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Abstract

Antibody—drug conjugates (ADCs) are important molecular entities in the treatment of cancer. These conjugates combine the
target specificity of monoclonal antibodies with the potent anti-cancer activity of small-molecule therapeutics. The complex
structure of ADCs poses unique challenges to characterize the drug’s pharmacokinetics (PKs) and pharmacodynamics (PDs)
since it requires a quantitative understanding of the PK and PD properties of multiple different molecular species (e.g., ADC
conjugate, total antibody and unconjugated cytotoxic drug). As a result, clinical pharmacology strategy of an ADC is rather
unique and dependent on the linker/cytotoxic drug technology, heterogeneity of the ADC, PK and safety/efficacy profile of
the specific ADC in clinical development. In this review, we summarize the clinical pharmacology strategies in supporting
development and approval of ADCs using the approved ADCs as specific examples to illustrate the customized approach to

clinical pharmacology assessments in their clinical development.

Keywords Antibody—drug conjugate - Clinical pharmacology - Population pharmacokinetics - Exposure-response
analysis - Specific population - Drug interaction - QTc prolongation

Introduction

Antibody drug conjugates (ADCs) are an emerging class
of anti-cancer therapeutic agents that combine the antigen
targeting specificity and favorable pharmacokinetic prop-
erties of monoclonal antibodies (mAbs) with the cytotoxic
potential of small-molecule chemotherapeutics [1]. ADCs
typically consist of three components, namely a mAb to
determine which cells to be targeted, a cytotoxic drug to
determine the mechanism of action by which cells are killed,
and a chemical linker that attaches these two components
together to determine how the drug is released. The mAb
component of an ADC enables the ADC to specifically
bind to targeted cell surface antigens overexpressed on the
tumor cells. Upon binding, the ADCs are internalized and
trafficked to lysosomes, from which the cytotoxic drug is
released within the cell, thus resulting in the cell death. The
use of targeted delivery of highly potent cytotoxic drugs is
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designed to enhance the antitumor effects of the molecule
while minimizing the toxicity in the normal tissues.

As of January 2020, nine ADCs have received US Food
and Drug Administration (FDA) approval [2]. The first of
these, (1) gemtuzumab ozogamicin (Mylotarg®; an anti-
CD33 mADb linked to calicheamicin), for the treatment of
acute myelogenous leukemia (AML) was approved in 2000
under the FDA accelerated-approval process [3]. In 2010,
this agent was voluntarily withdrawn from the market due
to confirmatory trials failing to demonstrate clinical ben-
efit and safety concerns [3]. Gemtuzumab ozogamicin was
re-approved in 2018 at a sub-fractionated dose of 3—6 mg/
m? (compared to 9 mg/m? at first approval) [4]. Since
gemtuzumab ozogamicin’s initial market approval, seven
more ADCs were FDA approved: (2) brentuximab vedotin
(Adcetris®; an anti-CD30 mAb and monomethyl auristatin
E [MMAE] conjugate) for the treatment of Hodgkin lym-
phoma and systemic anaplastic large-cell lymphoma, (3)
trastuzumab emtansine (T-DM1, Kadcyla®; an anti-human
epidermal growth factor receptor 2 (HER2) mAb and DM1
[a derivative of maytansine] conjugate) for the treatment
of HER2 + metastatic breast cancer (mBC), (4) inotuzumab
ozogamicin (Besponsa®, an anti-CD22 mAb and calicheam-
icin conjugate) for the treatment of adults with relapsed or
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refractory B-cell precursor acute lymphoblastic leukemia
(ALL), (5) polatuzumab vedotin (Polivy®, an anti-CD79b
mAb and MMAE conjugate) for the treatment of relapsed
or refractory diffuse large B-cell lymphoma (DLBCL), (6)
enfortumab vedotin (Padcev®, an anti-Nectin 4 mAb and
MMAE conjugate) for the treatment of locally advanced
or metastatic urothelial cancer, (7) trastuzumab deruxte-
can (Enhertu®, an anti-HER2 mAb and exatecan deriva-
tive conjugate) for the treatment of HER2 + mBC, and (8)
sacituzumab govitegcan (Trodelvy®, an anti-Trop-2 mAb
and SN-38 conjugate) for the treatment of metastatic triple-
negative breast cancer [5-11]. In August 2020, the 9th ADC,
namely belantamab mafodotin-blmf (Blenrep®, an anti-
BCMA mAb and MMAF conjugate) achieved accelerated
approval from FDA for the treatment relapsed and refractory
multiple myeloma [12].

These ADCs prove that the therapeutic window of other-
wise intolerable cytotoxic drugs can be improved to a thera-
peutically beneficial level by conjugating it to an antibody.
Despite the great success of ADCs, it is worth noting that
the therapeutic window for ADCs remains relatively nar-
row with the maximum tolerated dose (MTD) often reached
before ADCs achieve the maximal efficacious dose [13]. As
a result, numerous innovative approaches (e.g., site-specific
conjugation or novel payloads) have been implemented to
further improve the therapeutic window, resulting in the
“next-generation” ADCs, many of which are currently tested
in clinical development.

