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Abstract: This paper proposes a method for detecting non-line-of-sight (NLOS) multipath, which
causes large positioning errors in a global navigation satellite system (GNSS). We use GNSS signal
correlation output, which is the most primitive GNSS signal processing output, to detect NLOS
multipath based on machine learning. The shape of the multi-correlator outputs is distorted due
to the NLOS multipath. The features of the shape of the multi-correlator are used to discriminate
the NLOS multipath. We implement two supervised learning methods, a support vector machine
(SVM) and a neural network (NN), and compare their performance. In addition, we also propose an
automated method of collecting training data for LOS and NLOS signals of machine learning. The
evaluation of the proposed NLOS detection method in an urban environment confirmed that NN
was better than SVM, and 97.7% of NLOS signals were correctly discriminated.

Keywords: GPS; GNSS; SDR; multipath; signal classification; machine learning

1. Introduction

The global navigation satellite system (GNSS) is currently used in various location-
based services. As of 2020, various countries have launched and are operating their own
positioning satellites, and there are approximate 30 satellites available for positioning
on average, and thus the availability of satellite positioning is expected to significantly
increase. One of the most sought-after location-based services is stable positioning in
urban environments with many buildings. However, despite the increase in the number
of positioning satellites, large positioning errors occur suddenly in urban environments.
This positioning error is caused by multipath signals, where GNSS signals are reflected or
diffracted by buildings and other objects [1]. There are two types of multipath, between
which the effect on the GNSS receiver is significantly different. Figure 1 illustrates the
line-of-sight (LOS) and non-line-of-sight (NLOS) multipath signals. GNSS antennas receive
direct signals and reflected or diffracted signals simultaneously, which is called LOS
multipath. The reflected or diffracted signals affect the correlation process of the direct
signal, arriving at the antenna first and deteriorate the ranging accuracy of GNSS. This
ranging error is called LOS multipath error. However, this error can be mitigated by
devising a signal correlation processing [2–4]. Owing to an innovation of the signal
correlation method, the LOS multipath error within the GNSS pseudorange is only a few
meters at most, and the maximum error has an upper limit.

On the other hand, in an urban environment with many buildings, GNSS signals
emitted from out-of-sight satellites hidden behind buildings are often received by the
antennas through reflection and diffraction. In this case, a larger-than-normal error occurs
in GNSS positioning [5]. This is called an NLOS multipath error; in addition, the magnitude
of the error depends on the environment, and the maximum error cannot be defined.

Because the pseudorange observed by the NLOS signal is heavily biased against
the true distance, the positioning results are usually significantly deteriorated when the
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pseudorange of the NLOS signal is used for positioning calculations [6]. This pseudorange
bias is difficult to compensate, and thus, detecting the NLOS signal and excluding it from
the positioning calculation is the easiest way to improve the positioning accuracy.

NLOSLOSDirect Signal

Multipath Signal

GNSS

Antenna

Figure 1. Comparison of line-of-sight (LOS) and non-LOS (NLOS) multipath signals. If a global
navigation satellite system (GNSS) receiver receives reflected or diffracted signals from an “invisible”
satellite behind a building, a large positioning error will occur.

A method of NLOS discrimination using GNSS receiver output is proposed for NLOS
discrimination using signal-to-noise ratio (SNR) [7–9]. This method takes advantage of
the phenomenon that reflected and diffracted NLOS signals have a lower signal strength
compared to direct signals. However, it is difficult to correctly discriminate between NLOS
signals when a diffractive signal near the edge of a building or a reflected signal such as a
specular reflection is received.

In this study, we proposed a novel NLOS multipath detection method that can em-
ploy machine learning techniques to enhance the GNSS positioning performance in urban
environments, where NLOS multipath signals lead to major positioning errors. The basic
idea of the proposed method is to integrate a discriminator in the GNSS signal processing
that discriminates NLOS from the results of the GNSS signal correlation outputs instead
of discriminating NLOS from GNSS observations such as SNR. The GNSS signal correla-
tion result is the primary GNSS output and contains information on NLOS signals. The
proposed method learns the “features of the shape of the correlation function”, which is
the output of GNSS signal correlation processing. We propose two supervised learning
methods, one with a support vector machine (SVM) and the other with a neural network
(NN), and compare their levels of performance.

