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Spin current generation in organic
antiferromagnets
Makoto Naka1, Satoru Hayami2, Hiroaki Kusunose3, Yuki Yanagi4, Yukitoshi Motome5 & Hitoshi Seo6,7

Spin current–a flow of electron spins without a charge current–is an ideal information carrier

free from Joule heating for electronic devices. The celebrated spin Hall effect, which arises

from the relativistic spin-orbit coupling, enables us to generate and detect spin currents in

inorganic materials and semiconductors, taking advantage of their constituent heavy atoms.

In contrast, organic materials consisting of molecules with light elements have been believed

to be unsuited for spin current generation. Here we show that a class of organic antiferro-

magnets with checker-plate type molecular arrangements can serve as a spin current gen-

erator by applying a thermal gradient or an electric field, even with vanishing spin-orbit

coupling. Our findings provide another route to create a spin current distinct from the con-

ventional spin Hall effect and open a new field of spintronics based on organic magnets

having advantages of small spin scattering and long lifetime.

https://doi.org/10.1038/s41467-019-12229-y OPEN

1Waseda Institute for Advanced Study, Waseda University, Shinjuku, Tokyo 169-8050, Japan. 2 Department of Physics, Hokkaido University, Sapporo,
Hokkaido 060-0810, Japan. 3 Department of Physics, Meiji University, Kawasaki, Kanagawa 214-8571, Japan. 4 Institute for Materials Research, Tohoku
University, Sendai, Miyagi 980-8577, Japan. 5 Department of Applied Physics, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan. 6 Condensed Matter
Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan. 7 Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198, Japan.
Correspondence and requests for materials should be addressed to M.N. (email: naka@aoni.waseda.jp)

NATURE COMMUNICATIONS |         (2019) 10:4305 | https://doi.org/10.1038/s41467-019-12229-y | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

mailto:naka@aoni.waseda.jp
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Organic metals and semiconductors1 possess a variety of
features not shared by inorganic materials, e.g., light,
flexible, and toxic-element-free. They have been rapidly

developed over the past decades for use in consumer electronic
devices, such as organic transistors, light-emitting diodes, and
piezo actuators. These accomplishments, in combination with
recent evolutions of inorganic spintronics based on spin current
physics, have promoted a new field, i.e., organic spintronics. Now
significant efforts are being made to elucidate spin transport
phenomena in organic semiconductors2–4. However, organic
spintronics devices are actually not purely organic but are hybrid
with inorganic materials, because the generation of spin current
basically requires an inorganic magnetic electrode. In fact,
attempts for exploiting organic materials as the spin current
generator are quite limited5,6.

Here, we theoretically propose a microscopic mechanism of
spin current generation in organic materials utilizing an arche-
typal antiferromagnet. Figure 1a provides a schematic illustration
of the present spin current generation in the antiferromagnetic
(AFM) state, where the up and down spins aligned on the
molecular checker plate play a role of a spin-rectifier converting a
heat-current driven by a thermal gradient, or an electron current
by an electric field, into the spin current. When we rotate the
external field with respect to the crystal axes in the two-
dimensional plane, the direction of the generated spin current
rotates in the opposite direction as shown in Fig. 1b. The direc-
tional dependence is strikingly different from the conventional
spin Nernst and spin Hall effects7–12, in which the spin current
always flows perpendicular to the field direction. As a platform of
this phenomenon, we focus on an organic antiferromagnet
κ-(BEDT-TTF)2Cu[N(CN)2]Cl (abbreviated as κ-Cl).

Results
Crystal structure and model. κ-Cl is a well-studied insulator,
showing a variety of cooperative phenomena, e.g., AFM ordering,
insulator-to-metal transition, and superconductivity, at low
temperatures and/or under pressures13–18. The crystal structure is
composed of an alternate stacking of two-dimensional conducting
BEDT-TTF (abbreviated as ET) layers and insulating Cu[N
(CN)2]Cl layers. Figure 2a shows the molecular arrangement
(called κ-type) in the conducting layer, where four ET molecules
in the unit cell form two kinds of dimers with different

orientations, termed A and B, connected by a glide operation
(mirror and half translation).