The current understanding of the mechanism at which
ADC:s are cleared is through two major pathways: proteo-
lytic degradation and deconjugation [14, 15]. ADC clear-
ance through proteolytic degradation is driven primarily

by catabolism mediated by target-specific or nonspecific
cellular uptake followed by lysosomal degradation, similar
to mAbs. Deconjugation clearance is usually mediated by
enzymatic or chemical cleavage (e.g., maleimide exchange)
of the linker leading to the release of the cytotoxic drug from
the ADC [16]. Once released from the ADC, the cytotoxic
drug may be further metabolized, transported, and elimi-
nated via traditional mechanisms applicable to small mol-
ecules (see DDI section). Alternatively, ADC catabolism
and deconjugation in vivo leads to the formation of multiple
different molecular species (e.g., ADC species with different
drug antibody ratios [DAR]) and payload-containing catabo-
lites) [17]. The bioanalytical strategy for ADCs thus requires
defining the specific analytes of relevance to clinical phar-
macology. Although multiple analytes may be quantified
following the dosing of an ADC, the clinical importance of
the multi-analyte bioanalytical data in context of safety and
efficacy remains to be established. With numerous ADCs
in clinical development, streamlining the bioanalytical and
clinical pharmacology strategy is critical.

The clinical pharmacology assessments for ADCs to
address scientific and regulatory concerns are summarized
in Fig. 1. The clinical pharmacology of an ADC incorporates
elements of small molecule and mAb (large molecule) devel-
opment strategies. The scope of work is usually unique and
dependent on the linker/cytotoxic drug technology, heteroge-
neity of the ADC, pharmacokinetics (PK) and safety/efficacy
profile of the specific ADC in clinical development. Given
the structural complexity, multiple analytes were measured
across Phase I, Phase II and Phase III clinical studies to
characterize the PK of an ADC, including, but not limited
to, conjugate, total antibody and unconjugated payload.
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Fig. 1 Clinical pharmacology considerations in the stages of ADC drug development
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Intrinsic (e.g., body weight, organ dysfunction) and extrin-
sic factors (e.g., concomitant medications) likely to impact
the PK of an ADC were assessed using diverse approaches
(Fig. 1). Relationships between exposure to ADC conju-
gate (and other relevant analytes) and efficacy/safety were
assessed in support of the clinical dosing regimen selection
using quantitative approaches. This review summarized the
unique clinical pharmacology consideration in supporting
development and approval of ADCs (Fig. 1). The seven
approved ADCs are used as specific examples to illustrate
the customized approach to clinical pharmacology assess-
ments in their clinical development. Sacituzumab govitecan
and belantamab mafodotin-blmf were not included in the
summary due to limited clinical pharmacology information
available at the time of the review.

Bioanalytical consideration

ADCs incorporate both large- and small-molecule charac-
teristics and are usually present as a heterogeneous mixture
of the species differing not only in the number of cytotoxic
drugs attached to the antibody, but also in the protein con-
jugation sites of drug linkage [18]. Furthermore, biotrans-
formations in vivo can lead to additional changes in DARs
resulting in dynamically changing mixtures. As a result,
unlike mAbs, the heterogeneity of ADCs in vivo makes it
critical to measure multiple analytes in clinical trials [17,
19]. These analytes may include, but are not limited to, the
following: ADC conjugate (measured as conjugated anti-
body or conjugated payload), total antibody (TAb, conju-
gated and unconjugated antibody), unconjugated antibody
and unconjugated (free) payload. Conjugated antibody and
conjugated payload are the two alternative ways to quantify
the ADC conjugate [20]. From the perspective of the anti-
body, the ADC conjugate can be measured as “conjugated
antibody”, namely the concentration of antibody molecules
with one or more cytotoxic drugs attached. This bioanalyti-
cal method is used to measure serum concentrations of ADC
conjugate for brentuximab vedotin, inotuzumab ozogamicin,
T-DM1, enfortumab vedotin, and trastuzumab deruxtecan
[21-25]. Alternatively, from the perspective of the payload,
the ADC conjugate can be measured as “conjugated drug”,
namely as the total concentration of cytotoxic drug that
is conjugated to the antibody. Currently, only ADCs with
cleavable linker are amenable to the conjugated drug assay.
This bioanalytical method is used to measure polatuzumab
vedotin given that not all the DAR species can be measured
accurately in the conjugated-antibody ELISA assay [26].
In comparison, gemtuzumab ozogamicin does not measure
ADC conjugate. Instead, gemtuzumab ozogamicin measured
TAb and unconjugated calicheamicin [27, 28] likely due to

the availability of bioanalytical techniques at the time of
development.

Although multiple analytes may be quantified following
the dosing of an ADC, the bioanalytical strategy for ADCs
requires defining the specific analytes of relevance to clini-
cal pharmacology in the context of safety and efficacy. Most
commonly, three analytes, namely ADC conjugate, TAb and
unconjugated cytotoxic drug are measured in preclinical and
clinical studies to characterize the PK properties of an ADC
[17,19].

Population PK modeling

Population PK modeling is an important approach to char-
acterize the ADC PK properties and assess the effect of
intrinsic and extrinsic factors on ADC PK, and thus guide
dose recommendations in specific populations (e.g., geriatric
patients or patients with organ dysfunction). Given multi-
ple analytes were measured for an ADC during its clinical
development, one of the unique features of population PK
for an ADC is that more than one analyte is often included in
the population PK model development. ADC conjugate, the
main analyte of interest per mechanism of action of ADCs,
is the most common analyte included in the population PK
model. Additionally, given the high potency of cytotoxic
drugs, the potential contribution of unconjugated drug to
safety could not be ruled out. Exposure-safety analysis with
unconjugated cytotoxic drug has been conducted for the four
out of the seven approved ADCs (see exposure—response
section). As a result, unconjugated drug analyte is often
included in the population PK model in addition to ADC
conjugate to understand the PK characteristics of unconju-
gated drugs after ADC dosing and generate exposure metrics
for exposure-response analysis.

