD 14, animals were randomly assigned to either the sham (n = 10)
or the recombinant activin A (AnshLabs, Webster, TX, USA) group. For activin A infusion,
rats were anesthetized (~3% isoflurane in 2 L/min O2), and mini-osmotic pumps (Alzet,
Cupertino, CA, USA) containing varying doses were placed intraperitoneally. Pumps
were prepared to infuse 1.25 µg/day, 1.9 µg/day, 3 µg/day, or 6 µg/day of activin A
continuously from GD 14 to 19 (n = 6 per dose). These doses were selected to achieve a
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five-fold increase of Activin A in pregnant rats, to mimic levels seen in PE, compared to
healthy pregnancies, clinically [21,40]. All animals were fed nutritionally complete diets
(Envigo Teklad 8640, Indianapolis, IN, USA) and water, ad libitum.

On GD 19, blood pressure was measured, followed by an echocardiogram and sac-
rifice. These procedures are detailed below. During sacrifice, blood was collected from
the abdominal aorta into EDTA-coated vacutainers (BD, Franklin Lakes, NJ, USA). The
heart was excised, arrested in ice-cold cardioplegic solution, and weighed. The coronary
circulation was cleared with a cardioplegic solution by retrograde perfusion, snap-frozen,
and stored at−80 ◦C. To calculate fetal outcomes, pup and placental weights were averaged
per animal to constitute a single data point.

2.2. Maternal Blood Pressure Measurement

Blood pressure was assessed as we previously described [52]. Briefly, on GD 18, in-
dwelling carotid catheters were placed to measure blood pressure via a pressure transducer.
On GD 19, conscious blood pressure was measured in all animals for a period of two hours.
The final 30 min was used to average mean arterial pressure (MAP).

2.3. Echocardiography with Speckle Tracking Technology

Comprehensive echocardiography was performed using the Vevo3100 (VisualSonics,
Toronto, ON, Canada) and an MX250 scan head for small animals on GD 19. Rats were anes-
thetized with constant temperature and heart rate monitoring. Cardiac output and ejection
fraction were determined in B-mode, whereas mass was determined in M-mode. Speckle
tracking analysis to determine GLS was performed using the accompanying VisualSonics
VevoStrain software.

2.4. Western Blotting

Quantification of the β-myosin heavy chain (β-MHC) was performed by Western
blotting as we previously described [53,54]. Briefly, rat heart samples were homogenized
in RIPA lysis buffer (Thermo Scientific, Rockford, IL, USA) containing protease and phos-
phatase inhibitors. Protein concentration in lysed samples was estimated using the Pierce
BCA protein assay kit (Thermo Scientific). Samples were loaded and separated by SDS-
PAGE gel and transferred to nitrocellulose membrane. The membrane was then blocked
with 5% non-fat milk in TBST for 1 h and incubated with primary antibodies overnight at
4 ◦C. The antibodies used were mouse anti-β-MHC (cat# ab50967, Abcam, Waltham, MA,
USA ) or mouse anti-GAPDH (cat# 97166S, Cell Signaling Technology, Inc., Danvers, MA,
USA). The membrane was washed with TBST three times, 10 min each, and then incubated
with hrp-conjugated donkey anti-mouse secondary antibody for 1 h. The protein bands
were detected using the iBright FL1500 instrument (Thermo Scientific), and the bands were
quantified using NIH ImageJ analysis software (Version: 1.52k, Bethesda, MD, USA).

2.5. Histology for Detection of Cardiac Fibrosis

Fibrosis was determined by cardiac histology as we previously described [53,55].
Briefly, heart samples were collected, fixed in 10% formalin, and embedded in paraffin.
The paraffin blocks were sectioned into 10 µm sections and stained with Sirius Red and
the Fast Green Collagen Staining Kit (Chondrex Inc., Woodinville, WA, USA), according
to the manufacturer’s instructions. The slides were then washed and mounted with a
mounting medium. Images were taken with a bright field microscope and analyzed using
NIH ImageJ software.

2.6. Biochemical Analyses

Following sacrifice on GD 19, blood was spun at 2500 RPM for 12 min at 4 ◦C and stored
at −20 ◦C. Activin A (AnshLabs), ANP, and BNP (ab108797 and ab108815, respectively,
Abcam) were measured in serum using commercially available sandwich ELISA kits, as
per the manufacturers’ instructions. ANP and BNP levels were also quantified in heart
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homogenate samples by ELISA (Abcam) and normalized by total protein concentration
determined by BCA assay (Thermo Scientific). A Tecan GENios plate reader (Mannedorf,
Switzerland) with Magellan version 4.1 software (Mannedorf, Switzerland) was used to
read the plates.

