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Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries; with the aging population, the
negative health impacts and costs of the disease will increase dramatically over the next decade. Although the exact cause of AMD
is unknown, genetic studies have implicated the complement system as well as other immune responses in disease pathogenesis
and severity. Furthermore, histologic studies have shown the presence of macrophages, lymphocytes, and mast cells, as well as
fibroblasts, in both atrophic lesions and with retinal neovascularization. This review summarizes discussions from the fifth annual
conference of the Arnold and Mabel Beckman Initiative for Macular Research by the Inflammation and Immune Response
Task Force. These deliberations focused on the role of inflammatory immune responses, including complement, inflammasomes,
adaptive immune responses, and para-inflammation, unanswered questions and studies to address these questions, and potential
immune-related therapeutic targets for AMD.

1. Introduction

Age-related macular degeneration (AMD) is the leading
cause of central vision loss in developed countries. The most
recent data suggest that more than 3 million people in the
United States will be affected by the disease by 2020 [1]. The
disease affects the choriocapillaris, Bruch’smembrane and the
retinal pigment epithelium, with dysfunction and death of
overlying photoreceptors. In addition to age, risk factors for
the disease include both environmental and epidemiologic
factors. Specific disease associations include smoking, light
exposure, obesity, and race [2]. Recent genetic studies have

implicated roles for the immune system, particularly abnor-
malities in the complement system, in disease pathogenesis,
and severity. Although patients with AMD do not have signs
of overt ocular inflammation, histologic studies have shown
the presence of macrophages, lymphocytes, and mast cells, as
well as fibroblasts, associated with both atrophic lesions and
with neovascularization of the retina [3].

Importantly, the retina is a highlymetabolically active tis-
sue, with requirements tomediate photoreceptor turnover. As
the retina ages, it may be less able to handle these metabolic
requirements. Immunologically active deposits called drusen
that contain lipids, complement, and other potentially
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immune activating substances may act as additional trig-
gers for immune responses in the eye. Other inflammatory
initiators include oxidative stress and secondary mediators
of inflammation such as cytokines. On the other hand, the
retina performs well until late in life despite constant stress,
suggesting that at least some of the inflammatory responses
observed may be beneficial. Equally intriguing, although
perhaps less well understood, is a renewed appreciation for
the role of the adaptive immune response in the pathogenesis
of AMD. Collectively, as a result of previous studies showing
inflammatory cells associated with AMD and newer genetic
studies implicating the innate immune system in developing
the disease, there is heightened interest in studying the role of
the immune response in AMD and in determining whether
modulating the immune response could help treat the dis-
ease.

The extent towhich innate and adaptive immune respons-
es play roles in the pathogenesis of AMD, and the ability to
target these pathways to effectively treat the disease, remains
debatable. This may in part be due to the complexity of
the immune response, the number of different inflammatory
cell types and cytokines involved, and the kinetics of the
inflammatory response. Further, it is as yet difficult to know
whether immune responses are driven and controlled locally
in the retina, or operate systemically, further complicating
interpretations and the development of useful therapeutic
approaches.

One key question, however, is whether this immune acti-
vation is always pathologic inAMD, orwhether it can actually
help preserve function andmoderate damage at certain stages
of the disease. The data support the idea that activated states
confer protection. Resident CD200R myeloid cells in the
retina are under tonic control by cognate interaction with
CD200 [4, 5].The tissue consequence of microglial activation
is context dependent [6, 7]. For example, in photoreceptor
neurodegenerativemodels,microglia do not contribute to the
progression of disease despite being activated [8]. In more
inflammatory scenarios, a recognized consequence of acti-
vated response is contributing toward immune regulation
in an attempt to contain further retinal damage [9]. A
chronic inflammatory state has also been identified in a
number of nonocular diseases, including type 2 diabetes and
cardiovascular disease. Could a low-grade immune response
be helpful in some circumstances?The intriguing concept has
been distilled and developed to infer that tissue stress or mal-
function can induce an advantageous response, and has been
referred to as para-inflammation [10]. Medzhitov hypoth-
esized that a well-controlled “para-inflammatory” response
could be beneficial by either protecting against infection or
preserving function in diseased tissues. The experimental
evidence and now the concept of para-inflammation have
been further articulated and illuminated experimentally by
Xu et al., who discuss the potential role of para-inflammation
in the aging retina elsewhere [11]. Briefly, and discussed in
more detail below, immune activation and recruitment of
macrophages may be required to help process photoreceptor
and RPE byproducts, thus controlling overt inflammation,
tissue dysfunction, and cell death.