As shown in Table 1, five out of the seven approved
ADCs include the two analytes in their population PK mod-
els. Integrated two-analyte models (i.e., ADC conjugate-
unconjugated payload models) were developed for brentuxi-
mab vedotin, polatuzumab vedotin, enfortumab vedotin and
trastuzumab deruxtecan, while for gemtuzumab ozogamicin
population PK model for TAb and unconjugated payload was
developed separately and ADC conjugate analyte was not
measured clinically [28]. Typically, the ADC conjugate is
dosed in the linear range based on the findings of the phase
1 dose escalation study. The population PK model structures
for ADC conjugate are usually characterized by a 2- or 3-
compartment model with a mixture of linear and non-linear
elimination pathways. Notably, three out of the seven ADCs
have non-linear time-dependent clearance and all of them
target hematological malignancy (Table 1). The ADC linear
clearance (CL =1.6-2.5 L/day) and central volume of distri-
bution (Vc=6.4-6.7 L) are similar for brentuximab vedotin
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and enfortumab vedotin, the MMAE-containing ADCs that
share the same cytotoxic drug and linker but against different
targets [21, 29]. Polatuzumab vedotin is not included in the
comparison due to apparent non-linear and time-dependent
PK [30]. Conversely, T-DM1 and trastuzumab deruxtecan,
both of which share the same mAb but with different cyto-
toxic drugs and linkers, exhibited linear PK with similar
CL (0.4-0.7 L/day) and central volume of distribution (~3
L) at the clinical approved dose [23, 31]. As expected for
small molecules, the unconjugated payloads released from
ADC:s exhibit faster apparent clearances (> 19 L/day) from
circulation with larger apparent central volume of distribu-
tion (>80 L) into extravascular tissues compared to the ADC
or TAb. For MMAE-containing ADCs, the MMAE appar-
ent clearance and apparent central volume of distribution is
45-66 L/day and 80-99 L, respectively. The calicheamicin
analyte was not characterized in the population PK model
for inotuzumab ozogamicin so PK parameters for the pay-
load were not available for comparison, but for gemtuzumab
ozogamicin, unconjugated calicheamicin CL/F was 32 L/day
and V1/F was 97 L [32]. For trastuzumab deruxtecan, the
unconjugated DXd clearance (CL =19 L/day) was the lowest
for the payloads and the central volume was not estimable
with data collected so it was fixed to nonclinical data in the
population PK model [25].

The covariate effects from body weight (BW) or body
surface area (BSA) is consistently identified as one of sig-
nificant covariates on key PK parameters (i.e., CL and/or
Ve) in the final popPK models for all the approved ADCs.
The exponential of BW effect on CL ranged from 0.49 to
0.75, thus supporting the BW- and BSA- based dosing strat-
egy for ADCs. It was worth noting that BW and BSA were
highly correlated, of these two covariates, BW is usually
preferred to be included in the model as it is the simpler
measure to obtain. Six out of the seven approved ADCs iden-
tified BW as a significant covariate in their population PK
model except inotuzumab ozogamicin which included BSA
(Table 1). Among the seven approved ADCs, five of them
utilized BW-based dosing regimen with the two calicheam-
icin-containing ADCs using BSA-based dosing. Since these
agents have relatively narrow therapeutic windows, some of
the ADCs (i.e., brentuximab vedotin, enfortumab vedotin)
adopted dose capping strategy to further reduce inter-indi-
vidual variability for the ADC exposure and thus potentially
improve the ADC'’s safety profiles, particularly for patients
with higher BW (i.e., BW > 100 kg) that would achieve
higher drug exposure from a weight-based dosing regimen
[21, 22]. Notably, no significant PK differences based on
age was observed. Some differences in PK parameters with
gender was observed, but post-hoc analyses showed it did
not have any clinical meaningful effect on ADC exposures
and thus did not warrant dosing adjustment based on gender.
The impact of extrinsic and intrinsic factors on ADC PK has

been discussed previously [33, 34]. Consistent with other
biotherapeutics, baseline albumin and disease factors (e.g.,
tumor burden) were often identified as significant covariates
for ADC clearance, however, the magnitude of the effect of
these significant covariates on ADC exposure is minimal
compared with overall PK variability and therefore the BW-
and BSA- based dose without further adjustment for other
factors is considered appropriate for ADCs.

Organ dysfunction studies

The general concept that hepatic impairment may not affect
therapeutic proteins PK, including mAbs and ADCs, is being
challenged with emerging evidence [34]. Recent publica-
tion by Sun et al. showed that of 20 mAbs and 4 ADCs with
hepatic impairment data, a decrease in exposure of 1 mAb
and 2 ADCs were observed in patients with hepatic impair-
ment. Although the mechanism is unknown, Sun et al. pro-
poses worsening of disease associated with hepatic impair-
ment may increase the elimination of therapeutic proteins
through increased competition of FcRn binding with other
soluble proteins (i.e. albumin) and target mediated drug dis-
position. In addition, the liver and kidneys play an impor-
tant role in elimination of the small-molecule component of
an ADC, namely cytotoxic drug once it gets released from
the ADC. As a result, impairment of the functions of these
organs may result in alteration of ADC and/or cytotoxic drug
clearance, leading to exposure changes, which may in turn
impact the safety and efficacy. This is especially important
given ADCs generally have a relatively narrow therapeutic
index. Therefore, assessment of the impact of organ dysfunc-
tion on the disposition of ADCs to inform appropriate dos-
ing in these patients is an important component of clinical
pharmacology strategy for these molecules.