2.7. Statistical Analysis

All graphs and statistical analysis were performed using Graphpad Prism (Version
9.0.0 GraphPad Software, La Jolla, CA, USA). The specific n for each data set is detailed
in the figure legend. Data followed a normal distribution and were analyzed using either
a two-tailed t-test or one-way ANOVA followed by Tukey’s multiple comparison test
depending on the number of groups being compared. Pearson’s correlation was performed
to determine the relationship between circulating activin A and markers of cardiac injury.
Data are presented as mean± SEM. A p-value of 0.05 was considered statistically significant.

3. Results

Activin A-infused pregnant rats had circulating activin-A levels on GD 19 that in-
creased in a dose-dependent manner. We trialed four different doses, and at 6 µg/day,
activin A concentration in serum was approximately five times that of the sham group
(Figure 1), which is comparable to the fold-change increase seen in PE women [21,40]. GLS,
which is a sensitive measure of cardiac systolic function, was significantly decreased in
pregnant rats treated with 1.25, 1.9, 3, or 6 µg per day of activin A compared to sham
(Figure 2). Interestingly, MAP was not different among groups regardless of the activin A
dose infused (Figure 3), suggesting that the effects of activin A on GLS were independent
of blood pressure.
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Figure 1. Circulating levels of activin A on gestational day 19 in sham (black open circles) and preg-
nant rats infused with 1.25 µg/day, 1.9 µg/day, 3 µg/day, and 6 µg/day of human recombinant ac-
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Figure 1. Circulating levels of activin A on gestational day 19 in sham (black open circles) and
pregnant rats infused with 1.25 µg/day, 1.9 µg/day, 3 µg/day, and 6 µg/day of human recombinant
activin A (solid red circles). Data are mean ± SEM. * p < 0.05 vs. sham, † p < 0.05 vs. 3 µg/day,
§ p < 0.05 vs. 6 µg/day.

Pregnant rats infused with the highest dose of activin A (6 µg/day) did not have any
significant differences in fetal parameters on GD 19, including fetal weight and placental
weight (Table 1), compared to sham rats. Similarly, maternal body weight, heart weight,
heart rate, cardiac output, ejection fraction, and fractional shortening were not significantly
altered in activin A-infused pregnant rats (Table 1, Figure 4).
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Figure 2. Cardiac global longitudinal strain (GLS) on gestational day 19 in sham (open black cir-
cles) and pregnant rats infused with 1.25 µg/day, 1.9 µg/day, 3 µg/day, and 6 µg/day of human
recombinant activin A (solid red circles). Data are mean ± SEM. * p < 0.05 vs. sham, † p < 0.05 vs.
6 µg/day.
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Figure 3. Mean arterial pressure (MAP) on gestational day 19 in sham (open black circles) and
pregnant rats infused with 1.25 µg/day, 1.9 µg/day, 3 µg/day, and 6 µg/day of human recombinant
activin A (solid red circles). Data are mean ± SEM.

Table 1. Characteristics of sham vs. activin A (6 µg/day) infused rats on gestational day 19.

Sham Activin A p-Value

n 10 6
Body weight, g 302 ± 10 305 ± 8 0.85
Fetal weight, g 2.66 ± 0.124 2.74 ± 0.072 0.65
Placental weight, g 0.65 ± 0.0213 0.64 ± 0.026 0.89
Heart weight, g 0.84 ± 0.011 0.87 ± 0.064 0.24
Heart rate, bpm 405 ± 14 408 ± 11 0.91
Cardiac output, mL/min 87 ± 5 101 ± 5 0.08
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Figure 4. Cardiac parameters. Ejection fraction (EF; (A)); and fractional shortening (FS; (B)); measured
on gestational day 19 in sham (open black circles) and activin A-infused (6 µg/day; solid red circles)
pregnant rats. Data are mean ± SEM.

