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The role of the endocrine system on the immune response, especially in the lung, remains
poorly understood. Hormones play a crucial role in the development, homeostasis,
metabolism, and response to the environment of cells and tissues. Major infectious and
metabolic diseases, such as tuberculosis and diabetes, continue to converge,
necessitating the development of a clearer understanding of the immune and endocrine
interactions that occur in the lung. Research in bacterial respiratory infections is at a critical
point, where the limitations in identifying and developing antibiotics is becoming more
profound. Hormone receptors on alveolar and immune cells may provide a plethora of
targets for host-directed therapy. This review discusses the interactions between the
immune and endocrine systems in the lung. We describe hormone receptors currently
identified in the lungs, focusing on the effect hormones have on the pulmonary immune
response. Altered endocrine responses in the lung affect the balance between pro- and
anti-inflammatory immune responses and play a role in the response to infection in the
lung. While some hormones, such as leptin, resistin and lipocalin-2 promote pro-
inflammatory responses and immune cell infiltration, others including adiponectin and
ghrelin reduce inflammation and promote anti-inflammatory cell responses. Furthermore,
type 2 diabetes as a major endocrine disease presents with altered immune responses
leading to susceptibility to lung infections, such as tuberculosis. A better understanding of
these interactions will expand our knowledge of the mechanisms at play in susceptibility to
infectious diseases and may reveal opportunities for the development of host-
directed therapies.
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INTRODUCTION

There is a growing interest in the relationship between the immune and endocrine systems (1).
Bidirectional communication between the immune and endocrine systems facilitates optimal host
responses during infection and homeostasis. This communication is possible since endocrine organs
express cytokine receptors and cells of the immune system express hormone receptors (2). Metabolic,
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nutritional, psychosocial, and genetic factors influence the immune
response via endocrine signaling. During infection, cytokines
produced by immune cells directly or indirectly alter hormonal
responses, developing a feedback response between the endocrine
and immune systems. Cytokines induce alterations in hormone
production, by directly affecting endocrine organ function, such as
IL-1, IL-6, and TNF-a. These cytokines increase the activity of the
hypothalamus-pituitary-adrenal (HPA) and hypothalamus-
pituitary-thyroidal (HPT) axes, and reduce that of the
hypothalamus-pituitary-gonadal (HPG) axis (3–6), or indirectly
by promoting cellular destruction of endocrine cells, as in the
pancreatic dysfunction of type 2 diabetes (T2D) (7).

Hormones exert a profound effect on the functions of the
immune system, exemplified by the anti-inflammatory functions
of glucocorticoids (GCs) and androgens (8). While acute stress
may be beneficial for the immune system during fight or flight,
chronic stress is harmful. Chronic inflammation signal cortisol
release through inflammatory signaling as well as the HPA axis
and can drive HPA axis dysfunction if left unchecked. Stress-
induced activation of the HPA axis results in the secretion of
corticotropin releasing hormone (CRH) from the hypothalamus,
which stimulates the production of adrenocorticotropic
hormone (ACTH) from the anterior pituitary gland. ACTH
stimulates the adrenal glands to produce cortisol, a potent
anti-inflammatory hormone. To limit long-term exposure of
tissues and cells to the immunosuppressive actions of cortisol,
a negative feedback loop allows cortisol to regulate its own
secretion. Long-term exposure to elevated levels of cortisol
may lead to adaptations in HPA axis function, resulting in an
initial increase in cortisol production (hypercortisolism)
followed by a decrease in the production of the hormone
(hypocortisolism) or cortisol resistance (9). Thus, chronic
inflammatory responses and a dysregulated HPA axis result in
altered cytokine signals and immune cell function (10).
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Type 2 diabetes is a metabolic disease that presents with
numerous alterations in hormone levels, including increased
insulin and cortisol levels, and reduced free triiodothyronine
(fT3) and testosterone levels (11–14) (Table 1). Common
comorbidities of T2D include depression, asthma, and chronic
obstructive pulmonary disease, which are co-prevalent and may
indicate a relationship between stress-related hormonal
alterations and lung function, as well as hypothyroidism (34).
Altered endocrine responses in T2D are, in part, related to
dysregulation of the HPA, HPT, and HPG axes, having
downstream effects on immune functions within various
organs (35–37).

Although the lungs are a major site of acquired infections, the
effects of hormonal dysregulation on the immune response
within the lung are still largely unknown. This review discusses
hormones with immune modulatory potential in the lung and
their influence on the immune response therein (summarized in
Figure 1). Implications for susceptibility to tuberculosis (TB) are
highlighted, drawing on examples of endocrine dysregulation in
the form of T2D.
CENTRAL ENDOCRINE (HYPOTHALAMIC
AND PITUITARY) HORMONES

Corticotropin Releasing Hormone (CRH)
CRH is primarily produced by the hypothalamus, but can also be
expressed at peripheral sites where it acts as an autocrine or
paracrine inflammatory modulator (38, 39). CRH binds with a
high affinity to CRH receptor 1 (CRHR1) and CRH-like peptides
with a high affinity to CRHR2. CRHR2 is the major receptor
expressed in human lungs, however compared to other tissues
(heart, stomach, liver and adrenal), the lung and skeletal muscle
express the highest levels of CRHR1 (40). In mice, the CRHR1/
TABLE 1 | Inflammatory Properties of hormones and their relative levels measured in the periphery.

Function in lung Hormone T2D (vs healthy) In TB (vs healthy) TB-T2D (vs TB)

Anti-inflammatory CRH Low (15)
ACTH High (15)
Cortisol High (15) High (3, 16)
T4 No change (17) High (3) High (18)
Testosterone Low (19) Low (3), No change (18) No change (18)
Estradiol Low (20) High (3, 21), No change (18) High (18)
Adiponectin Low (22) No change (16) Low (23)
GIP Low (24)
GLP-1 Low (24)
Ghrelin Low (25) Low (26), No change (16), High (27) No change (26)
Glucagon High (28)
C-peptide High (29)

Pro-inflammatory TSH No change (17)
Lipocalin-2 Low (22)
DHEA Low (30) Low (3, 16) High (31), No change (18)
Leptin High (22) Low (16, 27), High (26) Low (26), High (23)
Resistin High (22) High (27)
Insulin High (32, 33)
Growth Hormone Low (33) High (3, 18) High (31), No change (18)
February 2022 | Vo
T2D, Type 2 Diabetes; TB, Tuberculosis; CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone; T4, Thyroxine; GIP, gastric insulinotropic peptide; GLP-1, glucagon-
like peptide 1; TSH, thyroid-stimulating hormone; DHEA, dehydroepiandrosterone.
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R2 ratio changes in response to stress in different immune cell
types in the lung (41). CRHR1 mRNA increases and CRHR2
decreases in dendritic cells, whereas CRHR2 increases in
macrophages in response to stress. Furthermore, CRHR2 is
found to be preferentially expressed in neutrophils in the lungs
of mice (42).