Table 2 summarizes the impact of liver and kidney func-
tion on ADCs PK and their corresponding dosing recom-
mendation for the seven approved ADC:s. It is noted that two
alternative approaches were used to characterize the impact
of organ dysfunction on ADC PK across the seven approved
ADC:s (1) a dedicated organ dysfunction clinical study or (2)
model-based approach using patients with organ dysfunction
across clinical studies to determine the effects of clinical PK.
As shown in Table 2, three out of seven ADCs conducted
dedicated hepatic and/or renal impairment clinical studies:
brentuximab vedotin, T-DM1, and enfortumab vedotin.
While for the remainder of ADCs, modeling and simulation
through popPK has been utilized to assess the organ dys-
function subpopulation across clinical studies. The current
ADC model-based approach requires that existing clinical
studies allow enrollment of patients with organ impairment.

ADC conjugate exposure was generally comparable
between patients with hepatic impairment and normal

@ Springer



Cancer Chemotherapy and Pharmacology (2021) 87:743-765

750

(e=u)
jusuriredwr feuar
ARAdS UL (171

—68°0 1D %06)

06T IND DNV
Suouriredur

[eur (¢ =u) e
-I9pow 10 ({y=1u)
P[iur ut 3599
21d ON -HVINIA
(e=u)
juauriredwr [euax
QIAAJS UI ($6°(0
S0 1D %06)

[L0 YD DNV
Suourredur

[eudr (¢ =u) e
-Iopowl 10 ({y=1u)

(L=u)
juoureduwr
onedoy Aue 1oy
@Iy-LTTID
%06) 67°C IND

oNv -AVINIA

(L=u)
Juowreduwr
onedoy Aue

10} (€6'0-8+°0

pIiwr ur 15949 1010 1D %06) L9°0 ys3ng-pro [9¢ ‘clun
ploAy asop paroxddy 2Id ON -DAV :Apmg [estur)y proay SYSw g T<—8T YWD DNV DAV :Apmis [eoTur[) -OpaA quwIxmuaIg
juowt
juowrredwt [BUSI -1redwrt oneday
(Ly=1u) deropowr (9 =1u) dreropowt
10 (6¢1 =) prrut o (8¢ =u) p[rw BLISILIO [c¢ ‘¥] urorures
pIoAy asop paroiddy ur 30912 3d ON 101D ddod pa1pmis JON asop paroiddy ur 30912 3d ON IDN 3ddod -0zQ qeunznjwon
QIOAdS  9IBIIPOIN PIIA QI0AdS  QJBISPOIN PIIN
UONEPUSWWOIAI [9qe ] Jnsay yoeoxddy UONBPUIWILIOII [9ge Jnsay yoeorddy

Juourreduwr feuay

juowraredwrt onjedofy

oav

sV pasoidde uaaas o) JOJ UOIBPUSWILIOIAI 9SOP pue M d DAV uo judwredwr feuar pue oneday Jo 100g g 3|qelL

pringer

fH's



751

Cancer Chemotherapy and Pharmacology (2021) 87:743-765

juouredurr
[eual (601 =u)
JjeIapow 1o
(191 =u) prw ut

Juowreduwr
onedoy (0=u)
QIQAJS pue (g =1u)
djeIopow ur uorn
-BULIOJUI JUDIOY
-Josut (yg =u)
Juownreduwr
onedoy prrur ut
Xewn 10§ %L¢
pue 1_ySiy %0f
sem DNV HVININ

amsodxa o[qerx RLIONIO [8Z ‘O1] un
pa1pnis JON asop paroiddy 3d U0 1999 ON 101D ddod proay asop paaoxddy  -edwoo :FYINNO® IDN 3ddod -opea qewnznjejod
juourredwr [eual juow
(fy=1u) 219A3S -1redwr onedoy
10 (g1 =Uu) (1 =1u) 919A3S 10
JJeIopow ‘(¢ =u) deIopow
‘(Leg=u) pirur ‘(0ST =) prru
ur yd Uo Jo9JJ9 £q poyoeduur Jou BLIOILID [$Z ‘9] utorwres
asop pasolrddy oN :ATuo DAV 101D Mddod pa1pmis JON asop paroxddy 1D Auo DAV IDN 3ddod -0Z0 qewnznjouy
juou
-rredwt oneday
INOYIIM IO M
9[qeredwod pue
MO[ :SIT[0qRIED
Sururejuod
-IAd pue TINA
uonouny
oneday [eutiou jo
Q3uel UTYIIM Sem
€ 0[Pk 18 DNV
pue juourredurt
oneday (§=1u)
JJeIOpOW pue
JuouLiredw [euar (01 =) piwt o [Lg 8]
(€S =u) areIopow UL Iamo[ % L9 pue (ITW@-1) duts
1o (pSg=u) pyu %8¢ sem T 9[okd LEREite] -uejuio
pa1pmis 10N asop paaoxddy  UI I[J UO 109J9 ON 101D Mddod parpmis 10N asop paroxddy 1 OOV TINd-L :Apmys [eoruI)) qewnznjsery,
QIOAIS  9IBIIPOIN PIIN QI0AdS  QJBISPOIN PIIN
UONEPUSWIWOIAI [9qe ] Jnsay yoeoxddy UONEPUIWWOIAI [9qe ] Jnsay yoeoxddy
juouredwt [euSy juowraredwt onjedopy oav

(ponunuoo) zsjqey

pringer

a's



752

Cancer Chemotherapy and Pharmacology (2021) 87:743-765

Table 2 (continued)