1.1. Related Studies

NLOS multipath errors have long been studied as a serious problem in GNSS posi-
tioning. The countermeasures against NLOS multipath errors can be classified into four
categories: (1) the rejection of GNSS positioning results that contain such errors, (2) the
identification of NLOS signals from GNSS observations and their exclusion from the posi-
tioning calculations, (3) the estimation and correction of NLOS multipath errors, and (4) the
suppression of NLOS reception in the RF section. The latter method is a more fundamental
countermeasure for NLOS multipath errors.

(1) The rejection of GNSS positioning results containing NLOS multipath errors is
a countermeasure against such errors. Several methods have been proposed to detect
jumps in GNSS positioning, such as methods using a Chi-square test [10] in positioning
calculations, and methods that combine the trajectories estimated by other sensors such
as IMU, wheel odometry, and visual odometry using cameras [6]. However, these meth-
ods are impractical and fundamental measures because they reduce the availability of
GNSS positioning.
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(2) NLOS signals are identified from GNSS observations and excluded from the posi-
tioning calculation, which is the most studied NLOS multipath reduction method. Receiver
autonomous integrity monitoring (RAIM)-related techniques are used to detect large GNSS
ranging errors in the observed GNSS pseudorange [11]. However, these methods assume
that the number of NLOS signals is extremely small among the received signals, and thus
they cannot be used in an environment in which there are many NLOS signals. Methods
for detecting an NLOS from GNSS observations using a visible camera [12], a fish-eye
camera [13], and an omnidirectional far-infrared camera [14] have been proposed. The
camera is pointed toward the zenith to detect an NLOS satellite hidden in a building.
However, NLOS detection using a camera is affected by weather and illumination condi-
tions. An omnidirectional far-infrared camera is more robust than previously proposed
methods. However, it requires special sensors, and a camera-based method is required to
measure the camera pose to project the satellite position onto the image. Real-time laser
scanning is also used to detect NLOS signals [15,16]. However, there is a limitation to the
measurement range of the laser scanner. 3D maps have attracted attention in improving
the GNSS positioning accuracy in urban environments [17–20]. A 3D city model can be
used to detect NLOS signals combined with GNSS receivers. However, an accurate 3D
model is needed to compute the position in advance.

(3) An estimation and correction is an ideal countermeasure to deal with NLOS
multipath errors. If an NLOS signal is rejected in an urban environment, problems such
as an insufficient number of satellites and a deterioration of the satellite geometry will
occur. A few methods for correcting NLOS multipath errors using 3D maps have been
proposed [21,22]. However, the correction of NLOS multipath errors is extremely complex
and difficult and is not yet practical in terms of accuracy.

(4) Suppression of the NLOS reception in the RF section is a more fundamental coun-
termeasure for NLOS multipath errors. For example, the use of a choke ring antenna [23]
and a dual-polarization antenna [24,25] has been proposed. The reflected signal is changed
from a right-hand circularly polarized signal to a left-hand circularly polarized signal. Us-
ing the dual-polarization antenna, we can separately process both signals, and the reflected
signal can be estimated from the difference of the SNRs of the right- and left-hand signals.
The use of this method comes with associated problems such as the system complexity and
operational costs.

By contrast, recent developments in machine learning techniques have led to significant
research into improving the GNSS positioning accuracy through machine learning [26–31].
In [26,28,30], a decision tree or SVM is used for discriminating NLOS signals from learning
of GNSS observations, such as SNRs and pseudoranges. In [29], the indoor LOS multipath
signal classification based on a deep learning approach was proposed. However, this work
focuses on the LOS multipath detection of a pseudolite and is difficult to apply to NLOS
detection in outdoor environments. In [31], a convolutional neural network (CNN)-based
NLOS detection approach was proposed. This study also uses GNSS observations for
NLOS detection and did not use the signal correlation output. In our previous study [27],
we formed the basis of the present study by incorporating machine learning methods into
a GNSS software receiver and proposing a method for discriminating NLOS signals from
the correlation outputs based on an SVM. Compared to the previous study, the present
approach utilizes multiple machine learning methods, SVM and NN, the discrimination
performances of which are compared herein.