This class of organic materials is known to show a simple
electronic structure composed of frontier molecular orbitals19,20.
In the κ-type materials, the frontier orbitals in each ET dimer
become strongly hybridized by the intra-dimer transfer integral
shown in Fig. 2b, and constitute bonding and antibonding
orbitals. They result in four bands as there are two dimers in the
unit cell: two lower(higher)-energy bands are from the (anti-)
bonding orbitals, as shown in Fig. 2c. The system has three
electrons per two dimers on average, and hence, the four bands
are three-quarter filled.

In the last few decades, extensive studies have been made for
understanding the cooperative phenomena in this system21–23.
Most of them, however, are based on the single-band picture,
where the two fully occupied bands are disregarded (see the broken
lines in Fig. 2c). This approach is justified in the large dimerization
limit19, where the crystallographic distinction of the A and B
dimers is lost. In other words, the glide symmetry in the molecular
arrangement in the conducting layer was disregarded in the
previous studies. In the following, we will discuss that the breaking
of the glide symmetry by the AFM ordering plays an essential role
in a peculiar spin current generation.

We investigate electronic structures and spin current
transport properties of κ-Cl based on the Hubbard model,
taking into account the distinct two types of dimers and
the anisotropy in the transfer integrals between them19,
ðta; tp; tq; tbÞ ¼ ð�0:207;�0:102; 0:043;�0:067Þ eV, evaluated
by a first-principles calculation24 (see Fig. 2b). At three-quarter
filling where the number of electrons in the unit cell is equal to 6,
the ground state exhibits a metal-to-insulator transition from a
paramagnetic (PM) phase to an AFM phase on increasing the
intra-molecular Coulomb interaction U19,25.

Spin splitting. A crucial feature in the AFM state of κ-Cl is that
up and down spins are situated on the dimers with the different
orientations as shown in Fig. 2b, resulting in the glide symmetry
breaking with respect to the yz plane. Here we consider the glide
operation not acting on the spins. The molecular orientation
makes the AFM state not invariant under the combination of
time reversal and spatial translation operations, unlike simple
N�eel-type AFM state, e.g., on the square lattice. This situation
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Fig. 1 Schematic illustrations of the spin current generation. a Flows of up- and down-spin magnons (electrons) and spin current driven by a thermal
gradient (an electric field) in the AFM state. The red and blue ellipses represent the two kinds of molecular dimers, forming a checker-plate-type lattice.
The arrows in the dimers represent the localized spin moments. b Field-angle dependence of the spin current generation (green arrows) driven by a
thermal gradient or an electric field (gray arrows)
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gives rise to an energy band splitting depending on the spins,
which has been overlooked previously. Figure 2d shows the band
structure in the AFM state, calculated within the self-consistent
mean-field theory (see Methods). The spin splitting appears in the
whole Brillouin zone except on the kx-, ky-axes and the zone
boundary as shown in Fig. 2e.

The origin of the spin splitting is understood from the real-
space anisotropy induced by the AFM ordering as follows.
Figure 3 shows the effective inter-dimer transfer integrals
between the antibonding orbitals, calculated by the second-
order perturbation with respect to the inter-orbital hybridizations

(see Methods). In the PM phase, as shown in Fig. 3a, b, the A and
B dimers show different real-space anisotropies owing to the
molecular orientations, but the anisotropies are symmetric with
respect to the glide operation and do not depend on the spin
degree of freedom. In the AFM phase, in contrast, the transfer
integrals for up-spin electrons on the A dimer (Fig. 3c) and
down-spin electrons on the B dimer (Fig. 3f) are enhanced,
whereas their counterparts (Fig. 3d, e) are reduced. This spin-
dependent anisotropy leads to the spin splitting.