Differential expression of CRHR1 and CRHR2 in phagocytic
cells in the lungs could affect innate cell function, potentially
leading to altered adaptive immune responses. Limited
information is available on how targeting CRH and CRHR
activity in the respiratory tract impacts bacterial disease
outcome. In a murine respiratory Streptococcus pneumoniae
infection model, Burnley and Jones (2017) demonstrated that
intranasal CRH administration reduces the pulmonary
inflammatory response, and the subsequent recruitment of
neutrophils and monocytes to the lung, improving survival in
these animals (43). Moffat et al. (2006) demonstrated that,
urocortin, a structurally related peptide to CRH, causes
bronchorelaxation and limits lipopolysaccharide (LPS)-induced
pulmonary inflammation (specifically neutrophil recruitment) to
a greater extent than CRH (44). During S. pneumoniae infection in
the lungs of CD-1 mice, an outbred strain of albino mice, prior
CRHR2 antagonist (astressin 2B) treatment reduces pulmonary
bacterial growth and prevents sepsis, while CRHR1 antagonism
(antalarmin) provided no benefit (39). Stimulation of CRHR in
the lung, therefore, provides a promising approach for reducing
excessive inflammation in the lungs and should be studied further.

Adrenocorticotropic Hormone (ACTH)
ACTH is a pituitary hormone that signals via melanocortin
receptors (MCRs), of which there are five. They are expressed on
Frontiers in Immunology | www.frontiersin.org 3
a wide range of tissues, including nervous, intestinal, adipose,
skeletal, and lung tissues. Among these receptors, MC1R and
MC5R are expressed in lung tissues. MC1R, MC3R, and MC5R
are expressed on macrophages and lymphocytes, while MC2R
and MC4R are expressed on lymphocytes (45). Cleavage of the
first 13 amino acids of ACTH yields alpha melanocyte-
stimulating hormone (a-MSH).

ACTH and a-MSH exert broad anti-inflammatory effects in a
variety of tissues by signaling through the MCRs, with the major
receptor exerting these effects being MC1R (45). Additionally,
numerous anti-inflammatory melanocortin-based therapies are
in clinical trials for the treatment of inflammatory conditions
(46). In allergic mice, intraperitoneal a-MSH reduced
peribronchial airway inflammation, altering leukocyte
populations in bronchoalveolar lavage (BAL) fluid, and
reduced IL-4 and IL-13 levels, effects dependent on IL-10
signaling downstream of a-MSH treatment (47). In acute lung
injury mouse models, a-MSH treated mice displayed reduced
edema; IL-6, TNF-a, and TGF-b gene expression; and leukocyte
infiltration in the lung (48, 49). Thus, MCR stimulation in the
lung may provide a novel target for its anti-inflammatory
properties, providing repurposing potential for current agonists
used to treat obesity (setmelanotide), porphyria (afamelanotide),
and reduced sexual desire in women (bremelanotide) (50).

Growth Hormone-Releasing Hormone
(GHRH) and Growth Hormone (GH)
GHRH is secreted predominantly by the hypothalamus and
stimulates the secretion of GH by the pituitary gland and
regulates hepatic insulin-like growth factor-1 (IGF-1)
production through the GH/hepatic IGF-1 axis (51). Other
FIGURE 1 | Effects of hormones on the lung environment. Hormones influence inflammatory responses, necessitating a clear understanding of their role in infectious
disease. Pro-inflammatory adipokines, such as resistin, leptin, lipocalin-2, and DHEA collectively stimulate migration of immune cells into the lung and promote a pro-
inflammatory signaling environment, with lipocalin-2 stimulating macrophage activation and M1 polarization. Anti-inflammatory hormones, including glucocorticoids,
testosterone, glucagon, thyroxine, ghrelin, adiponectin, and aldosterone, reduce inflammatory signaling, immune cell recruitment, and polarize macrophages to anti-
inflammatory phenotypes. Whether these combined effects are beneficial or detrimental to infectious disease response in the lung require further investigation.
Additionally, agonists and antagonists (*) provide a future opportunity to regulate these processes. DHEA, dehydroepiandrosterone; a-MSH, alpha-melanocyte-
stimulating hormone; T4, Thyroxine; T3, triiodothyronine; Mq, macrophage. This figure was created with BioRender.com.
February 2022 | Volume 13 | Article 829355

https://biorender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Webber et al. Immuno-Endocrine Responses in the Lung
tissues, including the lungs also produce GHRH locally and
express the receptor of GHRH (GHRHR) as well as the GHRHR
splice variant 1 (SV1) (52). In normal mouse lung tissue, type 2
cells, club cells and fibroblasts, lymphocytes, and dendritic cells
express GHRH (52). GHRH is involved in lung homeostasis,
inflammation and fibrosis (51). Antagonists for GHRHR have
anti-inflammatory, pro-apoptotic, anti-oxidative and anti-
fibrotic effects in the lung. The GHRH antagonist MIA-602,
frequently used in bleomycin-induced lung fibrosis models,
suppresses ERK1/2 and JAK2/STAT3 pathway activation and
increases P53 and pAMK levels (53). At mRNA level MIA-602
downregulates pathways involved in adaptive immune responses
including T cell activation and differentiation, T cell signaling
and cytokine production (54). In a sarcoidosis granuloma model,
GHRHR inhibition results in reduced IL-12 and IL-17A
production (54, 55). Thus, MIA-602 demonstrates the
contribution of GHRHR to adaptive immunity and T cell
function, and that GHRHR is a potential candidate for
managing these responses when they are excessive, such as in
granulomatous diseases.