Previous studies demonstrated that pathological left ventricular hypertrophy is often
associated with abnormal accumulation of collagen within the heart extracellular space,
with the resultant fibrosis leading to increased ventricular stiffness. Conversely, perivas-
cular fibrosis may cause myocardial ischemia. Both ventricular stiffness and myocardial
ischemia were demonstrated to play important roles in the development of cardiac dysfunc-
tion [56]. Furthermore, in a variety of pathophysiologic conditions, including hypertrophy
and ischemia, the postnatal heart undergoes adaptive mechanisms to support cardiac
structure and function, such as the switch from α-MHC to β-MHC. However, at a certain
point, this fetal-like reprogramming no longer suffices, with increased β-MHC linked to
heart failure [57]. To characterize whether circulating activin A in excess induces cardiac
fibrosis during pregnancy, collagen I and III fibers were visualized and quantified in histo-
logical heart slides using Sirus red staining. We also determined the fetal gene program by
quantifying β-MHC in heart homogenates using Western blotting. While there were no
significant differences between sham and activin A (6 µg/day)-infused pregnant rats in left
ventricular fibrosis (Figure 5A,B), β-MHC protein expression was significantly increased in
the left ventricle of activin A-infused rats on GD 19 (Figure 5C,D).
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Figure 5. Markers of cardiac injury. Left ventricular fibrosis (A,B) indicated by Sirius Red and Fast
Green staining, and beta-cardiac myosin heavy chain (β-MHC) protein content (C,D) on gestational
day 19 in sham (open black circles) and activin A-infused (6 µg/day; solid red circles) pregnant rats.
Data are mean ± SEM, * p < 0.05 vs. sham.

Finally, we measured ANP and BNP in the circulation and heart tissue of sham rats and
rats that were infused with 6 µg/day of activin A on GD 19 as indicators of presence and
severity of hemodynamic cardiac stress and heart failure [58]. There were no statistically
significant differences in either serum or left ventricular ANP and BNP levels between
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groups (Figure 6A–D). Due to limitations on the standard curve of the ELISA kit, six
(out of 10) serum ANP values in the sham group were undetectable compared with one
(out of six) value in the activin A-infused group (Figure 6A). Nonetheless, circulating BNP
levels were measurable in all serum samples from both groups (Figure 6B). Unfortunately,
we had no remaining heart samples from two of the activin A-infused pregnant rats to run
the ANP and BNP assays (Figure 6C,D). Interestingly, circulating activin A was positively
correlated to circulating BNP, but a significant relationship was not detected for circulating
ANP, suggesting that activin A induced some degree of cardiac injury (Figure 7A,B).
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centration of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) on gestational day 
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4. Discussion

This study sought to determine whether increases in circulating activin A induces
cardiac dysfunction during late pregnancy and whether this was associated with fibrosis
and markers of cardiac injury. We previously showed that a five-fold increase in plasma
activin A levels of PE patients, compared to normal pregnant women, predicts cardiac
dysfunction at 1 year postpartum [21]. Similarly, we demonstrated here that a five-fold
increase in circulating activin A levels induces cardiac dysfunction, as assessed by GLS,
in pregnant rats. While fibrosis was not detected in the left ventricle of activin A-infused
rats, we report a pronounced activation of the fetal gene program, which is indicative of
cardiac injury. These data suggest that elevated circulating activin A in PE may play a role
in mediating cardiac dysfunction in this cohort.

4.1. Cardiac Dysfunction in Preeclampsia Is Associated with Elevated Activin A

Circulating placental factors play a central role in promoting end-organ damage in PE.
For instance, maternal angiogenesis imbalance, including increased soluble fms-like tyro-
sine kinase (sFlt)-1 and soluble endoglin (sEng) as well as decreased placental growth factor
(PlGF), were associated with cardiac abnormalities during gestation and postpartum [59,60].
More recently, elevated antepartum activin A was associated with impaired GLS during
gestation and also with worsened GLS one year postpartum. At the plasma activin A levels
above 23.74 ng/mL, 84.7% of patients developed impaired GLS postpartum compared to
24.5% of those below the cutoff value [21]. These associations between circulating placental-
derived factors and cardiac dysfunction remain significant after multivariable adjustment
for clinically relevant confounders, including blood pressure [21,59,60]. Importantly, while
circulating levels of other placental factors are similar between normal pregnancy and
PE [59], activin A levels are comparable at one year postpartum but significantly elevated
at approximately 10 years after a pregnancy complicated by PE [20,21]. These clinical data
provide strong evidence of a relationship between plasma activin A and a lifelong risk
of cardiac dysfunction. However, the direct effect of excess circulating activin A on heart
function during pregnancy has yet to be examined.

