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Malignant middle cerebral artery infarction (mMCAi) is a serious complication of cerebral
infarction usually associated with poor patient prognosis. In this retrospective study, we
analyzed clinical information as well as non-contrast computed tomography (NCCT) and
computed tomography angiography (CTA) data from patients with cerebral infarction in
the middle cerebral artery (MCA) territory acquired within 24 h from symptoms onset.
Then, we aimed to develop a model based on the radiomics signature to predict the
development of mMCAi in cerebral infarction patients. Patients were divided randomly
into training (n = 87) and validation (n = 39) sets. A total of 396 texture features were
extracted from each NCCT image from the 126 patients. The least absolute shrinkage
and selection operator regression analysis was used to reduce the feature dimension
and construct an accurate radiomics signature based on the remaining texture features.
Subsequently, we developed a model based on the radiomics signature and Alberta
Stroke Program Early CT Score (ASPECTS) based on NCCT to predict mMCAi. Our
prediction model showed a good predictive performance with an AUC of 0.917 [95%
confidence interval (CI), 0.863–0.972] and 0.913 [95% CI, 0.795–1] in the training and
validation sets, respectively. Additionally, the decision curve analysis (DCA) validated the
clinical efficacy of the combined risk factors of radiomics signature and ASPECTS based
on NCCT in the prediction of mMCAi development in patients with acute stroke across
a wide range of threshold probabilities. Our research indicates that radiomics signature
can be an instrumental tool to predict the risk of mMCAi.

Keywords: stroke, malignant, middle cerebral artery, computed tomography, radiomics, texture analysis

INTRODUCTION

Malignant middle cerebral artery infarction (mMCAi) is a life-threatening complication that is
usually observed in relatively young patients with a large middle cerebral artery (MCA) infarction
(Hacke et al., 1996). Its prevalence rate hovers around 10–15% of the total MCA strokes (Ryoo et al.,
2004), and around 18–31% of strokes caused by MCA occlusion (Foerch et al., 2004). In mMCAi
patients, the early decompressive hemicraniectomy was found effective in reducing the mortality
rate and improving the clinical outcome (Vahedi et al., 2007; Jüttler et al., 2014; Back et al., 2015).
However, mortality rates of mMCAi can reach up to 80% without surgical intervention (Thomalla
et al., 2010; Sakuta et al., 2015).
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To the best of our knowledge, there are no standardized
parameters that can define mMCAi especially in the early stages.
Several clinical and standard visual radiological parameters have
been studied as possible predictors for the development of
mMCAi (Thomalla et al., 2010). In particular, severe neurological
deterioration reflected by high scores on the National Institutes
of Health Stroke Scale (NIHSS) was a predictor of fatal cerebral
edema (Oppenheim et al., 2000). The occlusion of the internal
carotid artery (ICA) in the intracranial segment on computed
tomography angiography (CTA) could predict mMCAi (Kucinski
et al., 1998). Further, the presence of extensive early ischemic
signs (including the involvement of more than 50% of the MCA
territory) (Kasner et al., 2001) or hyperdense vessel sign (HVS)
on CT imaging (Haring et al., 1999) can also predict mMCAi.
However, the positive predictive value of the above-mentioned
parameters was modest (Hofmeijer et al., 2008). Thomalla et al.
(2010) defined mMCAi as follows: (1) clinical signs of large
MCA territory infarction with a NIHSS score >18 and a level of
consciousness of ≥1 on item 1a of the NIHSS either on admission
or after secondary deterioration; (2) large space-occupying MCA
infarction on follow-up MRI or CT occupying at least two-
thirds of the MCA territory with compression of ventricles or
midline shift; and (3) no other obvious causes for neurological
deterioration. While, Shimoyama et al. (2014) defined mMCAi as
clinical deterioration, midline shift ≥5 mm, or brain herniation
within 48 h of admission.