1.2. Contributions

The contributions of this paper are as follows.

• The idea of direct machine learning of a GNSS signal correlation output, which is the
most primitive GNSS signal processing output, is an innovative approach.

• In this study, multiple machine learning methods (e.g., SVM and NN) are applied to
compare the performance of an NLOS signal detection. There have been few examples
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of applying an NN to GNSS signal processing, and NLOS discrimination using an
NN has been a significant achievement.

• We devised a data acquisition device that automatically collects labeled NLOS signals
to collect training data, which is a problem in supervised machine learning.

• We applied the proposed machine learning method to GNSS signals acquired in a real
urban environment.

The remainder of this paper is organized as follows: First, in Section 2, we describe
the details of the proposed method and the basic principles of the proposed method for
detecting the NLOS. Then we describe a method for detecting the NLOS using an SVM and
NN. In Section 3, we describe a data acquisition device that automatically collects training
data for machine learning. In Section 4, we describe an evaluation of NLOS multipath
detection in the actual environment. Finally, we present a discussion and conclusion.

2. Proposed Method
2.1. Outline of Proposed System

In this study, an NLOS multipath discriminator using a GNSS signal correlation output
is implemented in a software GNSS receiver. Figure 2 shows the outline of the proposed
system. The GNSS signal input from the antenna is digitized in the RF front end and sent to
the baseband processing. In the baseband processing, the input digitized signal is acquired
and tracked by calculating the correlation with the replica code generated in the receiver
on an independent channel for each satellite. In the correlation process within GNSS
receivers, the correlation of incoming signals and the replica code generated in the GNSS
receiver is computed. This is called GNSS signal correlators. We used multiple correlators
to extract NLOS correlation features instead of the standard early late-prompt correlator.
In the delay lock loop (DLL), the code correlation peak is determined and tracked using
the discriminator computed by the outputs of the signal correlators. The GNSS carrier
phase is also tracked in the phase-locked loop (PLL). Then, GNSS observations such as
the pseudoranges, carrier phase, and Doppler frequency are computed from the result
of the code tracking in each channel [1]. Finally, the position, velocity, and time (PVT)
are computed from GNSS observations. Here, an NLOS signal classifier created based
on a machine learning technique is added after the loop filter block. The input of the
NLOS classifier is the output of the signal correlators. The NLOS classifier determines
whether the signal currently being tracked by the channel is LOS or NLOS from the input
correlation output. If it is an NLOS, it acts as a filter that rejects GNSS observations instead
of outputting them. Hence, only LOS signals are used for positioning in the navigation
block, and thus the positioning accuracy in an urban environment can be improved. In
addition, the proposed method does not require additional sensors and is practical and
easy to implement.

Channel n

Channel …

PLL

Channel 2

PVTRF

front-end

Channel 1

Correlator 

block

(Multiple 

correlators)

NLOS 

signal 

classifier

DLL

PLL

Navigation 

block

Correlation outputs

Figure 2. Outline of the proposed system. We incorporated an NLOS discriminator into the conventional GNSS signal
processing algorithm, which directly discriminates the NLOS signal from the correlation output and functions as a filter that
outputs only the LOS signal.
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Various classification methods using machine learning have been proposed. In this
study, supervised machine learning methods, SVM and NN, are applied to the NLOS
classification problem. An SVM uses a kernel trick technique to transform the input data
to find the optimal bounds of the target classes. The designers of a discriminator need
to extract the NLOS features from the input signal themselves, and the SVM classifies
the signal based on the extracted features. For this reason, it is important for an SVM to
determine features that can fully explain the NLOS signal correctly. By contrast, an NN is
frequently used in classification problems. An NN is a computational model inspired by
the manner in which biological neural networks in the human brain process information.
Unlike an SVM, in an NN, features for classification are automatically acquired during the
learning process. Therefore, the performance does not depend on the features extracted by
the designer, as in an SVM. However, an NN generally requires a large number of training
data. The method for obtaining a labeled NLOS signal for training is described in Section 5.
In this study, we use the features of an NLOS, as described in the next section, to determine
the feature extraction of an SVM and the input of an NN and compare the performance of
each supervised machine learning method.