The ability of GHRHR signaling to modulate lung immune
responses was further demonstrated in a study assessing the
vaccine-induced immune responses of GHRH knock-out mice
against S. pneumoniae. Knock-out mice were significantly more
susceptible to infection after vaccination than wild-type mice,
with vast infiltration of neutrophils and monocytes, and reduced
B cells and T cells in the lung post infection (56). These knock-
out mice were unable to mount a pneumococcal vaccine-induced
response, a deficiency restored by GH treatment, highlighting the
importance of GH signaling in the lung immune response. The
pro-inflammatory characteristics of GH have been demonstrated
by exacerbating LPS-induced inflammation and cecal ligation
and puncture (CLP)-induced sepsis by increasing neutrophil NF-
kB activity, neutrophil presence, microvascular injury, and
neutrophil CD11b expression in the lungs of rats (57, 58). In
contrast, others have found GH treatment to prevent acute lung
injury by reducing ICAM-1 expression and NF-kB activity in
lungs (59, 60). The two studies displaying the pro-inflammatory
effects of GH administered the GH subcutaneously to male
Wistar rats, while the latter studies observing anti-
inflammatory effects administered the GH intramuscularly in
Sprague-Dawley rats and pathogen-free Kun Ming mice,
respectively. Considering endocrine differences between Wistar
and Sprague-Dawley rats (61), hormone-induced responses may
differ and validation of observations across model organisms is
key for avoiding model specific interpretations.
ADRENAL HORMONES

Glucocorticoids (GCs) and
Mineralocorticoids
Cortisol is a known immune modulator and synthetic GCs have
been used clinically to control inflammatory conditions, such as
asthma, for decades. Cortisol is produced from cholesterol that is
converted to pregnenolone before the steroidogenic pathway
Frontiers in Immunology | www.frontiersin.org 4
diverges toward the formation of this major class of steroid
hormones. It signals via the glucocorticoid receptor (GR) and
mineralocorticoid receptor (MR), which are ubiquitously
expressed, including in the lung (62).

High doses of GCs reduce the number of macrophages in the
respiratory tract and impair the functional activity of resident
lung macrophages (63). GCs are produced in T-cells and
macrophages of the lung upon stimulation with inflammatory
mediators, including TNF-a, LPS, and anti-CD3, acting as an
immunoregulatory mechanism to limit uncontrolled
inflammatory responses in the lung. This GC stimulatory effect
was promoted by intranasal leptin pretreatment in mice with
LPS-induced acute lung injury (64, 65). More recently Marin-
Luevano et al. (2021) demonstrated that cortisol promotes the
intracellular growth of Mycobacterium tuberculosis in A549 type
2 pneumocytes and THP-1–derived macrophages, but not
airway bronchial epithelial cells (66), highlighting the
immunosuppressive effects of GCs in the lung. Long-term (>1
year) treatment with inhaled corticosteroids is implicated in
increased risk of developing pneumonia (risk ratio of 1.41) and
is associated with the risk of mycobacterial diseases, such as
TB (67).

Androgens
Dehydroepiandrosterone (DHEA) is produced from cholesterol,
predominantly in the zona reticularis of the adrenal glands upon
ACTH stimulation, and in the gonads upon luteinizing hormone
and follicle-stimulating hormone stimulation. Receptors for
DHEA include the androgen receptor (AR), estrogen receptor
(ER), peroxisome proliferator activated receptor-alpha (PPARa),
pregnane X receptor, and neurotransmitter receptors, such as the
N-methyl-D-aspartate (NMDA) receptor (68, 69).

DHEA treatment is associated with reduced pulmonary
hypertension by upregulating soluble guanylate cyclase and by
inhibiting src/STAT3 pathway activation, a key pathway in
cytokine-induced cell activation and proliferation (70, 71).
Generally DHEA counteracts the effect of cortisol, and more
specifically in alveolar macrophages, restores the expression of
the receptor for activated C kinase (RACK-1) and LPS-induced
TNF-a and IL-8 production that is reduced due to aging in rats
(72). When added to alveolar macrophages from non-smoking
asbestos workers in vitro, DHEA reduces the release of
superoxide anion (73), which is consistent with its role in
limiting Th2 responses (74). Intratracheal administration of
16a-bromoepiandrosterone (BEA; a DHEA-related synthetic
sterol) reduces the bacterial load and inflammation in the
lungs of diabetic mice who are infected with M. tuberculosis
(75). BEA decreases the expression of the enzyme 11-b-
hydroxysteroid dehydrogenase type 1, which catalyzes the
conversion of inactive cortisone into active cortisol in humans
and inactive dehydrocorticosterone into active corticosterone in
mice. At the same time, it increases the expression of 11-b-
hydroxysteroid dehydrogenase type 2, which again converts
active cortisol/corticosterone into inactive cortisone/
dehydrocorticosterone. This could increase IFN-g and TNF-a
response resulting in lower bacterial loads in the lungs of these
animals. The ability of DHEA and BEA to improve immune and
February 2022 | Volume 13 | Article 829355
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metabolic (as shown in the TB-T2D mouse model) responses
suggests that they could potentially be used as therapeutic agents,
which will benefit the host’s immune, endocrine and
metabolic functions.
THYROID HORMONES: THYROXINE (T4)
AND TRIIODOTHYRONINE (T3)

The lungs express lower levels of the thyroid hormone receptors
THRA1, THRA2, and THRB1mRNA than other tissues, however
the relative protein expression of THRA2 and THRB1 in lung
tissue is higher than in other human tissues (76). Furthermore,
THRA expression in the lung is highest in alveolar type 1
epithelial cells, while their expression is similar in lung T cells,
granulocytes, type 2 alveolar cells, and macrophages. THRB on
the other hand is expressed predominantly in type 2 alveolar cells
(77). In rats, thyroid hormone receptors were also found in lung
type 2 alveolar cells, and promote GC responses and adenylate
cyclase activity in the lung (78–80). Additionally, T3 activates the
MAPK/ERK1/2 pathway in rat alveolar epithelial cells and
increases their sodium-potassium-ATPase pump content and
activity (81).