Accurate prediction of mMCAi can positively impact clinical
decisions and patient prognosis. Interestingly, the ratio of
intracranial cerebrospinal fluid (CSF) volume to the intracranial
volume (ICV) was reported to be independently associated with
mMCAi (Kauw et al., 2019). In the same context, an optimal
diffusion-weighted magnetic resonance imaging (DWI) cutoff
>80 ml could also predict the fulminant course within ≈6 h
of the stroke onset (Mlynash et al., 2011). Specifically, a DWI
volume >145 ml was predictive of mMCAi when magnetic
resonance (MR) imaging was performed at 14 h after stroke
onset (Oppenheim et al., 2000). However, MR imaging is not
always feasible after stroke onset due to the long examination
time and influence of motion artifact. Therefore, uncovering
additional mMCAi predictors will be instrumental for achieving
accurate diagnosis. Texture analysis of CT images is a noninvasive
method that quantifies the heterogeneity of macroscopic tissues
which can be indirectly correlated to the heterogeneity of the
microscopic tissues (Soni et al., 2019). Recent evidence suggests
that texture analysis of CT scans can be valuable for the
evaluation of ischemic stroke events (Oliveira et al., 2009).
Nevertheless, little is known about the relationship between
the radiomics signature based on texture features and the
development of mMCAi. In this study, we hypothesize that
radiomics signature can serve as an early predictor of mMCAi. To
test this hypothesis, we conducted a retrospective study to analyze
the value of single radiomics signature as well as the combination
of radiomics signature, clinical and standard visual radiological
factors in predicting mMCAi. In our study, mMCAi diagnosis
was attained upon observing a midline shift >5 mm on follow-
up non-contrast computed tomography (NCCT) performed after
clinical deterioration or 3 days after stroke (Kauw et al., 2019).

MATERIALS AND METHODS

Patients
This study was approved by the ethics committee of the
Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital
of Hangzhou Medical College. Owing to the retrospective
nature of this study, the need for patients’ informed consent
was waived. Patients’ data and radiological findings were
obtained from routine clinical and radiological records. The
clinical and radiological databases were retrospectively reviewed
between January 1, 2017 and November 30, 2019. Inclusion
criteria included: (1) patients with symptoms related to cerebral
infarction; (2) patients who underwent baseline NCCT and CTA
prior to treatment as well as within 24 h from symptoms onset
and follow-up NCCT; (3) patients with MCA M1 occlusion
proved by baseline CTA and acute MCA infarction proved by
follow-up NCCT. Exclusion criteria included: (1) the presence of
old lesions with diameter >1.5 cm, post-operative changes, acute
cerebral hemorrhage, acute cerebral traumatic changes or space-
occupying mass in the ipsilateral hemisphere as indicated by the
baseline or follow-up CT; (2) a modified Rankin Scale (mRS)
score >2 prior to the current stroke; (3) patients who participated
in other studies and those receiving experimental drugs or
treatments; (4) patients suffering from end-stage diseases and
those with expected survival period ≤1 year; (5) NCCT image
artifacts or other reasons that hinder image interpretation;
(6) follow-up CT indicating simultaneous cerebral infarction in
the territory of the anterior or posterior cerebral artery. Records
from 455 patients were initially analyzed. However, only 126
patients were finally included in this study after applying the
inclusion and exclusion criteria (Figure 1). Among them, 52 cases
were diagnosed with mMCAi. All patients were divided randomly
into training (n = 87) and validation (n = 39) sets according to a
7:3 ratio (Shu et al., 2019).

Imaging Analysis
NCCT and CTA scans were performed with 640-slice CT
(Toshiba, Aquilion ONE TSX-301A). NCCT images were
obtained with 1 mm slice thickness, 1mm section gap and
512 × 512 matrix. While CTA images were obtained with 0.5 mm
slice thickness, 0.5 mm section gap and 512 × 512 matrix.
A total of 50 ml contrast agent (Omnipaque, GE Healthcare)
was injected through the elbow vein at 5 ml/s. CTA images of
the transverse, coronal and sagittal sections were reconstructed
with 3 mm thickness and 2 mm section gap. Maximum intensity
projection of CTA images were obtained with 24 mm thickness
and 4 mm section gap.

All baseline NCCT, CTA, and follow-up NCCT images were
assessed by two experienced neuroradiologists. A total of 30
patients were randomly selected and we analyzed the inter-rater
reliability between raters A and B by κ test. In particular, the
inter-rater reliability was computed by comparing the results of
image analysis from rater B (15 years of experience in interpreting
neurological CT scans) and the image analysis from rater A
(10 years of experience in interpreting neurological CT scans).
A κ test value >0.75 was considered to be a good agreement.
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FIGURE 1 | Flowchart of the collection of patients.