The real-space anisotropies also show up in the effective spin
exchange interactions in the Heisenberg model, derived from the
above Hubbard model. Note that the system retains SUð2Þ
symmetry because of the absence of the spin-orbit coupling.
Figure 4a shows the spatial distributions of the nearest-neighbor
(NN) exchange interactions J and J ′, and the next-nearest-
neighbor (NNN) interactions K and K ′. K and K ′ arise from
fourth-order perturbation processes with respect to the NN
transfer integrals (see Methods). As shown in Fig. 4b, K ′ becomes
much smaller than K for realistic parameters. Then, the AFM
magnon dispersion of the Heisenberg model exhibits a spin
splitting as shown in Fig. 4c, where we take K ¼ 2 meV and
K ′ ¼ 0 for simplicity, and J ¼ 80 meV and J ′ ¼ 20 meV14 (see
Methods). Similar spin splitting was reported in non-
centrosymmetric systems with the spin-orbit coupling26,27, but
the present mechanism requires neither non-centrosymmetry nor
the spin-orbit coupling.

Spin current by a thermal gradient. The spin-split magnon
excitations lead to a spin current generation. Figure 4d shows the
off-diagonal spin current conductivity, along the x-axis with
respect to the thermal gradient along the y-axis, χSQxy , as a function
of temperature T and the exchange interaction K , calculated by
the linear response theory (see Methods). The range of T is
chosen well below the N�eel temperature of κ-Cl, 23 K. The
polarization of the spin current is parallel to the AFM moment,
and the damping factor η is fixed at 1 meV. We obtain nonzero
χSQxy for T>0 and K>0, which monotonically increases in pro-

portion to T2 and K . Remarkably, the conductivity tensor χSQ is
symmetric, χSQxy ¼ χSQyx , with vanishing diagonal elements,

χSQxx ¼ χSQyy ¼ 0. This leads to the peculiar field-angle dependence
that we showed in Fig. 1b, which is distinct from the conventional
spin Nernst effect where the spin current is always perpendicular
to the thermal gradient.

This spin current generation is a direct consequence of the
magnon dispersion in Fig. 4c which indicates that the up-spin
magnon has high mobility along the ð1; 1Þ and ð�1;�1Þ
directions, while the down-spin magnon has along the ð1;�1Þ
and ð�1; 1Þ directions. When the temperature gradient is applied
along the y-axis as shown in Fig. 1a, the up- and down-spin
magnons are rectified toward the ð1; 1Þ and ð1;�1Þ directions,
respectively, in a symmetric way. Accordingly, a pure spin
current, where the net magnon current is canceled out, is
generated along the x-axis. This gives rise to the positive
transverse χSQ in Fig. 4d. On the other hand, if the temperature
gradient is parallel to the ð1; 1Þ direction, while the transverse
component disappears, a net up-spin magnon current is
generated parallel to the field as a result of the incomplete
cancellation (see Fig. 1b). This provides a finite longitudinal
component of χSQ in the rotated coordinate, which is consistent
with the symmetric form of the conductivity tensor.

We find that χSQxy is inversely proportional to the damping
factor η and diverges in the clean limit (η ¼ 0), in analogy with
the diagonal thermal conductivities κxx and κyy (see Supplemen-
tary Fig. 1a). This indicates that the ratio α � j2JχSQμν =_κννj, which
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Fig. 2 Schematic illustration of the lattice structure of κ-Cl and the energy
bands. a Molecular arrangement in the two-dimensional conducting layer.
The red and blue circles represent the two kinds of ET dimers, termed A
and B, respectively, in the unit cell. The green line denotes the glide plane
perpendicular to the xy plane. b Network of the dominant electron transfer
bonds, a (orange bold line), b (dotted line), p (solid line), and q (broken
line). The gray circles represent the ET molecules, and the red and blue
ellipses show the A and B dimers, respectively. The arrows represent the
local spin moments in the AFM phase. We note that another glide plane
exists when considering the layer stacking, but it does not affect our
discussions. c Energy band dispersion composed of the frontier orbitals of
ET molecules in the PM metallic phase with the transfer integrals
ðta; tp; tq; tbÞ ¼ ð�0:207;�0:102;0:043;�0:067Þ eV (green solid line)
and that of the single-band picture in the large dimerization limit (broken
line). The average electron number in the unit cell is 6 and the Fermi energy
εf is shown. d Energy band dispersion in the AFM insulating phase with the
intra-molecular Coulomb interaction U ¼ 1 eV, within the self-consistent
mean-field theory. e Contour map of the spin splitting subtracting the
down-spin energy from the up-spin energy of the top band in d in the first
Brillouin zone. The trajectory shows the symmetric lines in c and d
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is used in the literatures as the conversion rate from the heat-
current to the spin current, does not depend on η, however,
depends on the field angle. Therefore, we choose μ ¼ x and ν ¼ y
since κνν is largest in this direction, considering its implication as
the conversion rate. Figure 4e shows K dependences of α at
kBT ¼ 0:5 meV and 1 meV linearly increasing with K , but almost
independent of T . The heat-spin current conversion efficiency
reaches � 5% for the case of κ-Cl, which is close to one-quarter of
that in Pt due to the strong spin-orbit coupling28.