More recently, Ning et al. (2018) described the ability of T4 to
reduce the inflammatory response and senescence in an oxidized
low-density lipoprotein-induced foamy macrophage model (82).
In a type 2 deiodinase-knockout mouse model, active thyroid
hormones are not produced in the thyroid gland. Type 2
deiodinase-knockout mice have a greater susceptibility to
ventilator-induced lung injury, with increased Cxcl1, Tnf, Il1b,
and Cxcl2 gene expression. Treatment with T3 ameliorated the
higher cytokine and chemokine expression in knockout mice
(83). Although it remains unclear whether these effects were
mediated by the THR, this highlights the anti-inflammatory
effects of T3 and potentiates a relevance for T3 signaling in the
lung. Studies assessing the influence of thyroid hormones on
lung function during infection would provide valuable
information against infections.
GONADAL HORMONES

Testosterone
Differences between male and female responses in disease are
common, highlighting a potential role for sex hormones in
disease. Testosterone acts via the AR, which is expressed in
human lungs primarily in endothelial cells and club cells,
fibroblasts, and type 2 alveolar cells, with lower expression in
macrophages, T cells, and granulocytes (84). Testosterone
exposure in mouse lungs upregulates genes involved in iron
binding and oxygen transport while downregulating genes
involved in DNA repair and recombination (85). In an asthma
mouse model, ovalbumin sensitized male mice displayed lower
susceptibility to inflammation due to lower Th2 cytokine
production and lung lymphocyte levels compared to female
mice (86). Becerra-Diaz et al. (2018) investigated the immune
Frontiers in Immunology | www.frontiersin.org 5
modulatory functions of AR signaling in the lungs, and found
that dihydrotestosterone reconstitution in castrated mice
reduced lung inflammation and enhanced M2 polarization of
alveolar macrophages via IL-4 stimulation (87). Similarly,
gonadectomized male mice infected with influenza A virus and
treated orally with testosterone have reduced pulmonary
monocyte and virus-specific CD8+ T cell infiltration resulting
in improved disease outcomes (88). Testosterone decreases pro-
inflammatory cytokine release from monocytes and
macrophages, and increases the accumulation of cholesterol
esters in human monocyte-derived macrophages (89).
Additionally, type 2 innate lymphoid cells express AR, the
signaling of which inhibits their maturation and IL-33–
mediated lung inflammation.

Estrogen
Estrogens comprise three major forms, estrone, estradiol, and
estriol. Their proportions fluctuate depending on the processes
occurring in the body, with estradiol predominating most of the
time. During pregnancy, enzymes in the placenta transform 16a-
hydroxy-dehydroepiandrosterone sulfate (16a-OH-DHEAS) to
estriol. Estrone is produced mostly during menopause. Signaling
of these hormones is mediated by the a and b forms of the ER.
Both ER forms are expressed in human and mouse lungs, and
human lung cell lines; although in humans, ER-a presence varies
among individuals (90). ER-a predominates in lung fibroblasts,
with low expression in endothelial cells, granulocytes and
macrophages, while ER-b predominates in human lung
alveolar type 1 cells, ciliated cells, and granulocytes (84).
Histological analysis in CD-1® IGS mouse and porcine lung
show no ERa expression (91, 92), while RT-PCR in BALB/c mice
shows expression of both receptors in the lung, with lower ERa
expression (93). Kan et al. (2008) investigated the effect of 17b-
estradiol (E2) on trauma-hemorrhage–induced lung injury in
Sprague-Dawley rats. E2 administration induced higher
endothelial nitric oxide synthase (eNOS) expression and
phosphorylation, protein kinase G-1 activation, and VASP
expression, resulting in reduced lung injury (94). These anti-
inflammatory properties were also demonstrated in seawater
induced acute lung injury in rats, which was reduced by E2
treatment (95). Despite ERb predominance, ER-a is reported to
be responsible for the anti-inflammatory effects of ER
stimulation (96).
HORMONES OF THE
GASTRO-INTESTINAL TRACT

Gastric Inhibitory Polypeptide (GIP) and
Glucagon-Like Peptide-1 (GLP-1)
The GIP receptor (GIPR) is present in airway ciliated and club cells,
alveolar pneumocytes and lung macrophages (77). In
atherosclerosis mouse models, GIP has been shown to prevent
monocyte and macrophage activation (97, 98). Studies into the
immune regulatory roles of GIP are scarce and may reveal
additional functions of this hormone on the lung immune response.
February 2022 | Volume 13 | Article 829355
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The GLP-1 receptor (GLP-1R) is expressed in the lungs of
mice and humans at a higher level than other tissues (99, 100).
Numerous studies, as reviewed by Lee and Jun (2016), describe
the anti-inflammatory effects of GLP-1 and the potential of
GLP-1–based therapies (101). In a BALB/c mouse model of
ovalbumin-induced asthma, protein kinase A (PKA)
phosphorylation was inhibited and NF-kB p65 upregulated in
the lung. GLP-1 agonist treatment in these mice led to PKA
activation and downstream inhibition of NF-kB, mediating anti-
inflammatory responses in the lung by reducing the infiltration
of inflammatory cells, tissue pathology, Th2-associated cytokines
in BAL fluid, and E-selectin expression (102). Gou et al. (2014)
showed that bleomycin-induced pulmonary fibrosis in mice
presents with an increase in macrophages and lymphocytes, as
well as TGF-b1 concentrations in the BAL fluid, and VCAM-1
expression and NF-kB activation in the lung. GLP-1 agonist
liraglutide, when administered intraperitoneally, reduces these
characteristics of bleomycin-induced lung inflammation and
fibrosis (103). Although subcutaneous liraglutide improved
lung function in a chronic obstructive pulmonary disease
mouse model, this effect was not accompanied by a reduction
in lung inflammation. Additionally, liraglutide did not alter
inflammatory cytokine responses in another study by the same
group (100, 104). These differences in observations suggest that
intraperitoneal administration may be required to produce the
anti-inflammatory effects of GLP-1R in the lung. Other possible
immunomodulatory mechanisms of GLP-1 may involve
alteration of T cell function by reducing CD28 and CD86
expression, and reducing tissue factor and PAI-1 production
(105). While GIPR function in the lung immune response
requires further investigation, GLP-1R may reduce
inflammation by mediating immune cell recruitment and
activation in the lung, although it is not crucial for a balance
between pro- and anti-inflammatory responses.

Ghrelin
Since its discovery in 1999, numerous actions of ghrelin have
been described ranging from metabolic homeostasis, circadian
rhythms, learning and memory to immune modulation. Ghrelin
binds to the growth-hormone secretagogue receptor 1a (GHSR-
1a), inducing GH release from anterior pituitary cells in a process
distinct from that of GHRH (106). In Hartley guinea-pigs,
Wistar rats and male C57BL6/J mice, the expression of GHSR-
1a mRNA was very low in the lung (107, 108), with the lung also
having the highest ghrelin expression in Wistar rats (109). In two
studies assessing human lungs, mRNA and protein expression of
ghrelin and biologically inactive GHSR-1b was detectable, while
those of GHSR-1a were not (110–112).