2.2. NLOS Correlation Function

A feature of the proposed method is that it discriminates the NLOS signal by directly
learning the correlation output of the NLOS multipath signal; the correlation function of
the NLOS multipath signal is significantly distorted compared to an LOS multipath signal
with a direct signal. First, the shape of the correlation function for the LOS and NLOS
multipath signals is clarified. We denote C(t) the GNSS pseudo-random noise (PRN) code
sequence. The amplitude, carrier frequency, and signal delay of a direct signal are denoted
as A0, ω0, τ0, and θ0, respectively. A direct GNSS signal S0(t) can be denoted as follows:

S0(t) = A0 · C(t− τ0) · cos(ω0t) (1)

The case in which the direct signal S0(t) is affected by the single reflected signal S1(t).
The LOS multipath signal SLOS(t) can be expressed as follows:

SLOS(t) = S0(t) + S1(t)

= S0(t) + A1 · C(t− τ1) · cos(ω0t + ∆φ1).
(2)

where A1, τ1, and ∆φ1 are the multipath amplitude, delay, and relative phase between
direct and multipath signals, respectively. The direct signal will be a composite signal
with a multipath signal and will be affected by these three multipath parameters. Figure 3
illustrates the signal correlation functions of an LOS multipath signal. Here, we can define
the multipath amplitude ratio αLOS as follows:

αLOS =
A1

A0
(3)

In Figure 3, the multipath amplitude ratio αLOS is 0.25. This multipath amplitude ratio
αLOS is a major factor that distorts the correlation function of the LOS multipath signal.
The smaller the amplitude of the reflection or diffraction signal with respect to the direct
signal, the smaller the effect on the correlation function of the direct signal. In general,
the first reflected signal has low power compared to a direct signal. The reflection and
diffraction signals have a smaller amplitude A1 than direct signals A0 because they lose
energy during reflection and diffraction. As a result, the shape of the correlated output of
the LOS multipath signal with a direct signal becomes a clean triangular shape with only a
single peak.
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Time delay
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First reflected

signal S1(t)

Figure 3. Correlation function of an LOS multipath signal.

In the case of an NLOS correlation function, there is no direct signal, and the first
reflected signal is distorted by the second reflected signal. Figure 4 illustrates the signal
correlation functions of an NLOS multipath signal. The NLOS multipath signal can be
expressed as follows:

SNLOS(t) = S1(t) + S2(t)

= S1(t) + A2 · C(t− τ2) · cos(ω0t + ∆φ2),
(4)

The NLOS signal correlation function is a combination of the reflected or diffracted
signal correlations. The multipath amplitude ratio of the NLOS signals αNLOS is defined
as follows:

αNLOS =
A2

A1
(5)

From Figure 4, the amplitude of the first reflected signal A1 and second reflected signal
A2 are not considered to be significantly different. In the case of NLOS signals without
a direct signal, the amplitude ratio αNLOS between the first and second signals is close to
1. Therefore, the multipath amplitude ratio between the LOS multipath signal αLOS and
NLOS multipath signal αNLOS has the following relationship:

αLOS < αNLOS (6)

Therefore, the NLOS correlation function is more susceptible to the second signal than
the LOS correlation function, resulting in a large distortion of the correlation function. For
this reason, the NLOS correlation function does not have an ideal clean triangular shape.

Time delay

Second 

reflected

signal

First reflected

signal S1(t)

S2(t)

Figure 4. Correlation function of an NLOS multipath signal.