The status of leptomeningeal collaterals was assessed with
CTA images. Collaterals were graded on a scale of 0–3
as previously described (Tan et al., 2009; Brunner et al.,
2014): (0) absence of collaterals filling to the occluded MCA
territory; (1) collaterals filling ≤50 and >0% of the occluded
MCA territory; (2) collaterals filling >50 and <100% of the
occluded MCA territory; (3) 100% collaterals filling of the
occluded MCA territory.

Based on the baseline NCCT, CTA images, as well as scoring
criteria, we were able to compute the standard visual analysis of
ASPECTS on NCCT, HVS of MCA, collaterals and occlusion of
ICA in the intracranial segment on CTA images. Based on the
baseline NCCT as well as follow-up NCCT images, we were able
to compute the standard visual analysis of information related to
hemorrhage transformation.

Association Between Texture Analysis
and mMCAi
Using the baseline NCCT images, we performed the regions
of interest (ROI) segmentation of the entire MCA territory

manually on a 3D-volume of interest using the ITK-SNAP
software1 (Supplementary Figures S1A,B,C). The inter-rater
reliability on ROI segmentation of MCA territory was computed
by comparing the measurement from rater B (15 years of
experience in interpreting neurological CT scans) and the
measurement from rater A (10 years of experience in interpreting
neurological CT scans) in 30 randomly selected patients by
κ test. Images underwent preprocessing with AK software
(Artificial Intelligence Kit V3.0.0.R, GE Healthcare), which
included image interpolation, intensity normalization, and gray-
level discretization as described previously (Shu et al., 2019).
Next, we calculated the texture features including histogram,
formfactor, haralick, run-length matrix (RLM), gray-level co-
occurrence matrix (GLCM), and gray-level size zone matrix
(GLSZM) with AK software (Artificial Intelligence Kit V3.0.0.R,
GE Healthcare). Prior to feature selection, a total of 396 imaging
features were extracted for each patient and the extracted texture
features were then standardized (Shu et al., 2019). Dimension

1www.itksnap.org
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reduction was performed using analysis of variance and Mann–
Whitney U test and then we performed a correlation test
to reduce data redundancy. Finally, least absolute shrinkage
and selection operator (LASSO) was used to further select
significant features.

Multivariate logistic regression was undertaken to construct a
model of radiomics signature based on the remaining features.
Thereafter, we calculated the radiomics score (rad-score) for
every patient in both the training and validation sets using the
formula constructed in the training set. The predictive efficiency
of radiomics signature in both the training and validation sets
was then evaluated using the area under the receiver-operator
characteristic (ROC) curve (AUC). Calibration of radiomics
signature in the prediction of mMCAi was assessed with a
calibration curve. Further, decision curve analysis (DCA) was
used to assess the clinical efficiency of radiomics signature in
predicting mMCAi through calculating the net benefit across a
spectrum of threshold probabilities.

Assessment of the Prediction Model for
mMCAi Based on the Combination of
Radiomics Signature, Clinical and
Standard Visual Radiological Factors
In the training set, different analyses were carried out on each
potential predictor (gender, age, baseline NIHSS, hypertension,
diabetes mellitus, hyperlipidemia, atrial fibrillation, smoking,
alcohol abuse, ASPECTS on NCCT, HVS of MCA, hemorrhage
transformation, collaterals, side of the MCA M1 occlusion, and
occlusion of ICA in the intracranial segment) to select predictors
associated with mMCAi. Consequently, multivariable logistic
regression analysis was applied to develop a prediction model for
mMCAi. The calibration of the developed model was assessed
with a calibration curve and a ROC curve was used to evaluate
the discriminability of the new model. Finally, the efficiency of
our model in predicting mMCAi was assessed by DCA.