In January 2013, the fifth annual conference of the Arnold
and Mabel Beckman Initiative for Macular Research was
particularly focused on a common form of AMD, namely,
atrophic macular degeneration. Meeting participants were
divided into task groups devoted to discussing and brain-
storming particular aspects of AMD, including one respon-
sible for considering the role of inflammation and immune
responses. This review arose in part from the discussions of
that task group.Here, therefore, the role of immune responses
in regulating or promoting tissue damage, including com-
plement, inflammasomes, and para-inflammation, will be
discussed, followed by a summary of the group’s thinking on
potential research approaches and therapeutic targets.

2. The Complement System and AMD

The complement system is the most widely accepted path-
ogenic pathway of the immune system implicated in AMD.
The genetic evidence from genome wide association studies
(GWAS) and rare variant analyses indicate an overactive
alternative pathway (AP). Multiple outstanding reports have
detailed and reviewed this evidence at the genetic, RNA
and protein levels [13, 14, 16–25]. Therefore, these data will
primarily be summarized here—the underlying thesis being
that excessive engagement of the alternative pathway is a key
component in AMD pathogenesis.

In 2005, four GWAS demonstrated that approximately
50% of the inheritance in AMD could be accounted for by a
single nucleotide polymorphism (SNP) in an exon encoding
the regulator complement factor H (CFH) [26–29]. More-
over, this SNP in CFH at amino acid position 402—a tyrosine
(Y) (major allele) or a histidine (H) (minor allele)—has a
functional consequence. At sites of tissue injury, the risk vari-
ant 402H does not dampen the alternative pathway (AP) of
complement activation as efficiently as 402Y [30–34]. While
the complement system had been previously implicated in
AMD [35–38], it was the GWAS-derived genetic data that
cemented the relationship [26–29].

In Caucasian populations of European ancestry, the risk
allele (402H) has a gene frequency of 0.3 to 0.4, and the more
common allele (Y402) 0.6 to 0.7. The 402H allele is likely
replacing the major one because in early life it provides a
survival advantage against streptococcal infections [13, 39,
40]. Multiple bacteria and several groups of viruses impair
the complement system by hijacking the host’s regulators
(reviewed in [40]); for example, microbes bind CFH to their
surface to inhibit complement activation. The CFH binding
protein of group A beta hemolytic streptococcus has a lower
affinity for 402H than for Y402. Consequently, the host’s
complement system has greater activity against the pathogen
if the host expresses 402H, thereby reducing the microbes’
ability to counteract theAP.CFHadheres to damaged eukary-
otic cells and tissue debris via the same anionic (heparin)
binding sites that microorganisms employ to attach it to
their surface. Two and possibly as many as four such cellular
and tissue binding sites are positioned along the linear CFH
protein (Figure 1). An unintended consequence later in life
of carrying 402H is that it does not bind as well as Y402
to debris in the retina. Differential binding of 402H versus
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Figure 1: Schematic diagram of complement factor H (CFH). The
protein consists entirely of 20 repeating homologous units (comple-
ment control repeats or CCPs), each ∼60 amino acids in length (like
beads on a string). The N-terminal portion houses the regulatory
domains (repeats 1–4). The surface-binding recognition motifs are
located in repeats 6–8, 12–14 and 19 and 20. They are also known
as anionic- or heparin-binding sites. Both Y402H in repeat 7, and
a rare variant in repeat 20 [12], are associated with AMD; these
regions mediate the binding of factor H to cellular debris such as
drusen or damaged retinal cells/tissues. Atypical hemolytic uremic
syndrome (aHUS) has been compared to AMD because multiple
variants leading to haploinsufficiency of factor H allow for excessive
complement activation in this thrombomicroangiopathy [13–15].
Specifically, about 60% of the mutations in aHUS occur in repeats
19 and 20, which decrease factor H’s ability to bind to damaged
endothelium. DAA, decay accelerating activity; CA, cofactor activ-
ity; Hep, heparin binding; CRP, C-reactive protein. Modified from
Richards et al. [13].