&

Label recommendation

Result

Renal impairment

Approach

Label recommendation

Result

Hepatic impairment

Approach

ADC

Springer

Moderate Severe

Mild

Severe

Moderate

Mild

Clinical Study: No effect on PK in  Approved dose

Avoid

No effect on PK Approved dose

PopPK: NCI

Enfortumab vedo-
tin [9, 21]

mild (n=135),
moderate

CrCL and

31)

in mild (n

criteria

PopPK:CrCL

hepatic impair-

ment

(n=147), or
severe (n

8)

renal impairment

No effect on PKin  Approved dose Not studied

Not studied PopPK: CrCL

No effect on PK Approved dose

PopPK: NCI

Trastuzumab der-

=206) or

mild (n

=215)

in mild (n

criteria

uxtecan [7, 25]

=58)

moderate (n

hepatic impair-

ment

renal impairment

ADC antibody—drug conjugate (measured as conjugated antibody), acMMAE conjugated MMAE (measured as conjugated payload), 7-DM1 trastuzumab emtansine, DM emtansine, MMAE

monomethyl auristatin E, acMMAE conjugated MMAE, PK pharmacokinetics, CrCL creatinine clearance, PopPK population pharmacokinetics, NCI National Cancer Institute

hepatic function for most of the approved ADCs, except
for brentuximab vedotin and T-DM1 (Table 2). For bren-
tuximab vedotin, ADC conjugate exposure (i.e., AUC)
decreased by 35% in lymphoma patients with moderate
hepatic impairment, and there was only one patient each
with mild or severe hepatic impairment [35]. For T-DM1,
AUC of T-DM1 conjugate at Cycle 1 in patients with mild
and moderate hepatic impairment were approximately 38%
and 67% lower than that of patients with normal hepatic
function, respectively [36]. Interestingly, the exposure
difference was less apparent after repeated dosing with
T-DM1 AUC at Cycle 3 in patients with mild and moderate
hepatic impairment largely comparable to the patients with
normal hepatic function. There was no apparent effect of
hepatic impairment on the cytotoxic drug exposure except
for brentuximab vedotin (unconjugated MMAE AUC
GMR 2.29 for any hepatic impairment vs normal hepatic
function) and polatuzumab vedotin (unconjugated MMAE
AUC GMR 1.40 for mild hepatic impairment vs normal
hepatic function) [26, 36]. The fact that the exposure of
unconjugated MMAE was increased by two-to-threefold
in moderate hepatic impaired patients resulted in label
recommendation for brentuximab vedotin to avoid use in
patients with moderate to severe hepatic impairment [5].
The comparable unconjugated DM 1 exposure and transient
change of T-DM1 conjugate exposure in mild or moder-
ate hepatic impairment lead to label recommendation of
no adjustments of the dose of T-DM1 in these patients [8,
37]. Although an increase in unconjugated MMAE expo-
sure for polatuzumab vedotin was observed, based on the
exposure-safety relationship established across clinical
studies, the increased unconjugated MMAE exposure was
not clinically relevant and no adjustment in the starting
dose is required for polatuzumab vedotin in patients with
mild hepatic impairment [26].

For patients with renal impairment, ADC conjugate and
cytotoxic drug PK are comparable for most of the approved
ADCs, except for brentuximab vedotin in patients with
severe renal impairment (ADC AUC GMR 0.71 and MMAE
AUC GMR 1.90) (Table 2) [36]. The altered PK in brentuxi-
mab vedotin results in label recommendation to avoid use in
patients with severe renal impairment [5].

The approach to evaluate organ dysfunction for ADC
drug development remains situation dependent, but is trend-
ing toward a modeling and simulation approach. The popu-
lation PK approach is routinely conducted to evaluate the
impact of organ dysfunction on the exposure of ADC and its
relevant analytes. If there is an impact on the exposure, such
an impact on dose recommendation should be assessed in the
context of benefit risk assessment and/or exposure-response
relationship. In the future, physiologically based pharma-
cokinetic (PBPK) modeling approach may be used to assess
the impact of organ dysfunction on ADC PK once the ADC
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PBPK model and organ dysfunction patient population is
fully established.

Drug-drug interactions

Assessing drug—drug interaction (DDI) risk associated
with ADCs needs to consider both the large- and small-
molecule components of the ADC. The cytotoxic payloads,
upon release from ADCs, are expected to behave like small
molecules and thus may be of concern for enzyme or trans-
porter-mediated DDIs. The FDA and European Medicines
Agency (EMA) have issued comprehensive recommenda-
tions for in vitro and in vivo studies to evaluate DDI poten-
tial for small molecules, but specific guidelines on DDI
risk assessment for ADCs have not been issued. Given the
relatively high potency and low systemic exposure of cyto-
toxic payloads, some unique DDI consideration might be
needed for ADCs. Different from other molecules, human
mass balance study is usually not conducted for most of the
approved ADCs (6 out of 7 approved ADCs). Brentuximab
vedotin is the only ADC that conducted a clinical excretion
study but without complete recovery [21]. Instead, leverag-
ing preclinical ADME data is the main strategy for initial
DDI assessment of ADCs.