We also consider the effect of the relative phase on the correlation function. From
Equations (2) and (4), the shape of the signal correlation function depends on the phase of
the second signal relative to the first signal. If the relative phase is 90◦ , the second signal
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does not affect the first signal’s correlation function. When the antenna is stationary, the
phase of the reflected signal relative to the direct signal generally changes slowly as the
satellite moves. The NLOS signal, by contrast, has a large relative phase variation owing
to the complex synthesis of multiple reflections and diffraction signals. As a result, the
correlation function of the NLOS signal is expected to become unstable over time.

We use these phenomena to detect NLOS signals. We created an NLOS classifier based
on the machine learning of the features of the NLOS correlation shape. To realize machine
learning from the features of the correlation shape, we extract the features of the NLOS
correlation function using an actual dataset and use it to construct the NLOS classifier.
However, a typical GNSS receiver only outputs a PVT solution. Therefore, we use a
software GNSS receiver to obtain the signal correlation outputs in GNSS signal processing.

The next question is how to extract and discriminate the features of the NLOS from
the distorted NLOS correlation output. In this study, we first extract the geometric features
of the NLOS correlation output and attempt to classify it using an SVM. In addition, NLOS
features are automatically extracted using an NN to identify the NLOS.

2.3. NLOS Detection Using SVM

As mentioned in the previous section, the direct and reflected signal correlation func-
tions are combined in the LOS multipath signals. Consequently, the reflected signals distort
the code correlation function of the direct signal, and the resulting code-tracking error
causes an LOS multipath error. NLOS signal does not contain direct signals; the combined
correlation function is more distorted than that in the case of LOS multipath signals.

We use multiple correlator outputs to extract NLOS features for SVM. GNSS incoming
signal is multiplied by the in-phase (I) and quadrature (Q) locally generated carriers,
and then the signals are correlated with a slightly shifted PRN code generated in the
GNSS receiver. We use the multi-correlator structures; thus, 2J + 1 correlation points are
computed. We use the in-phase component of correlation outputs for SVM. We consider
the perfect Doppler frequency compensation, and the jth in-phase correlator output at time
k is represented as follows:

Ij,k = AkR
(
τe,k + δj

)
cos(φe,k) (7)

where j = −J, . . . , J, δj is the correlator delay. R(·) is the auto-correlation function. τe,k and
φe,k is the error of the code delay and the carrier phase estimated at the receiver. The set of
multi-correlator outputs per 1 ms at time k is as follows:

Ck =
{

I−J,k, . . . , I0,k, . . . , IJ,k
}

(8)

In developing a successful SVM classifier, appropriate feature extraction is very im-
portant. We extract the features of the NLOS signals from multi-correlator outputs for SVM
to construct the NLOS classifier. In this study, we extract the following features:

• Signal strength versus elevation angle
• Number of local maxima of the correlation outputs
• Distribution of the delay of the maximum correlation

Figure 5 illustrates an overview of these three NLOS features to classify the NLOS
signals from the GNSS correlation outputs. We describe the details of these features in the
following section.
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Number of local maxima
Distribution of the delay of

the maximum correlation

Signal strength vs.

elevation angle

Figure 5. Three types of NLOS features are extracted from GNSS signal correlation outputs and are used for NLOS
classification applying a support vector machine (SVM).

2.3.1. Signal Strength versus Elevation Angle

The magnitude of the correlation peak is related to the GNSS signal strength. In
general, the signal strength of the reflected or diffracted signals is weaker than that of
the directly received signals. As a result, the signal strength can be used to detect NLOS
signals. Even in ordinary GNSS positioning calculations, the SNR, which represents the
GNSS signal strength, is widely used to exclude NLOS multipaths and select satellites
for the positioning calculations [7,8]. Because the signal strength of GNSS is considered
to be a good representation of the NLOS signal, the maximum value of the correlation
ground is adopted as the NLOS feature in this study. However, the signal strength is also
dependent on the satellite elevation angle. We model the maximum correlation output in an
open-sky environment using the actual observed data to evaluate the NLOS possibility. The
polynomial function that represents the relationship between the satellite elevation, and the
maximum correlation value is determined using a regression from the actual data obtained
in an open-sky environment. Here, we express the open-sky maximum correlation value
η(θel) as a fourth-order polynomial at an elevation angle with an approximate maximum
correlation value as the coefficient.