Spin current by an electric field. Now we propose another way of
a spin current generation, in carrier doped metallic regions. The
carrier doping has recently been realized experimentally17,18. We
here focus on the electron-doping case where the AFM metallic
state is stable in our model. Figure 5a shows the off-diagonal spin
current conductivity induced by the electric field, χSCxy ð¼ χSCyx Þ, as a
function of the Coulomb interaction U and the number of elec-
trons in the unit cell n in the ground state (see Methods). χSCxy is
zero in the PM metallic and the AFM insulating phases, while it
turns finite in the AFM metallic phase where the Fermi energy
lies in the top band in Fig. 2d, whose spin splitting was shown in
Fig. 2e. We note that the sign of χSCxy changes around n ¼ 6:2,
associated with the change in the Fermi surface topology as
shown in the insets of Fig. 5a. The conductivity tensor is also
symmetric with zero diagonal components and inversely pro-
portional to the damping factor (see Supplementary Fig. 1b). This
means that the field-angle dependence is the same as that of
χSQxy in the insulating case. It is comprehensible from the spin-
dependent anisotropy of the electron transfers in Fig. 3c–e,
reflected in the anisotropy in the spin-split band in Fig. 2e with
the same character as the magnon band in Fig. 4c. We define the

charge-spin current conversion rate by β � j2eχSCyx =_σxxj, in
analogy with α above (the electrical conductivity σνν becomes
largest in the ν ¼ x direction due to the quasi-one-dimensional
Fermi surfaces). As shown in Fig. 5b, in the lightly doped region
with small σxx , β becomes relatively large and approaches 7%,
comparable to the spin Hall effect in Pt29, while in the highly
doped region, it decreases because of the suppression of the AFM
ordering and the spin splitting.

The spin current generation in our mechanism is expected to
be observed at sufficiently low temperature compared to the N�eel
temperature, which is not determined for doped κ-Cl. We
anticipate it to be lower than the undoped case of 23 K, but to
remain the same order in the lightly doped region30.

Discussion
The present spin current generation is strikingly different from
the conventional spin Nernst and spin Hall effects. In the con-
ventional mechanisms, a spin current is activated by the
spin–orbit coupling in non-centrosymmetric lattice structures.
The conductivity tensor is antisymmetric, namely, the generated
spin current is always perpendicular to the applied field direction
and the conversion rate is invariant under the rotation of the
field. The transverse conductivity converges to a finite value in the
clean limit because of the dominant inter-band contributions7,8.
However, the strong spin–orbit coupling also disturbs the spin
polarization of carriers via the spin-flipping process.