Despite this, ghrelin treatment is associated with alterations
in inflammatory responses in lung tissues, including a reduction
in inflammatory cytokine release, NF-kB pathway activation,
neutrophil infiltration, and improved survival in rats with CLP-
induced lung injury (113). Additionally, these anti-inflammatory
effects may be related to the acylation status of ghrelin, since only
acyl ghrelin and not des-acyl ghrelin binds to GHSR-1a (114).
Interestingly, it has been proposed that GHSR-1a is not required
for the anti-inflammatory actions of ghrelin, suggesting another
Frontiers in Immunology | www.frontiersin.org 6
as yet unknown signaling mechanism mediating these effects
(115). LPS-induced apoptosis of alveolar macrophages is
attenuated by ghrelin, with GHSR-1a–mediated JNK inhibition
and Wnt/B-catenin activation, promoting alveolar macrophage
survival and their anti-inflammatory responses. In GHRS-1a
knockdown mediated by siRNA, these effects were abrogated,
highlighting the need for GHRS-1a signaling in these anti-
inflammatory and anti-apoptotic responses (116). In a CLP-
induced Sprague Dawley rat sepsis model, ghrelin treatment
improved survival and reduced peritoneal bacterial load and
pulmonary TNF-a and IL-6. Signaling via the GSHR-1a receptor
was responsible for improving mortality. Additionally, the CLP-
treated group without ghrelin administration had significantly
lower ghrelin content in the lung (117). A more recent study also
noted that in the lung with elastase-induced emphysema, ghrelin
polarized alveolar macrophages to the M2 phenotype, decreased
keratinocyte-derived chemokine (a mouse IL-8 analogue), TGF-
b, and TNF-a, increased IL-10 levels, and promoted lung tissue
recovery in C57BL/6 mice (118). Exogenous administration of
ghrelin reduced pulmonary hypertension in a monocrotaline-
induced mouse model (119). Ghrelin may play a key role in
altering the immune response, possibly linking gastro-intestinal
tract function and metabolism to immunity in the lung. Further,
studying the effects of ghrelin receptor agonists on the lung may
provide an important avenue for host-directed therapy during
lung infection and inflammatory conditions.
PANCREATIC HORMONES

C-Peptide
C-peptide is a 31 amino acid peptide that links the insulin A and
B subunits and is cleaved from proinsulin to form insulin.
Despite evidence of C-peptide–induced intracellular signaling
activity in KATOII cells (a human gastric tumor cell line), a
specific receptor for C-peptide has been elusive and a proposed
receptor, GPR146, remains contentious (120, 121). However, its
chemotactic properties were noted when in vitro experiments
showed that C-peptide increases humanmonocyte chemotaxis in
a concentration dependent manner (122). Several studies
identified beneficial effects of C-peptide in the lungs. C-peptide
treatment ameliorates the inflammatory response and lung
inflammation resulting from hemorrhagic shock in male
Wistar rats, reducing plasma IL-1, IL-6, MIP-1a, and CXCL1
(123). Jeon et al. (2019) found that C-peptide prevents vascular
leakage by inhibiting VEGF-induced transglutaminase 2
activation in the lungs of streptozotocin-treated mice and
human pulmonary microvascular endothelial cells (124). These
findings were also corroborated in C57BL/6 mice treated with C-
peptide after hemorrhagic shock and resuscitation, showing a
reduction in inflammatory markers and pulmonary protein
leakage (125). Furthermore, Vish et al. (2007) used a Swiss
albino mouse model with LPS-induced endotoxic shock to
investigate the effects of C-peptide treatment. LPS treatment in
the lungs of mice reduced PPARg gene expression, stimulated
ERK1/2 activation, and induced lung injury. These effects were
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reversed by C-peptide treatment (126). While PPARg has been
shown to have anti-inflammatory effects, ERK1/2 activation is
involved in developing a pro-inflammatory response. These
findings indicate an anti-inflammatory nature of C-peptide
signaling in the lung, though further studies in this field are
required to determine insights in its pulmonary effects and
influence during infect ion. The ident ificat ion and
characterization of the signaling mechanisms of C-peptide are
key to understanding its effects and potential applications.

Insulin
The insulin receptor (IR) is expressed in varying degrees across
diverse tissues, including the lungs. In the lungs, IR gene
expression predominates in endothelial cells, club cells and
ciliated cells, and alveolar type 1 and type 2 cells, with lower
expression in lung immune cells (84). The two IR isoforms, IR-A
and IR-B, and IGF-1R bind their ligands, insulin, proinsulin,
IGF-1, and IGF-2, with differing potencies (EC50). IR-A displays
the lowest EC50 values for insulin, proinsulin, and IGF-2 (127).
IR-B predominates in the liver and adipose tissue, while
leukocytes only express the IR-A isoform (128). Different
pathways are activated by the two IR isoforms (129) indicating
that an altered ratio of the isoforms can alter the outcomes of
insulin signaling.

GC treatment increases IR expression, while hypothyroidism
induction reduces the IR expression in fetal rabbit lung,
indicating the influence of other hormones on the lung’s
insulin response (130). During allergic lung inflammation in
rats, insulin secretion and IR expression is increased on
infiltrating inflammatory cells, predominantly monocytes and
macrophages (131). In an elastase-induced emphysema Wistar
rat model with alloxan-induced diabetes, diabetic rats had
significantly lower leukocyte infiltration into the lungs, which
was significantly increased upon subcutaneous treatment with
insulin (132). While suggesting that insulin treatment improves
the deficient immune cell migration in diabetes, it also may
indicate pro-inflammatory effects due to leukocyte recruitment,
although this study did not use a vehicle treatment control to
compare with the insulin treated group.

Martins et al. (2008) isolated alveolar macrophages by BAL
from male Wistar rats and stimulated them with LPS to assess
the inflammatory response. In the insulin treated cells after LPS-
stimulation, there was a significant reduction in the LPS-induced
p38 MAPK, PKC, and Akt activation, and TNF-a secretion
(133). A similar study in specific-pathogen-free C57BL/6 mice
with alloxan induced diabetes found that insulin treatment of
alveolar macrophages decreased LPS-induced TNF-a and IL-6
production ex vivo (134). Thus, the response of the lung tissue to
insulin is still unclear, although some studies indicate anti-
inflammatory changes in gene and cytokine expression in
alveolar macrophages treated with insulin, others suggest that
insulin treatment promotes leukocyte migration to the lung.
There is however limited information available regarding the
effects of insulin resistance and hyperinsulinemia on immune
function in the lung, despite numerous studies on respiratory
function in these cases. Understanding these lung responses to
insulin is crucial in the application of insulin treatments,
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including inhalants and injectables, and understanding the
pathogenesis of infection in the lungs of patients with
diabetes mellitus.