η(θel) = a4θ4
el + a3θ3

el + a2θ2
el + a1θel + a0 (9)

The coefficients a0 to a4 are then estimated using the least-squares method.
The NLOS feature F1,t based on the signal strength versus the elevation angle at time t

is calculated as follows:

F1,t =
1
M

t

∑
k=t−M+1

{
max(‖Ck‖)

η(θel,k)

}
, (10)

where M is the total number of correlations that are non-coherently integrated. The value
of F1,t is expected to be small when the observed signal is an NLOS signal. We use this
NLOS feature for machine learning.

2.3.2. Number of Local Maxima of Correlation Outputs

According to Figure 6, there are multiple peaks in the NLOS correlation function. In the
case of an NLOS signal, the correlation function comprises a combination of the correlation
functions of only the reflection and diffraction signals. The correlation function of the first
reflection/diffraction signal is distorted by that of the second reflection/diffraction signal.
As a result, the symmetry correlation shape collapses, and multiple local maxima of the
correlation outputs appear. It is expected that the number of local maxima of the NLOS
correlation outputs is greater than that of the LOS correlation outputs. The number of
local maxima of the correlation outputs was directly used for the classification. The NLOS
feature F2,t is calculated as follows:
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F2,t =
1
M

t

∑
k=t−M+1

{local_maximum(‖Ck‖)} (11)

where local_maximum(·) is a function that counts the number of local maxima. As the
NLOS feature, we use the average number of local maxima M times. It is expected that the
number of local maxima is almost 1 in the case of LOS signals. By contrast, the number of
local maxima will increase in the case of NLOS signals.

2048

(ReLU)

1024

(ReLU)

Correlation outputs

…

LOS

NLOS

…

(Softmax)Normalization 

Serialization
Serialized correlation outputs

Figure 6. Overview of the proposed NLOS detection system using a neural network (NN). Serialized correlation outputs
are input to a fully connected layer of the NN. Here, ReLU is an activation function, and the softmax is a function that
outputs the probability. The probability of the LOS and NLOS signals is output of the NN.

2.3.3. Distribution of Delay of Maximum Correlation Outputs

In the LOS correlation function from Figure 6, the delay of the maximum correlation
output is almost zero. However, in the case of the NLOS signal, the delay of the maximum
correlation output has a large distribution. We compute the variance of the delay used as
the NLOS feature. The NLOS feature F3,t is calculated as follows:

F3,t =
1
M

t

∑
k=t−M+1

(τ̂e,k − τ̄) (12)

where τ̂e,k is the estimated delay of the maximum correlation output and τ̄ is the mean of
the estimation delay M times. It can be concluded that the variance of delay of the NLOS
correlation output is greater than that of the LOS signal.

2.3.4. SVM

In constructing the NLOS signal classifier, we use an SVM, one of the supervised
machine learning algorithms [32]. SVM uses a kernel trick technique to transform the input
data to find the optimal bounds of the target classes to classify nonlinear data. Although
various SVM kernels have been proposed, we use the radial basis function kernel (RBF),
which is the most general and versatile. We chose RBF kernel and a linear decision function
because the extracted NLOS features do not always allow linear separation. There are two
parameters associated with RBF kernel, cost and kernel parameter. These parameters are
selected by a grid search approach [33]. We compare the discriminator trained using the
propsosed NLOS features and an SVM with the discriminator using the neural networks
described in the next section.

2.4. NLOS Detecition Using NN

We employ neural networks to construct NLOS signal classifiers. A neural network is
a computational model inspired by the manner in which biological neural networks in the
human brain process information. A signal y output from a neuron is represented by an
input element xi and a corresponding weight wi and bias b.