In stark contrast, the present mechanism requires neither the
spin-orbit coupling nor spatial inversion symmetry breaking. The
spin current conductivity is described by the symmetric tensor
which results in the peculiar field-angle dependence shown in
Fig. 1b, and diverges in the clean limit due to the intra-band con-
tributions. In κ-type ET systems, the Dzyaloshinskii-Moriya
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interaction due to the spin-orbit coupling is estimated to be a few
Kelvin15,31, which is much smaller than the NNN exchange inter-
action K . Furthermore, this class of organic charge transfer salts is
known to have relatively less impurities and lattice disorders
compared to inorganic crystals and organic polymers. Indeed, the
specific heat and thermal transport measurements32,33 suggest that
the low temperature properties are well described by intrinsic
contributions from electronic charge and spin degrees of freedom.
These facts ensure a long spin lifetime in κ-Cl, which facilitates the
experimental detection. Although the phenomenon has a similarity
with the spin current generation in ferromagnetic metals in the
sense that the time reversal symmetry is lost, the net magnetization
is absent in our system; this enables us to generate a pure spin
current in contrast to the spin-polarized current in ferromagnets
and has the advantage of small field leakage as discussed in AFM
spintronics. These considerations lead us to conclude that our
proposal provides a new type of spin current generation essentially
distinct from the other existing mechanisms.

As a recent experimental progress relevant to our proposal, the
three-dimensional AFM structures in several κ-type ET systems
have been determined by the detailed analyses of the magneti-
zation processes15. It was found that κ-Cl and κ-Br show the same

intra-layer AFM structure as shown in Fig. 2b, but different inter-
layer stackings; the “in-phase” stacking, where the inter-layer NN
spins are ferromagnetically aligned, is realized in κ-Cl, while κ-Br
shows the “anti-phase” stacking. This difference will give an
effective way to verify the present spin current generation because
in our mechanism the sign of generated spin current is reversed
by the reversal of the AFM moment. This means that a net spin
current is expected in κ-Cl while it will be canceled out in κ-Br. In
addition, our mechanism also has the inverse effect similar to the
inverse spin Nernst or spin Hall effect, i.e., the generation of a
thermal gradient or an electrical voltage by spin current injection
parallel to the AFM ordered ET layers, which will give another
experimental approach.

The present spin current generation arises from AFM ordering
in spatially-oriented molecular orbitals. The molecular orbital
degrees of freedom are fundamental and ubiquitous in organic
materials. Meanwhile, similar orbital degrees of freedom are also
found in inorganic materials, such as transition metal and rare-
earth compounds. Thus, our new mechanism can be applied to a
wide range of AFM materials. In this perspective, therefore, our
finding strikes out a new direction of materials exploration for
spintronics without relying on the spin-orbit coupling.
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Methods
Mean-field approximation. The Hamiltonian of the Hubbard model on the κ-type
lattice is given by

HHubb ¼ U
P

iμniμ"niμ# þ ta
P

iσðcyiaσcibσ þH:c:Þ þPhijiμμ′σ t
μμ′

ij ðcyiμσcjμ′σ þH:c:Þ;
ð1Þ

where ciμσ and niμσð¼ cyiμσciμσÞ are the annihilation operator and the number operator
of an electron with a spin σð¼"; #Þ, on the frontier orbital of molecular site μð¼ a; bÞ
in the ith dimer, respectively, U is the intra-molecular Coulomb interaction, and ta
and tμμ

′

ij are the inter-molecular transfer integrals shown in Fig. 2b. We treat the
Coulomb interaction term within the mean-field approximation as
niμ"niμ# ’ niμ"hniμ#i þ hniμ"iniμ# � hniμ"ihniμ#i, and determine the expectation
values self-consistently so as to minimize the total energy of the system.

Effective electron transfer integrals. We divide the mean-field Hamiltonian in
the AFM phase into three terms as HMF ¼ Hintra þHinter þHAFM, where the first
and second terms represent the intra-orbital and inter-orbital transfer integrals,
respectively, and the third term is the local AFM field. By taking the linear com-
binations of the original electron operators, we define the annihilation operator of
an electron in the antibonding (bonding) orbital on the ith dimer as
~ciαðβÞσ ¼ ðciaσ � ðþÞcibσÞ=