Glucagon
Reports of glucagon receptor (GCGR) expression and function in
the lung are scarce. While two studies suggest little to no
expression of GCGR in the lungs of rats, another study
suggests its predominant expression in mouse lungs, liver,
kidney, adrenal glands, and stomach (135–137). Glucagon
receptors have been identified in lymphocytic cells from mice
and rats, and in lymphoid cell lines (138).

Nebulized glucagon delivery to the lung improves the forced
expiratory volume by 22% in asthmatic patients with methacholine-
induced bronchospasm (139). This indicates responsiveness of the
lung smooth muscle to glucagon. It was later shown that glucagon
induces smooth muscle relaxation in the lungs of male A/J mice by
inducing cAMP response element binding protein (CREB), eNOS,
and cyclooxygenase 1 (COX-1) activity, and the subsequent release
of second messengers nitric oxide and prostaglandin E2 (140). In
this study, glucagon treatment one hour before LPS administration
limited LPS-induced lung inflammation and airway hyperreactivity,
preventing increases in TNF-a levels. Unlike neutrophils, LPS-
induced monocyte infiltration was not reduced by glucagon
pretreatment, indicating that glucagon may not influence
monocyte migration and chemotaxis. This group further assessed
the anti-inflammatory properties of glucagon in ovalbumin-induced
lung inflammation and airway hyperreactivity (141). Glucagon
treatment prevented airway hyperreactivity and eosinophilia, and
reduced IL-4, IL-5, IL-13, TNF-a, CCL11, and CCL24 levels in
lung tissue.
ADIPOSE HORMONES

Adiponectin
As summarized in Ye et al. (2013), adiponectin affects metabolic
functions, such as glucose metabolism, insulin sensitivity,
oxidative stress, and inflammation, in numerous systems,
including adipose tissue, B cells, and macrophages (142). The
mRNA expression of adiponectin receptors AdipoR1 and
AdipoR2 have been demonstrated by Northern blot in mouse
and human lung tissues, although a considerably lower
expression was observed in human lung tissue compared to
other tissues (143). Constant adiponectin infusion (using
osmotic pumps) in BALB/cJ mice reduces allergic airway
inflammation and hyperresponsiveness induced by ovalbumin
challenge, while the lack of adiponectin in knockout mice
promotes greater allergic airway inflammation (144).
Additionally, adiponectin knockout mice have a higher
frequency of TNF-a producing alveolar macrophages, which is
reduced upon adiponectin supplementation, and increased
transcription of IL-1a, IL-6, IL-12b, IL-17, and TNF-a in their
lungs during aspergillosis, than wild type mice (145).

In humans, several studies report an inverse association of
serum adiponectin and asthma prevalence and severity (146).
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Adiponectin promotes an anti-inflammatory M2 macrophage
phenotype, while inhibiting anM1 phenotype. This was observed
when adiponectin deficient mice displayed a predominance of
M1-polarized macrophages and fewer M2-polarized
macrophages in the peritoneum and adipose tissue. Treatment
with adiponectin reversed this observation, promoting an M2
phenotype in human monocyte-derived macrophages and
adipose tissue cells, and reducing LPS-stimulated TNF-a,
iNOS, and MCP-1 gene expression (147). Agonist therapy of
the adiponectin receptor shows promise against inflammatory
conditions such as systemic sclerosis, obesity-related disorders,
and T2D. This was shown using the adiponectin agonist,
AdipoRon, which ameliorated signs of diabetes in db/db
and high fat diet fed mice, and ameliorated dermal fibrosis
in mice, also promoting a Th2/Th17 immune response
(148, 149). While adiponectin is an abundant adipokine and
displays anti-inflammatory functions, more information is
needed on whether its levels are altered to compensate for
inflammation. Additionally, the applications of adiponectin
agonist therapy against lung inflammatory responses require
further investigation.

Leptin
Leptin regulates innate and adaptive functions of immune cells.
Leptin upregulates phagocytosis and pro-inflammatory cytokine
production via phospholipase activation, and stimulates lineage
marker expression, including HLA-DR, CD11b, and CD11c in
monocytes (150). Thus, leptin is an important pro-inflammatory
mediator predominantly produced in adipose tissue. Leptin
receptor mRNA, including OB-Ra, -Rb, and -Re subtypes, are
expressed in the mouse lung (151, 152).

Leptin receptor deficient db/db mice infected with M.
tuberculosis have a higher lung bacterial load, disorganized
granulomas, and abnormalities in lung cytokine production,
with delayed IFN-g production as compared to wild-type mice
(153). Similarly, leptin deficient ob/ob mice with pulmonary
infection by Klebsiella pneumoniae, S. pneumoniae, or M.
abscessus have reduced survival (154). Suzukawa et al. (2015)
used bronchial cells in ex vivo cultures to assess the effects of leptin
stimulation on lung cells, notably these specimens were obtained
from lung with localized tumors. Leptin treatment increased
CCL11, G-CSF, VEGF, and IL-6 production and upregulated
ICAM-1 expression, a change that coincided with activation of
NF-kB, highlighting the pro-inflammatory potential of leptin and
its ability to induce migration and chemotaxis of immune cells
(155). This has implications for increasing the inflammatory
response and leukocyte infiltration into the lung in individuals
with increased leptin levels, such as during obesity. Additionally,
OB-R expression was upregulated by IFN-y and IL-1b, implying
that during type 1 inflammatory responses, the lung epithelial cells
are more sensitive to these pro-inflammatory effects of leptin.
These effects were recapitulated in later work by the same group in
a lung fibroblast cell line (156).

Thus, although leptin presence may be required for a
functional immune response to infection, higher levels may
promote excessive inflammation. These effects require further
investigation given the importance of increased leptin during
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obesity and T2D, which display higher prevalence of comorbid
lung diseases (157).

Lipocalin-2
Lipocalin-2, or neutrophil gelatinase associated lipocalin
(NGAL), is an adipokine with broad tissue expression. Zhang
et al. (2012) investigated this using tissue microarray technology
across humans tissues from embryos, fetuses, neonates, and
adults (158). This study demonstrated expression of NGAL
and its receptor (NGALR) in nervous, renal, adrenal, pituitary,
spleen, lymph node, and skin tissues, with NGALR additionally
expressed in lung and pancreatic tissues in adults.