Y402 tomultiple constituents of a damaged retina [30–34, 41–
44] has been demonstrated for DNA, RNA, lipids, C-reactive
protein (CRP), necrotic and apoptotic cells, heparin andother
glycosaminoglycans, lipofuscin, bisretinoids, photooxidation
byproducts, and amyloid beta. The common finding is that
the 402H protein binds with a lower affinity than Y402.
Therefore, in the retina of an individual carrying this risk
variant, there is a greater degree of AP activation as retinal
debris accumulates in AMD patients.

Thus, the complement hypothesis for the etiopathogen-
esis of AMD centers on the concept of an “overreaction”
to injury and debris in the retina by individuals carrying a
“complement hyperinflammatory phenotype” [13, 14, 45].The
AP becomes engaged on a target site if there is a relative
lack of inhibitors. To regulate the AP that is continuously
turning over, CFH must first transfer from plasma to the
foreign material or altered self. To maintain homeostasis and
to prevent excessive AP activation, it binds to the target using
bothC3b and anionicmaterial as ligands for itsmultiple bind-
ing sites (Figure 1). It then serves as a cofactor for the serine
protease (Factor I) to cleave C3b.This results in a C3 fragment
that does not support amplification via the AP’s feedback
loop. A host carrying the 402H allele or other risk factors
may deposit undesirable quantities of C3b and release C3a in
the retina, as well as the downstream effectors C5a and C5b-
C9. This scenario for AMD pathogenesis does not preclude
triggering of the classical or lectin complement pathways by
autoantibodies or lectins, which could then be followed by
excessive amplification through the AP. Also, environmental

(e.g., smoking) and endogenous (e.g., increased body mass)
factors further tip the balance in favor of more inflammation
[46–52].

Multiple other CFH variants, both common and rare,
influence risk of developing AMD [18, 20, 21, 53–55]. For
example, the CFH 62I variant is protective, as is a 84 kb
deletion of two CFH-related genes, FHR-1 and FHR-3. The
simplest and most likely interpretation of these data is that
these genetic changes enhance regulation of the AP by
CFH. In contrast, a rare and defective CFH variant confers
substantial risk (with high penetrance) for AMD [12]. This
recent discovery of a rare variant in CFH with a large effect
is probably just the beginning in terms of identification by
targeted deep sequencing of highly penetrant mutations in
regulators and components of the AP in AMD. Further,
haploinsufficiency of C9 conferred a nearly 5-fold reduction
in neovascular AMD in the Japanese population, where a
nonsense mutation in the C9 gene is frequently found [56].
The interpretation here is that membrane attack complex is
less active and thus is protective against retinal damage.

In addition to risk and protective variants of CFH and
CFH-related genes, polymorphisms in AP components C3
[57, 58] and factor B [30, 58] are also associated with AMD.
A consistent observation is that the protective variants result
in less AP activity, whereas risk variants result in more AP
activity. Genetic variants in Factor I, the protease employed
by CFH to inactivate C3b, have also been associated with
AMD by GWAS [59]. Taken together, these findings provide
powerful evidence implicating overactivation of the AP
predisposing to AMD; thus, common and rare variants in
multiple members of a proinflammatory pathway of innate
immunity—the AP—are associated with the same disease.
Those that decrease function of the pathway are protective,
and those that increase function create risk. Moreover, the
variants have both independent and additive effects on the
risk of developing AMD [25, 47, 48, 52, 58].

Other inhibitors of the AP include membrane cofac-
tor protein (MCP; CD46), decay accelerating factor (DAF;
CD55), and complement receptor one (CR1; CD35, the
C3b/C4b or immune adherence receptor). MCP and DAF
are widely expressed, whereas CR1 has a more limited dis-
tribution. DAF and MCP are expressed on the cell surface,
where they protect healthy cells from complement attack.
MCP is expressed at a high level by RPE cells (particularly
at the basal surface) and endothelial cells [24]. A decrease
in MCP expression at this RPE location was observed in
early AMD. CR1 also has potent regulatory activity for AP
C3 and C5 convertases. A surprising recent observation is
CR1 expression on the apical surface of RPE cells [24]. These
observations concerning the expression and function of DAF,
MCP, and CR1 in the retina require further investigation.
Although GWAS have not implicated DAF, MCP, or CR1 in
susceptibility to AMD, results of targeted next generation
deep sequencing of these genes have not been reported.