Sensors 2021, 21, 2503 10 of 19

y = f

(
N

∑
i=1

xiwi + b

)
(13)

The neuron fires when the sum of the weighted inputs exceeds a threshold. A function
that determines how to fire an input signal is called an activation function f (·), by which
the input for the next neuron is determined. A neural network consists of a combination of
multiple neuron models. The weights wi and bias b are adjusted using the backpropagation
method in the neural networks. For the backpropagation method, a loss function for
calculating the difference between the output and correct value is defined, and the gradient
is optimized to be minimized between the output and input layers.

A neural network can be decomposed into an input layer, a hidden layer, and an
output layer. In the classification case, the number of output layer units is the number of
classification classes. Because this research classifies LOS and NLOS signals, there are two
output layers. Figure 6 illustrates the outline of the proposed NLOS signal classifier neural
network model.

First, as a preprocessing of the input data, we normalize the output of the GNSS
signal correlation values using the relationship between the satellite elevation angle and
the signal strength. To remove the variation in amplitude owing to the satellite elevation
angle, similar to with an SVM, Equation (9) is used. The M · (2J + 1) correlated outputs are
aligned and serialized to input into the NN. We used a simple neural network with two
hidden layers. We use the ReLU function as the activation function in the hidden layer.
Furthermore, we use the softmax function in the output layer. The softmax function is a
function that outputs the probability with the class total being 100%. This is employed
when outputting a probability. We train this NN model using cross-entropy as the loss
function. We can expect to automatically learn NLOS features from GNSS correlation
waveforms through the training of this NN. However, learning with an NN requires a large
number of supervised data. In this study, the correlation of the value outputs labeled as
LOS and NLOS is required. In the next section, we describe how to efficiently collect the
training data.

3. Collection of Training Data

In this study, we create an NLOS detection classifier using an SVM and an NN. We
use the shape of the GNSS correlation outputs to detect the NLOS signals. There are many
types of signal correlators, such as early late correlators, narrow correlators, and double
delta correlators. The correlation shape, which is the output of the correlators, depends on
the number of correlation points and the sampling frequency of the front-end. The receiver
bandwidth also affects the correlation shape. In the consumer’s GNSS receiver, these
correlator models are a total black box, and we cannot obtain the correlation output. Thus,
we use a software GNSS receiver to address this problem. Software receivers are widely
recognized and used in GNSS research because of their configurational flexibility and ease
of use. We use a self-designed GNSS signal correlator by applying a software GNSS receiver
and use a front-end (NSL STEREO, UK) GNSS-SDRLIB, which is an open-source software
GNSS receiver [34]. The sample rate adopted in this test was 20 MHz. We computed the
GNSS LOS and NLOS correlation outputs using 21 correlation points.

To obtain the LOS and NLOS reference data, we use fish-eye images and verify
the NLOS signals from the images. A large number of training data are required for
machine learning, which are not easy to collect through a manual check of the fish-eye
images. Furthermore, to obtain accurate LOS and NLOS references, accurate azimuth angle
information of a fish-eye camera is required to project the satellite position onto the fish-eye
image. Therefore, in this study, we created a device that automatically collects the NLOS
reference signals for training.

Figure 7 shows the device used to automatically determine and collect the NLOS
signals. The device consists of a fish-eye camera, two pairs of GNSS antennas, and a receiver.
To project the satellite position on the image taken by a fish-eye camera, it is necessary to
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measure the azimuth angle of the camera at the time the image is taken. Therefore, we use
moving-base positioning between two GNSS pairs to estimate the azimuth angle of the
camera. Moving-base positioning is one of the GNSS relative positioning methods used
to estimate the relative vectors between antennas by calculating the difference between
the carrier phase of two sets of GNSS observations, as well as the normal RTK-GNSS [35].
However, in an environment where NLOS multipathing occurs, the effect of multipathing
causes errors in the moving-base positioning. We solve this problem by using an iterative
NLOS exclusion method. The flow used to determine the NLOS signals for SVM and NN
training is presented in Figure 8.