Statistical Analysis
Statistical analyses were performed using IBM SPSS Statistics
(version 21.0) and Microsoft R Open (version 3.3.1). All
metric and normally distributed variables were reported as
mean ± standard deviation; non-normally distributed variables
as median (interquartile range). Categorical variables were
presented as numbers (percentages). The κ test was used to
assess the inter-rater reliability for image analysis on NCCT,
CTA images and ROI segmentation of MCA territory. T-test,
Chi-square, Fisher’s exact, and Mann–Whitney U test were used
to identify variables associated with mMCAi. Then, LASSO
logistic regression model with penalty parameter tuning was
conducted by 10-fold cross-validation based on the minimum
criteria to select the most valuable predictive features. Backward
stepwise selection was applied through a likelihood ratio test
and Akaike’s information criterion (AIC) as the stopping rule.
Multivariate logistic regression analysis was used to construct
a prediction model. Calibration plots were performed on the
“rms” package (Microsoft R Open; version 3.3.1). ROC curve
was used to evaluate the discriminability of the prediction

model. DCA was performed using the “dca.R.” (Microsoft R
Open; version 3.3.1). A P-value < 0.05 was considered to be
statistically significant.

RESULTS

Patients’ Characteristics
The inter-rater agreement between our two neuroradiologists
ranged from 0.783 to 0.843 which indicated a favorable inter-
rater reproducibility. With exception to NIHSS, there were no
statistical differences between the training and validation sets in
the clinical and standard visual radiological variables (Table 1).
In the training set, we observed statistical differences in the
baseline NIHSS, ASPECTS on NCCT, ICA occlusion, and rad-
score between the mMCAi and non-mMCAi groups (Table 2).
Similar results were also observed in the validation set. In
addition, a statistical difference in HVS of MCA was also observed
between mMCAi and non-mMCAi groups in the validation
set (Table 2).

Assessment of Radiomics Signature
Analysis of variance and Mann–Whitney U test selected
201 features that can be associated with the development
of mMCAi. Following spearman correlation analysis, those
features were further narrowed down to 17. Next, following
LASSO regression, the number of texture features was further
reduced to 8 (Figures 2A,B and Supplementary Figures
S2A,B). Finally, multivariate logistic regression was used
to build the prediction model in which only three texture
features remained (ClusterShade_AllDirection_offset4_SD,
Compactness2 and LongRunLowGreyLevelEmphasis_angle45_
offset4; Supplementary Table S1). Subsequently, rad-score
was obtained from the LASSO model to reflect the risk of
mMCAi (Supplementary Material). Interestingly, the radiomics
signature showed a favorable predictive efficacy, with an AUC of
0.866 [95% confidence interval (CI), 0.792–0.940] and 0.802 [95%
CI, 0.647–0.956] in the training and validation sets, respectively
(Supplementary Figures S3A,B). DCA validated the clinical
power of the radiomics signature in mMCAi prediction across
a wide range of threshold probabilities within 0.05 to 1 in the
training set and 0.24 to 1 in the validation set (Supplementary
Figures S4A,B). Likewise, the calibration curves exhibited
favorable calibration power in the training and validation sets
(Supplementary Figures S5A,B).

Efficacy of the Prediction Model in
Predicting mMCAi
Multivariate logistic regression analysis identified rad-score,
calculated from the radiomics signature, as well as ASPECTS
on NCCT as independent factors that can predict mMCAi
(Figures 3A–D). A non-significant Hosmer-Lemeshow test
(P = 0.919) showed good calibration in the training set.
In both the training and validation sets, calibration curves
of the developed model exhibited good calibration power
(Figures 4A,B). The detection accuracy for our model was
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TABLE 1 | Demographic characters and clinical features of patients in the training and validation sets.