A role for complement is further evident specifically in
“wet” AMD.This severe condition is associated with choroid-
al neovascularization (CNV) [53], a process characterized
by newly formed and leaky vessels invading the sub-retinal
space. CNV is associated with fluid accumulation and retinal
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detachment with loss of the underlying photoreceptors. One
animal model of wet AMD is the laser-induced CNV model
in rodents. The model is initiated by argon laser photoco-
agulation, which ruptures Bruch’s membrane and triggers
complement activation [60]. In mice, the key role of the
complement system in the development of CNV is well estab-
lished. Using knockout and specific inhibitor approaches, it
appears that the alternative pathway of complement is the
key driver of CNV, in that the removing of the classical or
lectin pathway has no protective effect [61, 62]. However,
the alternative pathway alone is not sufficient to drive CNV,
confirming its importance in the amplification loop [61].
With regard to effector functions, the anaphylatoxins C3a
and C5a [60] are important in developing injury. In addition,
the membrane attack complex (MAC) contributes to the
development of CNV, as CD59−/− mice lacking the MAC
regulator CD59 develop CNV at a higher level than control
mice [63], and treatment with recombinant soluble CD59a-
IgG2a fusion-protein [64] or gene therapy expressing soluble
CD59 [65] both reduce CNV. The CNV model has also been
successfully treated with the targeted murine CR2-factor H
(muCR2-fH) protein, which consists of a domain which
directs the regulatory domain of CFH to sites of complement
activation [66], as demonstrated by systemic administration
and evaluation of local CNV development [67]. Importantly,
in each model evaluated, complement activation amplifies
the generation of vascular endothelial growth factor (VEGF),
which is strongly implicated in fueling the development of
CNV and AMD [68].

3. Inflammasome Activation in AMD

The maintenance of the delicate balance between self and
nonself regulates cellular homeostasis. However, during the
aging process this systemmay bemore vulnerable to a variety
of noxious challenges that may activate host defense systems.
The inflammasome is responsible for activation of many
inflammatory processes.The inflammasome is amultiprotein
complex, comprising of a sensor protein, the adaptor protein
ASC (apoptosis-associated speck-like domain containing a
caspase recruitment domain), and the inflammatory protease
caspase-1. The assembly of the inflammasome signaling
platform occurs due to conformational changes in the sensor
protein, which in turn recruits caspase-1 to the complex
and subsequently promotes the activation of caspase-1. Once
activated, caspase-1 cleaves the inactive precursors of two
proinflammatory cytokines, interleukin 1𝛽 (IL-1𝛽) and IL-
18, thereby generating mature forms which are then secreted
from cells [69]. The inflammasome forming sensors are
different receptor molecules, such as nucleotide-binding
domain and leucine-rich repeat containing family pyrin
(NLRP), which belong to the Nod-like receptor family of
proteins. These include NLRP1, NLRP3, and NLRC4; or
Absent In Melanoma (AIM 2), a receptor of the HIN (IFN-
inducible nuclear proteins) family of proteins [70]. A growing
body of evidence suggests that the NLRP3 inflammasome is
clearly involved in host defense and autoinflammatory con-
ditions, and is an integrator of cell damage and stress signals
[71].