DDISs related to the payload have been extensively evalu-
ated during the clinical development of an ADC. Table 3
summarizes the approaches, key findings and its implication
on the drug label of payload-mediated DDIs for the seven
approved ADCs, which include four different payloads: cali-
cheamicin, MMAE, DM1, and DXd. Multiple approaches,
namely dedicated clinical DDI study, theoretical risk assess-
ment, physiologically based pharmacokinetic (PBPK)
model, concomitant medication analysis, and referencing
existing DDI data from a previously established ADC were
used for DDI risk assessment. Theoretical risk assessment
based on the in vitro DDI and clinical data is the most com-
monly used approach for the 7 ADCs (Table 3). Dedicated
clinical DDI studies were conducted for two out of the seven
ADCs: brentuximab vedotin and trastuzumab deruxtecan.
PBPK modeling approach by leveraging available clinical
DDI data for the same payload was used to inform DDI risk
for polatuzumab vedotin, while exploratory concomitant
medications analysis using NCA or population PK of clini-
cal data to evaluate the effect of concomitant medications
on payload PK was used for T-DM1.

Given low systemic concentrations of released pay-
loads relative to its in vitro Ki/ICs, values of metabolizing
enzymes and/or transporters, the risk for a payload to be a
perpetrator of metabolizing enzymes and/or transporters is
considered to be low. As shown in Table 3, most of these
assessments are based on the theoretical risk assessments
using the in vitro DDI and clinical data, which often results

in the labeling statement such as, “at clinical relevant con-
centrations, the payload has no or low potential to inhibit
the CYP enzymes and/or transporters”. In vitro studies
showed that MMAE and DM1 exhibited time-dependent
and/or competitive inhibition of CYP3A with K; values
in the micromolar range, however, the systemic levels of
MMAE and DM1 released after administration of brentuxi-
mab vedotin and T-DM1 at their clinically approved doses
are only in the nanomolar range [22, 23]. Consistent with
these observations, a dedicated clinical DDI study showed
that co-administration of brentuximab vedotin did not affect
exposure to midazolam, a sensitive CYP3A substrate [38].
PBPK modeling by integrating the in vitro DDI and clini-
cal data further confirms the low risk of MMAE for being
a perpetrator for CYP3A substrates. The prediction results
were highlighted in polatuzumab vedotin prescribing infor-
mation [10].

In contrast, the potential for a released payload to be a
DDI victim still exists, which could possibly impact safety
as these payloads are highly potent and typically have a nar-
row or even no therapeutic window. As shown in Table 3,
three out of the four payloads for the approved ADCs are
metabolized by CYP3A with the exception of calicheam-
icin. In the case of calicheamicin, it has been shown that
N-acetyl gamma calicheamicin dimethyl hydrazide, the main
circulating catabolite, is extensively metabolized, primar-
ily via non-enzymatic reduction of the disulfide moiety, but
not CYP enzymes, thus DDI risk for N-acetyl gamma cali-
cheamicin dimethyl hydrazide as a victim of metabolizing
enzymes is considered low and no additional assessment
was conducted. Dedicated clinical studies were conducted
for brentuximab vedotin and trastuzumab deruxtecan to
assess the DDI risk for the released payload as a victim.
Low magnitude of DDI interaction for MMAE and DXd
was observed when co-administration with strong CYP3A
inhibitors and inducers. Co-administration of trastuzumab
deruxtecan with itraconazole (a strong CYP3A inhibitor)
and ritonavir (a dual inhibitor of OATP1B/CYP3A) resulted
in an 18% and 22%, respectively, increase in steady-state
exposure of DXd [25]. The magnitude of these changes is
not considered clinically meaningful. In the case of brentuxi-
mab vedotin, co-administration with ketoconazole, strong
CYP3A inhibitor, and rifampin, strong CYP3A inducer,
increased MMAE exposure by ~34% and decreased MMAE
exposure by ~46%, respectively [38]. As increased exposure
to MMAE may increase the risk of adverse reaction, close
monitoring of adverse reactions is recommended when bren-
tuximab vedotin is given concomitantly with strong CYP3A
inhibitors [5]. Instead of conducting a clinical DDI study,
polatuzumab vedotin, an MMAE-containing ADC with the
same linker and payload as brentuximab vedotin, adopted
a PBPK approach to project the magnitude of DDI with
strong CYP3A inhibitors and inducers. The PBPK model

@ Springer
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was developed using in silico and in vitro data and in vivo
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in clinical development. A thorough QT study for an ADC
is usually not feasible due to safety concerns on cytotox-
icity of released payloads in healthy subjects and ethical
concerns regarding a placebo arm in cancer patients. As an
alternative, a clinical study that incorporates many of the key
components of the thorough QT study is usually needed for
an ADC, especially when there is evidence suggesting that
the small-molecule component of the ADC or its catabolites
are present in human systemic circulation.