NGAL influences the immune response by polarizing
macrophages to an M1 phenotype (159), and altering
neutrophil chemotaxis and cytokine secretion (160). Wang et
al. (2019) investigated these immune modulating capabilities of
NGAL, finding defective neutrophil chemotaxis, and reduced
inflammatory cytokine and chemokine production in
neutrophils and macrophages in NGAL deficient mice infected
with E. coli, and increased macrophage migration and
phagocytosis upon in vitro NGAL treatment (161). These
findings were recapitulated in pulmonary M. tuberculosis
infection in mice, whereby NGAL promoted neutrophil
recruitment and alveolar macrophage G-CSF and CXCL1
production, while reducing T cell recruitment and CXCL9
production. NGAL deficiency resulted in larger granuloma size
in chronic M. tuberculosis infection, coinciding with elevated
lung T cell and CXCL9 presence (162). Furthermore, NGAL is
important in the lung mucosal immunity against K. pneumoniae
infection, playing a role in bacterial clearance (163). This study
showed that NGAL is expressed on human bronchial epithelial
cells in response to in vitro stimulation with IL-1b, IL-17A, IL-
17F, or TNF-a, and in vivo upon K. pneumoniae infection in the
lungs of C57BL/6 mice in a TLR4-dependent manner via the
MyD88 signaling pathway. TLR4 knockout and NGAL knockout
mice had significantly higher lung bacterial loads at 12 hours
post infection, which was reduced significantly by exogenous
NGAL administration 4 hours prior to sacrifice. Expression of
NGAL is critical to the immune response in the lung and
demonstrates essential functions during infection.

Resistin
Resistin is an adipokine that binds to TLR4 and channel-
activating protease 1 (CAP1), a serine protease. Two studies
demonstrated resistin binding to TLR4, with resistin activating
TLR4 in porcine alveolar macrophages and competing with LPS
for TLR4 in human monocytes (164, 165). TLR4 and CAP1 are
expressed on human alveolar macrophages and type 2 alveolar
cells, indicating that resistin could play a role in the lung immune
response during infection (77, 166). Resistin binds to decorin and
ROR1 in mice with a lower affinity, though these are rarely
expressed on human monocytes and macrophages (167), ROR1
is expressed on human alveolar type 1 cells and decorin is
expressed on human lung fibroblasts and endothelial cells.

Using a humanized mouse model, Jiang et al. (2014)
demonstrated that resistin expression exacerbated LPS-induced
lung injury via neutrophil recruitment to the lung during LPS
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treatment and promoted their activation in the lung, with
increased TNF-a and MIP-2 release, and increased neutrophil
extracellular trap formation (168). Additionally, resistin-like
molecules (RELMs) are homologues of resistin and have
immunomodulatory effects, demonstrated in lung tissue, with
pro-inflammatory and tissue remodeling capabilities (169, 170).
Inflammation-mediated lung injury can occur via activation of
TLR4/NF-kB pathways (171, 172). However, further studies are
necessary to assess the effects of resistin signaling on lung
immune function during infection.
TYPE 2 DIABETES IMPACTS LUNG
IMMUNE-ENDOCRINE INTERACTIONS:
IMPLICATIONS FOR TB

Endocrine alterations play a crucial role in the development and
progression of T2D. Alterations in hormone levels have been
identified in the plasma of T2D patients, implicating endocrine
signaling in the dysregulation of inflammatory responses in T2D
patients (173). Hormones with suggested pro-inflammatory
properties in the lung are increased in the blood of T2D patients,
such as TSH, leptin, resistin, and insulin (Table 1). Conversely,
many hormones with potential anti-inflammatory effects are
reduced during T2D, such as CRH, DHEA, T4, testosterone,
adiponectin, NGAL, GIP, GLP-1, and ghrelin, while ACTH,
cortisol, glucagon, and C-peptide also have anti-inflammatory
potential but are raised in T2D patient blood plasma. This shift
toward pro-inflammatory hormone signaling in T2D may be a
mechanism for the low-grade chronic inflammation in T2D
patients and provides an impetus for investigating immune-
endocrine alterations in the lungs of these patients. It also
indicates that a complex interaction between these hormones and
the immune system is at play, requiring deconvolution before useful
and exploitable insights can be gained.

Under the influence of diet and GIT function, gastric hormones
contribute to the control of systemic inflammatory responses.
Although GIP may play a role in compensating for insulin
resistance, lower GLP-1 and ghrelin may indicate a predominance
of inflammatorymoleculesanddownregulationofanti-inflammatory
mechanisms. Additionally, a role for the gut microbiome in
influencing the immune response via gastric hormones lays an
intriguing path for further research into T2D immune responses.

Foamy macrophage formation, which provides a niche for
mycobacterial survival and supply crucial lipid nutrients to the
bacilli, is suppressed by GIP and GLP-1 (174). During T2D,
GLP-1 and GIP are reduced and dyslipidemia typically presents
with higher levels of triglycerides (175), which accumulate in
foamy macrophages (176).

TB is a leading cause of death worldwide, with an incidence of 10
million and a mortality between 1.1 and 1.3 million in 2019 (177).
T2D is a highly prevalent risk factor for increased disease severity,
poor treatment outcomes, relapse, and death in TB patients, and is
projected to rise from an estimated 9.3% in 2019 to 10.9% by 2045
(178). Pleural fluid of TB patients contains elevated levels of GH and
cortisol compared to healthy controls (18, 179), while DHEA
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concentration is reportedly lower in the plasma of TB patients
compared to that of healthy controls (3, 18).

Hormone levels change differently over the course of TB
treatment between treatment failure and cured patients. These
include cortisol, T4, and total amylin levels, which are higher in
treatment failure compared to cured patients at month 6 of TB
treatment, and decrease over the course of treatment in the cured
pat ients on ly (1) . These hormones may promote
immunosuppression during treatment, reducing the function
of immune cells to work synergistically with antibiotics to clear
mycobacteria from the lung.

Santucci et al. (2011) and Fernandez et al. (2020) found
lower leptin levels and higher cortisol levels in TB patients
compared to controls, coinciding with higher inflammatory
biomarkers, such as CRP, IL-6, and IL-1b (16, 31).
Furthermore, Santucci et al. (2011) found leptin and cortisol
changes to be more extreme in severe TB disease than in mild
disease. OB gene knockout experiments in mice show that
leptin is necessary for mycobacterial control and IFN-y
response (180). Characterising the effects of hormones on
lung homeostasis and immune responses to infection is
paramount. Experiments including overexpression and
knockout of hormones and their receptor may highlight
such effects.