Activation of IL-1𝛽 by an inflammasome is required to
efficiently control viral, bacterial, and fungal pathogen infec-
tions. However, excess IL-1𝛽 activity contributes to a variety
of diseases [72]. The NLRP3 inflammasome has been shown
to play a central role in the pathogenesis of autoinflammatory
disorders; its activity has also been implicated in diseases
such as Alzheimer’s disease, cancer, type II diabetes, and
most recently AMD [71, 73, 74]. The classic pathology of
AMD ismultiple small or intermediate drusen in themacular
area. In a recent study, drusen isolated from donor AMD
eyes were shown to activate NLRP3 inflammasome, causing
secretion of IL-1𝛽 and IL-18 [73]. The authors postulated that
NLRP3 may be a sensor for drusen-induced inflammasomes,
as NLRP3 has been shown previously to act as a receptor
for “danger” signals such as amyloid-like structures. Because
laser-induced CNV was considerably greater in NLRP3
knockout mice, but not IL-1R knockout mice, NLRP3 and IL-
18 may have a protective role in the progression of AMD [73].
Further, CEP (carboxyethylpyrrole), a biomarker of AMD,
was thought to prime the inflammasome. Interestingly, while
C1q, another complement component known to contribute
to the inflammation and the pathophysiology of AMD [61],
can also act as a danger signal that is, sensed by the NLRP3
inflammasome [75], C1q knockout mice develop CNV of
similar size to control mice [61]. In addition, a recent study
reported that lysosomal destabilization can activate the
NLRP3 inflammasome in RPE cells [76].

Regulation of the NLRP3 inflammasome is poorly under-
stood but probably involves the integration of signals from
a number of stimuli, such as cellular damage and stress. It
is now appreciated that inflammasome-dependent biological
effects may be mediated not only by IL-1𝛽 and IL-18, but
also by the multifaceted activities of caspase-1.Therefore, it is
important to determine themechanisms by which inflamma-
somes inRPE cells directly or indirectlymodulate IL-1𝛽 activ-
ity thatmay lead toAMD. In chronically stressed states, where
autophagy is increased, there may be secondary effects of
protecting against inflammasome activation [77, 78]. Further
understanding in context of drusen and RPE behavior may
provide pathways to interrogate to maintain RPE function
and health and attenuate inflammatory activation. Future
studies to better understand how inflammasomes may be
activated in AMD, and the molecular mechanisms involved
in the assembly of the inflammasome signaling platform,
may therefore lead to the development of novel therapeutic
approaches for AMD.

4. Para-Inflammation in AMD

Inflammation, both acute and chronic, functions to control
danger signals or to respond to pathogens to safeguard a
host andmaintain tissue health. Disturbances of homeostasis
(e.g., infection, tissue injury, foreign bodies, but may also
include stresses from aging) trigger inflammatory responses,
the purpose of which are to remove or sequester the source of
the disturbance and to allow the host to adapt to the abnormal
conditions and return to a state of homeostasis. However,
the spectrum of inflammation is broad. When appropriate,
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inflammation can be both adaptive and protective. Con-
versely, the immune response also has significant patholog-
ical potential and can promote tissue damage and facilitate
disease progression.

Medzhitov first introduced the idea of para-inflammation
as a tissue adaptive response to noxious stress or malfunc-
tion that has characteristics intermediate between basal and
inflammatory states [10]. Briefly, in the basal state, tissue-
resident macrophages (principally retinal microglia and reti-
nal perivascular macrophages or choroidal macrophages)
may play a role to promote an adaptive change with short-
term benefits, promoting tissue homeostasis. However, if the
abnormal conditions are sustained, or if the tissue receives
a “danger signal,” this can result in immune cell infiltration,
which in turn can become maladaptive. Para-inflammation
has characteristics that are intermediate between basal and
inflammatory states. The purpose of normal para-inflamma-
tion is presumably to maintain tissues homeostasis and to
restore tissue function. Nonetheless, if a tissue is exposed
to prolonged stress or malfunction, para-inflammation can
become chronic and promote disease progression. Dysreg-
ulated para-inflammation has been proposed to play an
important role in the progression of diabetes, atherosclerosis,
and obesity.

Similarly, dysregulated para-inflammation, which is espe-
cially relevant in aging tissues dependent on nonproliferative
cells and characterized by very high metabolism and other
oxidative stress (e.g., the macula), has also been postulated
to contribute to the development of AMD [11]. In the aging
retina, oxidized lipoproteins and free radicals are major
causes of tissue stress and serve as local triggers for retinal
para-inflammation. Para-inflammatory responses in the neu-
roretinamay be reflected inmicroglial activation and subreti-
nal migration, and (potentially) breakdown of blood-retinal
barrier. At the retinal/choroidal interface, para-inflammation
manifests as complement activation in Bruch’s membrane
and RPE cells, and accumulation of microglia (and myeloid
cells that have recently immigrated) in the subretinal space.
In the choroid, para-inflammation may be characterized
by increased thickness of choroid, increased macrophages,
morphological abnormalities in choroidal melanocytes, mast
cell activation and fibrosis.