The primary source of activin A during preeclampsia is thought to be the placenta;
indeed, placental activin A expression positively correlates with circulating activin A levels
in PE patients [29,31,37,41]. However, in vitro studies show that trophoblasts as well as
endothelial and immune cells also secret activin A when exposed to pro-inflammatory and
stress oxidative conditions, both hallmarks of PE [23]. Although the source of elevated
circulating activin A levels in the years following the index pregnancy is not known, it is
plausible that these other cell types may contribute.

Prior studies showed that activin A-infused pregnant mice exhibit increased blood
pressure levels compared with saline-infused counterparts, along with preterm birth and
fetal growth restriction [51]. However, we noted that impaired GLS following activin A
infusion in pregnant rats was independent of alterations in blood pressure. Moreover, there
were no differences in gestational length and fetal weight in our study. Differences in the
effect of activin A on maternal-fetal outcomes between studies might be related to the
activin A administration regimen, methods employed for blood pressure measurement,
and/or even inter-species variability. Lim et al. infused activin A subcutaneously at a
dose of 360 µg/kg/day from GD 10 to 16, resulting in more than an eight-fold increase
in serum activin A levels (216 ± 102 vs. 1845 ± 286 ng/mL). Additionally, they assessed
maternal blood pressure by noninvasive tail-cuff [51]. In contrast, we invasively determined
a method considered more accurate and reliable than plethysmography via a catheter
implanted in the carotid [61]. Indeed, the results of our study isolate the role of elevated
circulating activin A levels in the cardiac function of pregnant rats, independent of a PE-like
phenotype or hypertension itself.
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4.2. Mechanisms of Activin A-Induced Cardiac Dysfunction

The mechanisms by which activin A results in cardiac dysfunction were not previously
studied in the context of pregnancy. In mouse models of aging and left ventricular pressure
overload, circulating activin A levels and cardiac activin type II receptor (ActIIR) signaling
is significantly increased [62]. Interestingly, cardiac activin A expression was similar in
aged (28 months old) animals compared to young animals (4 months old), suggesting that
elevated activin A in the circulation and consequent activation of the ActIIR signaling in
heart tissue largely originates from outside the heart. However, cardiac activin A expression
also increased after pressure overload in young animals, indicating that both local and
systemic activin A production were up-regulated [62]. Furthermore, overexpression of
activin A with the administration of an adenoviral construct into young mice was sufficient
to impair radial systolic and early diastolic strain rates without significantly altering
blood pressure in only 96 h after injection [62]. Similarly, we report here that five days of
continuous infusion of activin A at 1.25, 1.9, 3, or 6 µg/day result in significant decreases
in GLS with no effect on blood pressure. These data are consistent with clinical data and
suggest that the activin A-ActIIR pathway plays a causal role in cardiac dysfunction.

A number of studies have implicated activin A overexpression in the development
of fibrosis [63,64]. While the impaired systolic strain is linked to increased fibrosis [65],
few studies investigated the direct relationship between activin A overexpression and the
development of cardiac fibrosis, and whether this effect could be ameliorated by inhibition
of activin A receptors. Hu et al. showed that activin A stimulates cardiac fibroblast
proliferation and differentiation [66]. Roh et al. demonstrated that a monoclonal antibody
that blocks ActIIR named CDD866 (a murinized version of bimagrumab) ameliorates
subclinical left ventricular systolic function of old mice. Moreover, CDD866 was not
only able to mitigate substantially the decline in systolic function induced by pressure
overload but also to attenuate the expression of fibrosis-related genes in heart tissue, both
in prevention and treatment protocol [62]. The same research group found that cardiac
myocyte-specific ActIIR knockout mice display normal cardiac structure and function
at baseline but were protected from pressure overload-induced systolic dysfunction [62].
Castillero et al. also showed that inhibition of the ActIIR signaling either with decoy
myostatin to prevent ligands from binding to ActIIR or with follistatin was associated
with preserved cardiac function and fibroblast-driven decrease in cardiac fibrosis in mice
following coronary ligation to induce myocardial infarction [63]. Importantly, treatment
with these ActIIR inhibitors was first administered two weeks after the initial insult [62,63].
As mentioned previously, we continuously infused activin A for only 5 days. Thus, the
infusion window may have been too short to detect significant differences in cardiac fibrosis
between groups of pregnant rats.