ffiffiffi
2

p
, and the three terms are given by

Hintra ¼ ta
X

iσ
ð~niβσ � ~niασÞ þ

X
hijiνσðτ

νν
ij ~c

y
iνσ~cjνσ þH:c:Þ; ð2Þ

Hinter ¼
X

hijiνσðτ
ν�ν
ij ~c

y
iνσ~cj�νσ þH:c:Þ; ð3Þ

HAFM ¼ Uδ

4
ð
X

ið2BÞνσ �
X

ið2AÞνσÞσ~niνσ ; ð4Þ

where the number operator is given by ~niνσ ¼ ~cyiνσ~ciνσ , and �ν ¼ β (α) for ν ¼ α (β).
The transfer integral between the neighboring dimers is given by τij ¼ UtijUT, by

using the two-by-two unitary matrix U satisfying ð~cασ ;~cβσÞT ¼ Uðcaσ ; cbσÞT. The
amplitude of the local AFM field is given by
δ ¼ h~ni2A"i � h~ni2A#i ¼ h~ni2B#i � h~ni2B"i, where ~niσ ¼Pν~niνσ .

We treat Hinter as the perturbation term and calculate the effective transfer
integrals for the bonding and antibonding orbitals up to OðH2

interÞ. In the k space,
the mean-field Hamiltonian is described by the matrix form as

HMF ¼
P

kσd
y
kσðHð0Þ

kσ þ VkσÞdkσ , where Hð0Þ
kσ and Vkσ are the unperturbed and

perturbed terms, respectively, given by 4 ´ 4 matrices. dkσ is the vector of the
annihilation operators of the Bloch states, which is chosen so as to diagonalize the

unperturbed term as Ĥ
ð0Þ
kσ jkνξσi ¼ εξkνσ jkνξσi, where ξ(¼ 1; 2) indicates the two

bands in the bonding and antibonding bands each originating from the two dimers

in the unit cell. The second-order perturbation term Hð2Þ
kσ is decomposed into two

2 ´ 2 matrices for the antibonding (α) and bonding bands (β) as

Hð2Þ
kσ ¼ hð2Þkασ � hð2Þkβσ . The matrix element of hð2Þkνσ is given by

hð2Þ
ν;ξξ′

¼
X

η¼1;2

hνξ jV̂ j�νηih�νηjV̂jνξ′ i
εξ

′

ν � εη�ν
; ð5Þ

where the indices k and σ are omitted for simplicity. By the Fourier transformation

of Hð2Þ
kσ , we obtain the effective transfer integrals shown in Fig. 3.

Next-nearest-neighbor exchange interactions. From the Hubbard model in Eq.
(1), we derive the effective NNN exchange interaction in the restricted space where
each antibonding orbital is occupied by one hole due to the strong Coulomb
interaction U . The NNN exchange interaction is derived from the fourth-order
perturbation process with respect to the inter-dimer transfer integrals, which is
given by

Hð4Þ ¼ PV 1

EI �Hð0Þ QV
 !3

jIihIj; ð6Þ
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where P and Q are the projection operators onto inside and outside of the
restricted space, respectively, and satisfy P þQ ¼ 1, V is the perturbation given by
the third term in Eq. (1), Hð0Þ is the unperturbed Hamiltonian given by the first
and second terms in Eq. (1), and EI is the energy of the initial eigenstate jIi ofHð0Þ .
The resultant exchange interaction on the NNN bond between the A dimers
denoted by K in the middle panel of Fig. 4a is given by

Hijk ¼ ~J Si � Sj þ Sj � Sk �
1
2

� �
þ K Si � Sk �

1
4

� �
; ð7Þ

where the indices ijk denote the three neighboring dimers, Si is the spin operator of
the ith dimer, and K is the NNN exchange constant. ~J is the NN exchange constant
arising from the fourth-order perturbation process, which does not contribute to
the magnon splitting. The details of the fourth-order process and the explicit form
of K (and K ′) are given in Supplementary Note 2.