Variable Training (n = 87) Validation (n = 39) P-value

Male sex, n (%) 54(62.07%) 25(64.10%) 0.828

Age, y; mean ± SD 72.45 ± 13.96 71.31 ± 10.80 0.180

Baseline NIHSS, median (IQR) 20(15–25) 17(13–21) 0.029

Hypertension, n (%) 62(71.26%) 21(53.85%) 0.069

Diabetes mellitus, n (%) 19(21.84%) 4(10.26%) 0.141

Hyperlipidemia, n (%) 20(22.99%) 7(17.95%) 0.641

Atrial fibrillation, n (%) 41(47.13%) 21(53.85%) 0.564

Smoking, n (%) 31(35.63%) 11(28.21%) 0.540

Alcohol abuse, n (%) 19(21.84%) 7(17.95%) 0.812

ASPECTS on NCCT, median (IQR) 7(5–9) 7(4–9) 0.932

HVS of MCA, n (%) 49(56.32%) 19(48.72%) 0.446

Hemorrhage transformation, n (%) 33(37.93%) 18(46.15%) 0.435

Collateral score, median (IQR) 1(1–1) 1(1–1) 0.746

Right side of the MCA M1 occlusion, n (%) 42(48.28%) 23(58.97%) 0.336

ICA occlusion, n (%) 36(41.38%) 15(38.46%) 0.845

SD, standard deviation; NIHSS, National Institutes of Health Stroke Scale; IQR, interquartile range; ASPECTS, Alberta Stroke Program Early CT Score; NCCT, non-contrast
computed tomography; HVS, hyperdense vessel sign; MCA, middle cerebral artery; ICA, internal carotid artery.

TABLE 2 | Comparison between mMCAi and non-mMCAi patients in the training and validation sets.

Variable Training (n = 87) Validation (n = 39)

mMCAi (n = 36) Non-mMCAi (n = 51) P-value mMCAi (n = 16) Non-mMCAi (n = 23) P-value

Male sex, n (%) 22(61.11%) 32(62.75%) 0.878 10(62.50%) 15(65.22%) 0.864

Age, y; mean ± SD 75.14 ± 12.60 70.55 ± 14.67 0.403 72.06 ± 10.42 70.78 ± 11.26 0.799

Baseline NIHSS, median (IQR) 23(19.25–27) 17(14–21) 0.001 18.50(16.25–21.75) 16(7–18) 0.028

Hypertension, n (%) 26(72.22%) 36(70.59%) 0.869 7(43.75%) 14(60.87%) 0.342

Diabetes mellitus, n (%) 9(25.00%) 10(19.61%) 0.604 1(6.25%) 3(13.04%) 0.631

Hyperlipidemia, n (%) 11(30.56%) 9(17.65%) 0.199 3(18.75%) 4(17.39%) 0.915

Atrial fibrillation, n (%) 21(58.33%) 20(39.22%) 0.087 10(62.50%) 11(47.83%) 0.516

Smoking, n (%) 9(25.00%) 22(43.14%) 0.112 7(43.75%) 4(17.39%) 0.146

Alcohol abuse, n (%) 6(16.67%) 13(25.49%) 0.432 5(31.25%) 2(8.70%) 0.101

ASPECTS on NCCT, median (IQR) 5(1.25–8) 8(5–10) <0.001 3.50(1.25–5.75) 8(7–10) < 0.001

HVS of MCA, n (%) 23(63.89%) 26(50.98%) 0.276 12(75.00%) 7(30.43%) 0.010

Hemorrhage transformation, n (%) 13(36.11%) 20(39.22%) 0.825 8(50.00%) 10(43.48%) 0.752

Collateral score, median (IQR) 1(1–1) 1(1–1) 0.051 1(1–1) 1(1–1) 0.767

Right side of the MCA M1 occlusion, n (%) 18(50.00%) 24(47.06%) 0.830 12(75.00%) 11(47.83%) 0.111

ICA occlusion, n (%) 20(55.56%) 16(31.37%) 0.029 10(62.50%) 5(21.74%) 0.018

Rad score, mean ± SD 1.82 ± 4.12 −1.65 ± 1.64 0.020 1.59 ± 3.67 −1.02 ± 1.03 0.001

SD, standard deviation; NIHSS, National Institutes of Health Stroke Scale; IQR, interquartile range; ASPECTS, Alberta Stroke Program Early CT Score; NCCT, non-contrast
computed tomography; HVS, hyperdense vessel sign; MCA, middle cerebral artery; ICA, internal carotid artery.

0.917 [95% CI, 0.863–0.972] and 0.913 [95% CI, 0.795–1] in the
training and validation sets, respectively (Figures 5A,B). Further,
DCA validated the clinical usefulness of the prediction model
in differentiating mMCAi from non-mMCAi patients across
a wide range of threshold probabilities within 0.067–1 in the
training set and 0.046–1 in the validation set (Figures 6A,B).
It is worth mentioning that analyzing the efficacy of ASPECTS
on NCCT alone demonstrated a medium diagnostic accuracy
for mMCAi prediction, with AUC of 0.726 [95% CI, 0.620–
0.816], sensitivity of 0.389, and specificity of 0.961 and the
optimal cut-off value of ASPECTS on NCCT was 3 with
Youden index (0.350).