4.3. The Relationship between Activin A and Recognized Markers of Cardiac Dysfunction

Elevated β-MHC protein expression indicates the activation of the fetal gene program,
which occurs in response to stress. The predominant sarcomeric proteins in the fetal heart
switch from β-MHC to α-MHC in rodents to support the mechanical performance and
efficiency of the heart ex utero [57]. Abnormal expression of these MHC isoforms was
reported in cardiac hypertrophy and heart failure. Although β-MHC presents lower adeno-
sine triphosphatase activity and lower filament sliding velocity, it can generate cross-bridge
force with a higher economy of energy consumption than α-MHC, suggesting that a shift
from α- to β-MHC may be an adaptative response in order to preserve energy. Furthermore,
culminating evidence indicates that increased β-MHC expression decreases contractile
function, eventually leading to cardiac dysfunction and dictating clinical outcomes in
cardiac hypertrophy and heart failure [67]. These proteins were not measured in other
models of increased activin A expression; however, we previously found that the reduced
uterine perfusion pressure (RUPP) rat model of PE, which develops cardiac dysfunction
following 5 days of placental ischemia-induced hypertension [68], also exhibits decreased
cardiac α-MHC/β-MHC mRNA ratios [52]. The activin A-infused rats in the current study
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did not have elevated blood pressure, suggesting that activation of the fetal gene program
is a direct effect of excess activin A on the heart.

Cardiac dysfunction was proposed as a state of reduced effectiveness of the natri-
uretic peptide system [69]. ANP and BNP, which are synthetized and secreted by cardiac
myocytes, promote cardiovascular protection by antagonizing the actions of the renin–
angiotensin–aldosterone system concerning blood pressure regulation and salt-water bal-
ance. The identification of these natriuretic peptides as sensitive markers of the cardiac
load has profoundly impacted research into cardiovascular homeostasis and disease [70].
In the case of cardiac dysfunction, particularly in heart failure, despite dramatic increases
in circulating levels of ANP and BNP, their effects become blunted [69]. Still, they serve
as accurate diagnosis and prognosis markers for various cardiac disorders [58]. Increased
circulating levels of ANP and BNP were described in PE patients, including those with
reported impaired GLS [15,71–73]. Likewise, we and others found elevated ANP and
BNP levels in the circulation and/or heart tissue of RUPP rats [52,74,75]. Previous stud-
ies demonstrated that activin A overexpression increases, whereas inhibition of ActIIR
signaling following pressure overload or myocardial infarction decreases cardiac gene
expression of both ANP and BNP in mice [62,63]. We were unable to detect a significant rise
in either serum or heart levels of ANP and BNP. However, we showed that serum activin A
is positively correlated to serum BNP. Since these earlier studies have measured ANP and
BNP mRNA levels after 8–10 weeks of insult/treatment, the lack of effect of activin A on
triggering marked natriuretic peptide release in the current study might be a consequence
of the short duration of activin A infusion.

4.4. Study Limitations

Our study has some limitations that should be noted. For instance, continuous activin
A infusion induced subclinical cardiac dysfunction in pregnant rats, similarly to what was
reported in PE patients [9,10,12,14]. Whether this insult is sufficient to increase the risk for
long-term cardiac disorders after PE is still unknown. As placental anti-angiogenic factors
were also associated with cardiac dysfunction in PE, follow-up studies should examine
whether an infusion of activin A with or without sFlt-1 and/or sEng into pregnant animals
results in worsened GLS during and after gestation. Furthermore, future studies should
determine whether placental and heart expression of activin A and ActIIR is increased in
models of PE-induced cardiac dysfunction, such as in RUPP rats [52,68,74,75] and whether
treatment with inhibitors of the activin A-ActIIR pathway improves GLS.

5. Conclusions

In conclusion, we found that circulating activin A in excess induces cardiac stress and
subclinical dysfunction in pregnant rats, represented by increased heart β-MHC expression
and decreased GLS. As the placenta is the major source of activin A during pregnancy and
placental activin expression was positively correlated with circulating activin A levels in
PE patients [29,31,37,41], our data provide evidence that activin A may serve as a causal
link between placental abnormalities and cardiac dysfunction in PE.
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