Table 4 summarizes the approaches and results of QT
assessment for the seven approved ADCs. In general, these
seven ADCs did not show clinically meaningful impact
on QTc prolongation, which is somewhat expected as the
mAb component of the ADC is unlikely to interact with the
human Ether-a-go-go-Related Gene (hERG) channel and the
low concentrations of circulating payload after ADC dosing
is unlikely to inhibit hERG channels in vivo. A dedicated
clinical QT study was conducted for four out of the seven
ADC:s. The study design for brentuximab vedotin, T-DM1,
and trastuzumab deruxtecan are similar, which involved a
dedicated QT study collecting triplicate 12-lead ECG data
with time-matched PK samples in ~ 50 cancer patients at
a single dose level (i.e., clinical approved dose for bren-
tuximab vedotin and T-DM1; a dose higher than clinical
approved dose for trastuzumab deruxtecan). Gemtuzumab
ozogamicin dedicated QT study is still ongoing (n =56,
NCT03727750). In comparison, inotuzumab ozogamicin,
polatuzumab vedotin and enfortumab vedotin adopted a
slightly different approach, instead of conducting a dedi-
cated QT study, high-quality triplicate 12-lead ECG and
time-matched PK samples were integrated in existing clini-
cal Phase I and/or Phase II studies. Data pooled from one
or multiple studies with ~ 17-250 cancer patients were used
for QT assessment. It was noted that the majority of the
approved ADCs had QT evaluation during cycles 1 and 3
representative of first dose and steady-state kinetics, except
for enfortumab vedotin. Due to enfortumab vedotin’s short
half-life (3.4 days for ADC; 2.4 days for MMAE) and dos-
ing on Days 1, 8 and 15 of a 28-day cycle (see Table 4),
triplicate 12-lead ECGs were collected on days 1 and 3 and
days 15 and 17 during the first 28-days cycle to capture the
QTec effects at first dose and steady-state kinetics, respec-
tively. Regardless of the study approaches, analysis of ECG
data from clinical studies typically follows the ICH E14 [41]
guidelines. For the seven approved ADCs, QT intervals cor-
rected for heart rate using Frederica’s formula (QTcF) are
commonly used in concentration-QTc analysis. Three ana-
lytes (i.e., ADC conjugate, total antibody and unconjugated
payload) were included in the concentration-QTc analysis
for T-DM1, inotuzumab ozogamicin, polatuzumab vedotin
while two analytes (i.e., ADC conjugate and unconjugated
payload) used for brentuximab vedotin, enfortumab vedotin,
trastuzumab deruxtecan (Table 4).

Overall, QTc risk for ADCs is expected to be low given
the mAb component of the ADC and low levels of circulat-
ing payloads. Leveraging preclinical and clinical data such
as in vitro hERG test, cardiac safety data in animals and
the level of circulating payload, is important for developing
appropriate ECG strategy in clinical studies. Additionally,
ECG monitoring may not be warranted for ADCs with the
circulating concentrations of the released payload similar
or lower than those established as having no QT effect.
Although dedicated QT studies have been conducted for the
4 approved ADCs, increasing trends showed that integrating
high-quality ECG monitoring and exposure-QTc analysis to
the existing phase I and/or II studies could be an effective
way to assess overall risk and meet regulatory submission
requirements.

Exposure-response (ER) modeling

Given a relatively narrow therapeutic window of ADCs [13]
compared to mAbs, exposure-response (ER) analysis plays
a critical role for supporting Phase II/IIT dose selection,
label dose justification and guidance of dose adjustment for
ADCs. Gemtuzumab ozogamicin dose is one of the exam-
ples highlighting the importance of ER analysis for selecting
appropriate dose and schedule. Gemtuzumab ozogamicin
was first granted an accelerated approval in 2000 as a mono-
therapy with dose of 9 mg/m? for the treatment of patients
with CD33 positive acute myeloid leukemia, however, the
sponsor withdrew gemtuzumab ozogamicin from the market
in 2011 as the confirmative study failed to demonstrate bet-
ter efficacy but showed higher rates of fatal hepatotoxicity
and veno-occlusive disease (VOD). Exploratory ER analyses
of gemtuzumab ozogamicin using data from single agent
of 9 mg/m? dose showed that the risk for VOD increases as
Cmax after first dose of gemtuzumab ozogamicin increases,
while exposure-efficacy (i.e., complete remission) relation-
ship, however, was relatively flat for any exposure meas-
ure including C,,, after first dose, indicating a fractionated
lower dose may have the potential to reduce the risk for VOD
but preserve the efficacy of gemtuzumab ozogamicin. Recent
positive study read-out with fractionated dosing of 3 mg/m?
confirmed the above hypothesis and demonstrated improved
clinical benefit with reduced VOD risk, thus leading to the
re-approval of gemtuzumab ozogamicin in 2016 [42, 43].
One of unique features of ADC ER analysis which is dif-
ferent from other therapies, is that it requires comprehen-
sive understanding which analyte(s) are the key drive for
efficacy and safety due to the complex structure of ADCs.
Based on the mechanism of action, ADC conjugate, meas-
ured as conjugated antibody or conjugated payload, is gener-
ally believed to be the key analyte of interest to drive safety
and efficacy for an ADC. However, it is worth noting that
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released payloads are highly potent and may possibly pose
a safety risk, exposures of unconjugated drug are sometimes
included in the exposure-safety analysis. Table 5 summa-
rizes the ER results for the seven approved ADC. Among
the seven approved ADCs, four of the ADCs, namely bren-
tuximab vedotin, polatuzumab vedotin, enfortumab vedotin
and trastuzumab deruxtecan, included both ADC conjugate
and unconjugated drug analytes in their ER analyses. A
positive exposure-efficacy relationship with ADC conju-
gate exposure was consistently observed for the four ADCs,
however, no apparent or negative exposure-efficacy rela-
tionship was observed for unconjugated drug exposure. In
comparison, exposure-safety relationships for the four ADCs
vary, depending on safety endpoints and analytes used in the
analyses. For brentuximab vedotin and enfortumab vedo-
tin, ADC conjugate exposure appeared to correlate better
with safety than that of unconjugated drug. In the case of
brentuximab vedotin, a positive exposure-safety relationship
was observed with ADC conjugate exposure, but not with
that of unconjugated drug, while for enfortumab vedotin,
positive exposure-safety relationships were observed with
exposure of both ADC conjugate and unconjugated drug,
but the strengthen of exposure-safety relationship appears
to be much weaker for unconjugated drug. For polatuzumab
vedotin and trastuzumab deruxtecan, no consistent expo-
sure-safety trends were observed; positive exposure-safety
relationships were observed sparsely between some safety
endpoints and exposure of ADC conjugate and/or uncon-
jugated payload. For T-DM1, inotuzumab ozogamicin and
gemtuzumab ozogamicin, only one analyte was used in their
ER analyses. Specifically, ADC conjugate was used for ER
analyses of T-DM1 and inotuzumab ozogamicin. For both
ADCs, increased conjugate exposure appeared to be asso-
ciated with improved efficacy (i.e., ORR, PFS, OS). No
apparent positive exposure-safety relationship was observed
with T-DM1 treatment (i.e., hepatotoxicity and thrombo-
cytopenia), while a positive exposure-efficacy relationship
was founded between inotuzumab ozogamicin and some
of treatment-related AE (i.e., Grade 3 + thrombocytopenia
and HEAB-assessed VOD). Given ADC conjugate was not
measured for gemtuzumab ozogamicin, total antibody ana-
lyte was used for the ER analysis instead. Together, for most
of the seven approved ADCs, the efficacy endpoints appear
to correlate best with ADC conjugate compared to that of
unconjugated payload. For safety outcomes, while ADC
exposures were often correlated with AEs, unconjugated
payload exposures may also be important for certain AEs.
Total antibody analyte was usually not included in the ER
analysis since there is a high correlation between conjugate
and the total antibody exposures [44].