DISCUSSION

In this study, we developed a new model that can predict
the development of mMCAi in MCA stroke patients. The
development of mMCAi is a devastating event with mortality
rates reaching up to 80% in untreated cases (Thomalla et al., 2010;
Sakuta et al., 2015). The pathophysiology of mMCAi is complex,
but it can be traced back to hemodynamic and metabolic changes
that lead to destruction of the blood-brain barrier (Gasche
and Copin, 2003; Heo et al., 2005; Walcott et al., 2011). Early
detection of mMCAi and timely management (within 48 h)
with a decompressive surgery may improve the patient prognosis
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FIGURE 2 | Texture feature selection. (A) LASSO coefficient profiles of texture features. (B) Mean square error on each fold for texture feature selection with LASSO.

FIGURE 3 | A 70-year-old male patient who underwent baseline NCCT and CTA scan at 3.7 h after onset of left hemispheric stroke and follow-up CT 18.2 h from
symptoms onset. (A,B) Baseline NCCT demonstrating a left hemispheric stroke with ASPECTS of 2. (C) CTA showing left MCA M1 and ICA occlusion. (D) Follow-up
CT demonstrating the evolution of mMCAi with midline shift of 6.2 mm and hemorrhage transformation.

FIGURE 4 | (A) Calibration plot of the prediction model based on ASPECTS on NCCT and rad-score in the training set. (B) Calibration plot of the prediction model
based on ASPECTS on NCCT and rad-score in the validation set.
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FIGURE 5 | (A) ROC of the prediction model based on ASPECTS on NCCT and rad-score in the training set (0.917, [0.863, 0.972]). (B) ROC of the prediction
model based on ASPECTS on NCCT and rad-score in the validation set (0.913, [0.795, 1]).

FIGURE 6 | DCA of the prediction model based on ASPECTS on NCCT and rad-score. The prediction model presented better net benefit gains compared to the
“reduction all” or “reduction none” strategies across a wide range of threshold probabilities within 0.067–1 in the training set (A) and 0.046–1 in the validation set (B).

(Cho et al., 2003; Thomalla et al., 2010). Therefore, developing
a strategy that enables early prediction of mMCAi is urgently
required to enable timely intervention.

In this study, we evaluated the value of texture features in
predicting mMCAi. An image texture is a representation of
intensity, distribution, and inter-relationships between pixels,
which may not be noticed by naked eye. Texture analysis can
measure the disease heterogeneity (through parameters like
entropy, kurtosis, and pixel distribution that can be correlated

with angiogenesis, cellular density, and necrosis) in a noninvasive
manner which can ultimately lead to a better understanding of
disease biology (Miles et al., 2013; Raja et al., 2016).

To date, research regarding the beneficial role of texture
analysis in cerebral infarction is still scarce (Sikiö et al., 2015).
Nevertheless, texture analysis was found beneficial in identifying
the presence of previous stroke lesions on MR images (Ortiz-
Ramón et al., 2019). Further, it was also instrumental in the early
identification of cerebral infarction and quantification of involved
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areas (Oliveira et al., 2009). Compared to visual inspection,
texture analysis was superior in identifying acute ischemic stroke
patients with higher risk of hemorrhage transformation (Kassner
et al., 2009). However, the relationship between radiomics
signature based on texture features and the development of
mMCAi remains obscure. In this study, we aimed to analyze the
efficacy of radiomics in predicting the development of mMCAi.
Our results demonstrated that the radiomics signature based
on texture features can indeed be used as a valuable tool for
identifying mMCAi. The radiomics signature showed a favorable
predictive efficacy, with an AUC of 0.866 and 0.802 in the training
and validation sets, respectively.