Recent evidence, derived from the cybridmodels ofmito-
chondrial haplotypes into a mitochondrial DNA-null RPE
cell line (ARPE19), showed that mitochondrial dysfunction
may promote the progression and AMD [79]. The observed
distinct polarization of energy cellular energy source and
production suggest an approach with promise in further
interrogating the influence on immune responses, including
para-inflammation. The notion is that switching energy
sources, which may be dependent on haplotype, influences
the signaling pathways and thus phenotype of any subsequent
immune activation of the cell. Further studies may increase
our understanding of potential switch of energy sourcing,
and the influence on immune activation of RPE that in turn
will direct immune responses in cells (i.e., macrophages and
choroidal mast cells) to deliver a trigger for progression of
disease.

5. Adaptive Immunity in AMD

The role of adaptive immunity in AMD has received increas-
ing attention. Whether adaptive immune responses relay
pathogenic or regulatory functions, or are simply bystander
effects, remains elusive. In support, there have been numer-
ous reports suggesting involvement due to finding of autoan-
tibodies in AMD patients, not least with the detection of
anti-retinal autoantibodies [80, 81]. Whether they have a role
as potential pathogenic mediators, or occur as bystanders,
it remains to be determined if autoantibodies can act as
a prognosticator or biomarker in AMD patients [82]. The
search has been driven further with utilization of serum
antigen arrays and 2-D gel electrophoresis. Specific targets
such as RPB-3, aldolase C and pyruvate kinase IgG have
been derived, and altered IgG/IgM ratios of anti-phophsat-
idylserine are associated with patients with AMD [83, 84].
Autoantibodies have been observed even when investigating
responses to complement regulators, such as CFH [85]. The
latter finding is enticing in that autoantibodies to CFH were
unexpectedly lower in AMD patients, inferring a protective
effect. Nevertheless, together there is increasing evidence
of the presence of autoantibodies in AMD. The spectrum
suggests secondary effects, and indeed also infers the poten-
tial of adaptive immune engagement. Consequently further
searches for autantibodies, albeit possibly in only a small
subset of patients, may be justified to determine whether
there is a prevalent autoantibody signature.

More compelling data arises from mouse work. The data
from Hollyfield et al. [43, 86] demonstrated that carboxy-
ethylpyrrole (CEP) is present in AMD eye tissue, and mice
immunized with this adducted oxidated product generated
antibodies and exhibited pathology with some similarities
with human AMD. Moreover, in experiments in RAG-
deficient animals which lack B and T cells, no anti-CEP
antibody was detected. Given the cell infiltrate noted around
lesions, both T cell engagement and complement fixation
were thought to contribute in this model to the loss of RPE
and photoreceptors, and thus progression of AMD.

Most recently, novel observations of cytokine and T cell
signatures from AMD patients have been published. First, an
intriguing increase in IL-22 and IL-17 levels in serum from
AMD patients was shown, supported by the further finding
that C5a stimulated IL-22 and IL-17 fromT cells [87]. Second,
studies of twins and siblings found that the IL-17RC promoter
is hypomethylated in AMD patients [88], further suggesting
the involvement of adaptive immunity and TH17 cells, as well
as potential effect on macrophages. Consequently, a testable
hypothesis is that autoantibodies are present early in subsets
of AMDpatients, and are pathogenic.Thenotion that autoan-
tibodies may create further complement-mediated damage,
or activate myeloid cells to switch from protective para-
inflammatory to pathogenic responses, may also be tested.
Generation of autoantibodies (i.e., engagement of adaptive
immune responses that are pathogenic) may tip the balance
from para-inflammatory control, and create an environment
that induces further loss of cells, angiogenesis, and an
unremitting walk to late stage AMD.
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6. Summary of BIMR Conference Discussions

Recent data suggest that dysregulation of immune response
could contribute to the pathogenesis of AMD.However, there
are a number of questions that remain unanswered. First, if
para-inflammation is involved in the pathogenesis of AMD,
when and how does a dysregulation of the immune response
change from a protective role to a harmful process? Second,
although genetic studies point to a role for the complement
system and innate immunity in AMD, what role if any does
adaptive immunity play in the disease?The group discussed a
number of experimental approaches that could help address
these questions.