Linear spin-wave approximation. The effective Heisenberg model involving the
NNN exchange interaction is given by

HHeis ¼ J
P

hijiSi � Sj þ J ′
P

hiji′Si � Sj þ K
P

hhijiiSi � Sj þ K ′P
hhijii′Si � Sj; ð8Þ

where hiji and hiji′ stand for the diagonal and horizontal NN bonds on the
equilateral triangular lattice, hhijii and hhijii′ are the NNN bonds shown in Fig. 4a.
By using the Holstein-Primakoff transformation, we obtain the linear spin-wave
Hamiltonian given by

HHeis ’ HLSW ¼ 1
2

P
k Aka

y
kak þ Bkb

y
�kb�k

h
þCkðaykby�k þ akb�kÞ

i
; ð9Þ

where ak and bk are the Fourier transforms of the annihilation operators of
magnons on the A and B dimers, respectively. The coefficients are given by

Ak ¼ 4J þ 2J ′½cosðk � axÞ � 1� þ 2K½cosðk � ðax þ ayÞÞ � 1� þ 2K ′½cosðk � ðax � ayÞÞ � 1�;
ð10Þ

Bk ¼ 4J þ 2J ′½cosðk � axÞ � 1� þ 2K½cosðk � ðax � ayÞÞ � 1� þ 2K ′½cosðk � ðax þ ayÞÞ � 1�;
ð11Þ

and

Ck ¼ 2J cosðk � ðax þ ayÞ=2Þ
h

þ cosðk � ðax � ayÞ=2Þ
i
; ð12Þ

where ax and ay are the primitive translational vectors. HLSW is easily diagonalized
by the standard Bogoliubov transformation, and the magnon energy dispersion
shown in Fig. 4c is obtained.

Spin current conductivity to a thermal gradient. The spin current and energy
current operators in the magnon system34 are given by

JSz ¼
1
i_
½PSz ;HLSW� ð13Þ

and

JE ¼ 1
i_
½PE ;HLSW�; ð14Þ

respectively. PSz and PE are the spin polarization and the energy polarization
operators defined by PSz ¼ _

P
iS

z
iRi and PE ¼PiHiRi , respectively, where Ri is

the position vector of the center of the ith dimer and Hi is the local energy density
defined byHLSW ¼PiHi, by the Fourier transformation of Eq. (9). In the magnon
system where the chemical potential is zero, the heat-current operator JQ is
identical to the energy current operator JE . We note that the spin is a conserved
quantity and the spin current is well defined here since our model does not include
the spin-orbit coupling. In the linear response theory, the spin current conductivity
to a static thermal gradient is given by

TχSQμν ¼ lim
ω!0

QSQ
μν ðωÞ � QSQ

μν ð0Þ
iω

; ð15Þ

where μ and ν represent the spatial axes x and y. The spin-current-heat-current
response function QSQ

μν ðωÞ is given by the Kubo formula

QSQ
μν ðωÞ ¼

i
_V

Z 1

0
dteitðωþiηÞh½JμSz ðtÞ; JνQ�ieq; ð16Þ

where JSz ðtÞ is the Heisenberg representation of the spin current operator, η is the
damping factor, V is the volume of the system, and h� � �ieq represents the thermal
average under the temperature T .

Spin current conductivity to an electric field. The spin current and charge
current operators are defined by

Jsz ¼
1
i_
½Psz ;HMF� ð17Þ

and

J ¼ 1
i_
½P;HMF�; ð18Þ

respectively. Psz and P are the spin sz polarization and the electric polarization
operators defined by Psz ¼ _

P
is
z
i ri and P ¼ �e

P
iri , respectively, where szi ¼

ni"�ni#
2 is the spin operator of the ith molecule at the position vector ri . The spin

current conductivity to an static electric field is given by

χSCμν ¼ lim
ω!0

QSC
μν ðωÞ � QSC

μν ð0Þ
iω

: ð19Þ

The spin-current-charge-current response function QSC
μν ðωÞ is given by the Kubo

formula

QSC
μν ðωÞ ¼

i
_V

Z 1

0
dteitðωþiγÞh½Jμsz ðtÞ; Jν �i0; ð20Þ

where JSz ðtÞ is the Heisenberg representation of the spin current operator, γ is the
damping factor, and h� � �i0 represents the average with respect to the ground state.

Data availability
Data are available from the corresponding author upon reasonable request.

Code availability
Computer codes used in this study are available from the corresponding author upon
reasonable request.
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