The immune response to infection, such as during TB, involves
recognition and phagocytosis of pathogens by macrophages and
dendritic cells, killing by phagolysosome fusion, and presentation
on major histocompatibility complexes allowing the activation of
adaptive immune responses (181–183). However, T2D alters the
immune response to M. tuberculosis, having reduced pathogen
recognition, phagocytosis, killing, and presentation due to reduced
pattern recognition receptor and major histocompatibility
complex expression on macrophages. Altered macrophage lipid
trafficking results in the formation of foam cells, with reduced
phagocytic function and increased apoptosis, a cholesterol rich
environment develops, providing nutrients to persisting
mycobacteria. Lymphocytes dictate the developing immune
response and altered lymphocyte levels in T2D include higher
anti-inflammatory responses (Th2 and Treg) and reduced
pathogen specific memory Th17 and Th1 responses, additionally
natural killer cells are increased but their responses are reduced
(184–186). The influence of hormones in determining these
altered immune responses requires further investigation and
their alteration during T2D provides a useful model for these
altered immune responses (Figure 2).

Clinically, T2D delays TB treatment response, while also
increasing the risk of poor TB treatment outcomes, relapse,
and death (187–189). In addition, more severe presentations of
TB are seen in T2D patients (190). Comorbid T2D alters TB and
latent TB infection adipokine levels, with the pro-inflammatory
adipokine leptin levels increased, while anti-inflammatory
adiponectin levels decreased compared to those of TB patients
without T2D (23), Kumar et al. (2016) found this change to be
independent of BMI (23, 31). However, others have found
opposite results, for example, Zheng et al. (2013) found higher
leptin levels in TB patients and lower levels in TB-T2D patients.
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This result is unexpected, since wasting during TB disease is
usually accompanied by decreased adiposity and leptin levels
(26). This study also found lower ghrelin levels in TB patients
with and without T2D. These disparities may be due to different
genetic and socio-economic backgrounds within the study
populations. Clarity regarding these hormones may require
larger studies in participants from diverse genetic backgrounds.
DISCUSSION

Endocrine alterations contribute to changes in immune responses.
While some hormones have been studied extensively for their
immune-regulatory properties, few have been sufficiently
investigated in the lung immune response to infection and
compared to their effects outside the lung. Fewer still have been
assessed in the lungs during T2D, a major endocrine dysregulating
disease, and TB, a bacterial lung disease. While we have discussed
more defined hormones in this review, others including
progesterone, thyroid-stimulating hormone, parathyroid hormone,
epinephrine, norepinephrine, melotonin, adipsin, require further
investigation. Additionally, while some evidence suggests that
receptors for hormones are not expressed in the lung tissue, such
as C-peptide and ghrelin, other studies have described responses of
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lung tissue or immune cells to these hormones, indicating that
alternative pathways of stimulation may be responsible for these
effects or more sensitive methods are required for their evaluation in
lung tissue. Elucidating the role of these hormones in modulating
immune cell function in the lung will bridge a critical gap in our
understanding of immune responses in the lungs.

Many studies thus far have investigated hormone-induced
cellular responses in cell lines, peripheral blood cells, and in
mouse and rat models. Cells under specific environmental
conditions respond to hormonal stimulation differently. Thus,
interpretation of these studies must be considered according to
the cellular compartment or animal model they were performed in.
While providing informative results, the relevance of these results to
disease in the human lung remains to be validated with studies
based on the human lung. Future studies assessing endocrine driven
immune responses in the lung should incorporate human tissues or
cells, like lung biopsies or resections and BALF, to build on current
knowledge in this field with more relevance to human disease.

Understanding the factors contributing to the development,
progression, and treatment response of lung diseases is crucial
for improving the avenues of treatment, such as host-directed
therapies, especially since antibiotics in development are deemed
a short-term solution needing supplementation by other means
of treatment (191). Hormone receptors may provide improved
FIGURE 2 | Altered endocrine signaling affects the appropriate immune response to infection. In an otherwise healthy immune system, the response to
Mycobacterium tuberculosis includes several essential functions. 1, PAMP-PRR interaction (e.g. TLR4 and CD206) and phagocytosis. 2, Phagosome-lysosome
fusion and presentation (MHCII). 3, Activation of adaptive immune responses (CD40-CD40L) enhances the innate killing response via cytokines (e.g. IFNg).
4, Th1 and Th17 predominate, stimulating mycobacterial control and immune cell influx via cytokine and chemokine release. 5, NK cells induce apoptosis, allowing
efferocytosis by macrophages, and enhance killing by IFNg release. 6, DCs also promote killing, antigen presentation, and immune cell chemotaxis. The immune
response is influenced by sex hormone production, diet-induced gastric hormones, stress-related responses from the brain stem, thyroid dysfunction, and the
development of chronic metabolic diseases such as T2D and obesity. Thus, the immune response to M. tuberculosis is altered during T2D. 7, Macrophage PRR
expression (e.g. CD64 and CD206), phagocytosis, and killing is diminished. 8, Expression of antigen presenting proteins is reduced. 9, Expression of cholesterol
efflux transporters (ABC) is reduced, leading to cholesterol accumulation and foam cell formation. Foam cells have reduced migratory capacity and increased rate of
apoptosis. 10, Reduced efferocytosis results in a cholesterol rich environment and providing a niche for mycobacterial growth. 11, Additionally, altered ratios of Th
cell subsets and dendritic cells influence cytokine levels. PAMP, pathogen-associated molecular pattern; PRR, pattern recognition receptor; TLR, toll-like receptor;
MHC, major histocompatibility complex; Mj, macrophage; DC, Dendritic cell; Th, CD4+ helper T cell; PRF, perforin; GRZ, granzyme; Treg, regulatory T cell; ABC,
ATP-binding cassette cholesterol transporter; T2D, Type 2 Diabetes; TB, Tuberculosis; CRH, corticotropin-releasing hormone; GH, growth hormone; GnRH,
gonadotropin-releasing hormone; TRH, thyrotropin -releasing hormone; ACTH, adrenocorticotropic hormone; T4, Thyroxine; T3, triiodothyronine; TSH, thyroid-
stimulating hormone; PTH, parathyroid hormone; GIP, gastric insulinotropic peptide; GLP-1, glucagon-like peptide 1; TSH, thyroid-stimulating hormone; DHEA,
dehydroepiandrosterone; This figure was created with BioRender.com.
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adjunctive therapeutic targets, given an improvement in our
understanding of their functions in the lung under disease.
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