In the recent years, the use of multi-parameter analysis, which
combines individual markers to form comprehensive marker
panels, has become a prospective tool for a better diagnostic
performance (Birkhahn et al., 2007). Thus, in our study, we
combined the clinical, standard visual radiological factors and
radiomics signature to develop a new model that can predict
mMCAi. Indeed, we found that rad-score based on the radiomics
signature and ASPECTS on NCCT were independent predictors
of mMCAi development. The optimal cut-off value of ASPECTS
was 3 when using single ASPECTS to predict mMCAi, with a
sensitivity and specificity of 0.389 and 0.961, respectively. A lower
ASPECTS value was correlated with the development of mMCAi.
In agreement, MacCallum et al. (2014) previously confirmed
the value of ASPECTS in detecting mMCAi. However, they
demonstrated that the optimal cut-off value of ASPECTS was 7,
with 50% sensitivity and 86% specificity. The detection accuracy
for our model, based on radiomics signature and ASPECTS
on NCCT, was 0.917 and 0.913 in the training and validation
sets, respectively. Therefore, the addition to radiomics signature
increased the strength of our prediction model. Ong et al.
(2017) developed a risk prediction score using the clinical and
radiological parameters observed within 24 h of ictus to predict
mMCAi. However, his model showed a moderate predictive
performance with an AUC of 0.76 [95% CI, 0.68–0.82] in the
derivation set, and 0.75 [95% CI, 0.72–0.77] in the bootstrapping
validation set. Further, Cheng et al. (2020) constructed a mMCAi
prediction model utilizing a modified enhanced detection of
edema in malignant anterior circulation stroke (EDEMA) score
based on clinical and radiological variables. The discriminative
ability of that model was 0.80 [95% CI, 0.76–0.84]. Additionally,
Shimoyama et al. (2014) used the DASH score to assess the
risk of mMCAi development in large MCA infarctions, with
an AUC of 0.88 [95% CI, 0.82–0.94]. Interestingly, adding the
CT-based texture feature analysis increased the strength of our
proposed model compared to the above-mentioned methods.
To the best of our knowledge, this is the first study to evaluate
and internally validate a model composed of rad-score and
ASPECTS on NCCT to detect mMCAi. This model showed good
calibration and differentiation capabilities in both the training
and validation sets.

It should be noted that there are few limitations in our study.
First, the retrospective nature of our study cannot negate the
risk of information and selection bias. However, results obtained
from this study enabled the development of a preliminary
detection model. Second, the sample size of the validation model

was relatively small. Therefore, future multi-center prospective
studies with larger sample size should be to validate the accuracy
of our model. Third, we did not use the clinical parameters
to define mMCAi. Although some previous studies combined
the clinical parameters with imaging information for defining
mMCAi, we believe that the quantitative measurement of midline
shift was sufficient to identify mMCAi (Walcott et al., 2014; Kauw
et al., 2019). Finally, owing to the difficulty of recognizing the
real extent of ischemic stroke by naked eye, especially in the early
stage, we designated the entire MCA territory as a ROI. In spite
of those limitations, a prediction model has been constructed by
combining radiomics signature and ASPECTS on NCCT. This
model can facilitate the early and accurate prediction of mMCAi
evolution and can be helpful in the development of clinical
decisions. We expect that our model will be instrumental for the
accurate prediction of mMCAi. Future prospective multi-center
studies will aim to validate the efficiency of this model.
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FIGURE S1 | ROI segmentation of the MCA territory in a 65-year-old male patient.
(A) Baseline NCCT. (B) ROI segmentation of MCA territory on the transverse
section image using ITK-SNAP software. (C) 3D reconstruction of ROI.

FIGURE S2 | (A,B) figures show the correlation heatmap between features which
were selected using LASSO in the training and testing sets, respectively.

FIGURE S3 | (A) ROC of the radiomics signature based on texture features in
mMCAi prediction in the training set (AUC [95% confidence interval], 0.866 [0.792,
0.940]). (B) ROC of the radiomics signature based on texture features in mMCAi
prediction in the validation set (0.802, [0.647, 0.956]).

FIGURE S4 | DCA indicating that radiomics signature is valuable in the prediction
of mMCAi when the threshold probability was within a range from 0.05 to 1 in the
training set (A) and 0.24 to 1 in the validation set (B).

FIGURE S5 | (A) Calibration plot of radiomics signature based on texture features
in the prediction of mMCAi in the training set. (B) Calibration plot of radiomics
signature based on texture features in the prediction of mMCAi in the
validation set.

TABLE S1 | The classification and calculation formula of texture features in three
subgroups.
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