6.1. Human Tissue Studies. Existing tissue banksmay be used
to interrogate immune response in AMD, with a particular
focus on early events. Diseased and fellow eye tissue might
first be graded using an established system [89], and then
comprehensively characterized in terms of inflammatory cell
contents and patterns, presence of complement and autoan-
tibodies, and gene and protein expression profiles. It may be
especially useful to compare tissue from different areas of an
individual retina (e.g., in the fovea, adjacent to drusen, and
“normal” tissue away from drusen).

6.2. Retrospective Clinical Studies. Existing medical records
from large databases, such as those available from Medicare
in the USA or anti-TNF-𝛼 treatment registries in the UK,
could be mined to gain insight into selected questions. For
example, do patients on immunosuppressive therapies for
rheumatologic diseases have a lower prevalence of AMD?

6.3. Prospective Clinical Trials. There are a number of ran-
domized clinical trials examining immunomodulation as a
therapy for retinal diseases including AMD. Results from
these trials will help guide our knowledge about the role of the
immune system in the disease. Examples of such informative
trials include prior trials studying treatment with immun-
omodulators in other diseases, and trials in AMD using
immunomodulators such as those that target C5 and other
complement components, mTOR, or TNF-𝛼.

6.4. Biomarkers. Identification of direct and/or surrogate
biomarkers that are predictive or prognostic for disease
susceptibility, disease progression, or treatment response will
be beneficial to the study of AMD. Serum, plasma, PBLs,
platelets, and aqueous humor could be obtained frompatients
enrolled in natural history studies, and at the same time,
patients encouraged to consent to eventually donate eyes.
Samples could be used to assess complement components,
cytokines, carboxyethylpyrrole (CEP), and autoantibodies.
Collectively, such studies may yield clinical/pathological cor-
relations and genotype/phenotype relationships in individual
patients.

6.5. Imaging Modalities. The development of new imaging
modalities can detect the trafficking and function of immune
cells in the retina and choroid (which may be transient).

These tools, if designed to provide quantitative analyses
of immune system functions such as the presence in the
human eye of ongoing complement activation or specific
cellular infiltration could then be applied to both direct
imaging studies, particularly immunomodulatory treatments
and bioenergetic evaluations, and to studies using transfer of
ex vivo labeled cells.

6.6. Animal Models. Although there is no perfect animal
model for AMD, preclinical models that reproduce specific
aspects of early AMD (e.g., drusen, low grade chronic inflam-
mation, and GA) need to be developed to ask specific ques-
tions about the role of inflammation, and to probe specific
disease mechanisms. Although eyes in mice do not have
macular structures and do have a distinct RPE morphology,
an example of a model for para-inflammation may include
deliberately inducing low grade inflammation in ob/ob or
senescentmice, followed by addition of a systemic insult (e.g.,
light toxicity) to reproduce the hypothesized dysregulation of
para-inflammation.

6.7. In Vitro Cell Biology Studies. Finally, there is interest in
studies designed question whether changes in aging RPE and
photoreceptors make them more susceptible to damage by
dysregulated para-inflammation in AMD. For example, in
vitro cultures of photoreceptors could be used to evaluate
early changes in rods inAMD, or resistance to injury by cones
inAMD.Cultures of RPE could be used to examinemetabolic
dysfunctions (e.g., mitochondrial dysfunction, haplotypes),
and the responses of retinal and choroidal cells to cytokines
released by such metabolic change. Of particular interest are
epigenetic changes in such cells that may promote or protect
cells in aging and AMD.

7. Conclusions

The prevalence of AMD will continue to increase as the
population ages. Although we do not know the exact etiology
of the disease, recent genetic studies have implicated the
complement system in disease pathogenesis and severity.
Other studies further support the hypothesis that the immune
system is involved in the disease, in concert with or in addi-
tion to other factors such as environmental conditions and
products of photooxidation (Figure 2). Importantly, under-
standing how immune responses initiate or exacerbate AMD
will allow us to identify novel therapeutic approaches to the
disease.
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