It is worth noting that four out of the seven ADCs (i.e.,
gemtuzumab ozogamicin, brentuximab vedotin, T-DM1 and
enfortumab vedotin) use the data from single dose level in

the exposure-efficacy analysis given efficacy data is indica-
tion-specific and only one dose level is usually studied in
the pivotal study. Similar to ER analysis of other cancer-
targeting biologics, caution needs to be taken to interpret
the ER results of an ADC when the analyses are performed
with data with only single dose levels as the effect of disease
severity on ADC exposure may confound ER relationship
(i.e., a visual steep trend is seen when the true relationship
is flat) [45, 46]. The exposure-safety, however, is less likely
to be confounded as the safety data are often pooled across
the multiple studies, dose levels and patient populations. As
illustrated in Table 5, a range of clinically tested doses were
included in the ER safety analysis for most of the seven
approved ADCs, while only three out of the seven ADCs
include multiple dose levels in the ER efficacy analyses.

In summary, ER analysis provided valuable information
beyond dose confirmation of the clinically tested dosage reg-
imen in the phase 3 studies. We have illustrated the impact
of ER analyses of gemtuzumab ozogamicin to enable test a
fractionated lower dose thus leading to the re-approval of
gemtuzumab ozogamicin. Additionally, ER analyses could
guide dose adjustment. For brentuximab vedotin, the posi-
tive ER relationships with peripheral neuropathy and neutro-
penia support the dose reduction recommendation from 1.8
to 1.2 mg/kg in the event of Grade 2 + peripheral neuropathy
and Grade 4 + neutropenia [22]. Furthermore, ER analysis
could be used to identify the appropriate therapeutic dose
for phase 2. For trastuzumab deruxtecan, ER analysis identi-
fied two potential phase 2 doses of 5.4 and 6.4 mg/kg from
phase 1 data and confirmed the final dose recommendation
of 5.4 mg/kg in pivotal studies based on similar predicted
ORR probability (ORR 90% CI 0.63 [0.55, 0.70] and 0.68
[0.58, 0.77] for 5.4 mg/kg and 6.4 mg/kg, respectively) and
exposure-safety relationships with greater rate of AEs in the
6.4 mg/kg group compared to the 5.4 mg/kg group [25].

Summary and future directions

ADC:s represent a rapidly evolving area of oncology drug
development and hold significant promise. The complex
structure of ADCs poses unique challenges to clinical phar-
macology strategy in supporting development and approval
of ADCs, since it requires a quantitative understanding of
the PK and PD properties of multiple different molecular
species (e.g., ADC conjugate, total antibody and unconju-
gated payload) in the systemic circulation and/or tissues of
interest (e.g., tumors). Integration of diverse clinical phar-
macology approaches, ranging from dedicated clinical phar-
macology studies (e.g., DDI, QTc, renal/hepatic impairment
study) to mechanistic and/or empirical models (e.g., PBPK,
population PK modeling for one- or two- analytes, expo-
sure-response analysis) can provide insights into the PK, PD
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and ADME properties of an ADC and inform development
decision and clinical dose and schedule selection (Fig. 1).
An additional consideration for clinical development not
discussed in this review includes the thorough assessment
of immunogenicity on ADC PK, efficacy, and safety.

As the field continues to evolve, the selection of suit-
able ADC targets and the identification of a target popula-
tion remain critical challenges. Efforts to further optimize
“next-generation” ADCs using engineered antibodies, inno-
vative linkers, conjugation methods, and novel payloads are
rapidly advancing. Despite the great success of ADCs, it is
worth noting that the therapeutic window for ADCs remains
relatively narrow with the maximum tolerated dose (MTD)
often reached before ADCs achieve the maximum effica-
cious dose. Additionally, the toxicities associated with the
ADCs might dictate the number of treatment cycles that
the patients can tolerate and often result in dose delay, dose
reductions or study discontinuation [13]. The future success
of ADCs in part will depend on our ability to overcome
these developmental challenges, especially by developing
clear strategies to optimize the dose and schedule of ADCs
and identifying predictive biomarkers to assess response,
optimize patient selection, and inform potential combina-
tion therapies.
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