Raspberry Pi

GNSS
Receiver 1

GNSS
Receiver 2

Fish-eye 
camera

GNSS
antenna 1

GNSS
antenna 2

Figure 7. We developed an automatic NLOS training data acquisition device. We used a fish-eye
camera and two GNSS antennas/receivers to determine the NLOS satellite for SVM and NN training.

Sky image

Binarized 
sky image

Camera azimuth angle

Satellite 
elevation and 
azimuth angle

NLOS satellites

Yes

No

Image binarization

Satellite position 
projection

Camera azimuth angle 
estimation by moving 

base positioning

NLOS satellite 
is changed?

NLOS satellite 
determination NLOS satellite exclusion

Fish-eye camera GNSS 
receiver 1

GNSS 
receiver 2

Figure 8. Flow of NLOS satellite determination using a fish-eye image. We iteratively calculate the
azimuth angle of the camera and determine the NLOS satellite from the fish-eye image.

The flow of the NLOS detection using a fish-eye image is as follows:

(i) First, the device captures a sky image using a fish-eye camera. Two GNSS receivers
record GNSS raw observations (pseudoranges, carrier phases, and navigation messages).
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(ii) Second, the sky image is binarized to recognize buildings that constitute obstacles
to a direct signal. A binarized sky image can be used as a mask to determine the
NLOS signal.

(iii) Next, the elevation and azimuth angle of the satellites are computed through GNSS
positioning. The azimuth angle of the fish-eye camera can then be computed by the
moving-base positioning using two GNSS antennas/receivers. Note that the estimated
azimuth angle may contain errors owing to the effect of the NLOS multipath signals.

(iv) We project the satellite position onto a binarized fish-eye image using the estimated
azimuth angle of the fish-eye camera.

(v) The satellite visibility is automatically determined based on whether the buildings
and satellite are overlapped. The temporal NLOS satellites can be determined.

(vi) We then exclude the NLOS satellites and again estimate the azimuth angle of the
fish-eye camera using the moving-base positioning. By excluding the NLOS satellite,
the correct camera azimuth can be expected to be estimated.

(vii) We repeat the process of (iii) through (vi) until the estimated azimuth angle of the
fish-eye camera converges.

Finally, we can obtain a reference for the correct satellite visibility. We collected the
actual LOS and NLOS GNSS correlation outputs using this device to create an NLOS
signal classifier.

4. Experiments
4.1. Experimental Environment and Setting

We evaluated the NLOS classification performance of the proposed method. The
experiments were conducted in actual urban environments (Shinjuku area, Tokyo, Japan).
Figure 9 shows the experimental environment and the captured sky image at each location.
In this environment, as shown in Figure 9, there are many high-rise buildings of over 100 m,
and NLOS multipath signals frequently occur. The training data were collected at five
locations in Figure 9 using the GNSS software receiver. We used the NLOS training data
acquisition devices to acquire three sets of 5 min signal correlation data every two hours
at each location. Because the location of the satellites varies significantly over time, we
obtained a variety of GNSS LOS and NLOS signal correlation outputs and used them for
training. The acquired signal correlation outputs are labeled LOS/NLOS, and we trained
the discriminator using the proposed SVM and NN models. We evaluated the classification
performance using the cross-validation method. We repeat the process using the data set in
four of five different locations for training and the remaining one data for an evaluation of
the mean of the classification rate.

�

�

��

�

� �

�

� �

Figure 9. Experimental environment and sky images. We collected GNSS signal correlation outputs in five different locations
in the Shinjuku.

We employed MATLAB to construct the NLOS signal classifier using an SVM and
an NN. The parameters set for machine learning are listed in Table 1. The normalized
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correlation output was used as input to the SVM and NN, and 20 ms correlation outputs
were used for training. Determining the hyperparameters is a challenging problem. In the
case of SVM, the cost and kernel parameters were selected by a grid search approach [33].
In the case of NN, the hyperparameters, such as network structure and learning rate were
determined empirically through trial and error. As for the layer structure and learning
rate of the NN, we tested combinations of one, two, and three fully connected layers and
learning rates of 0.1, 0.01, and 0.001. Among these combinations, we adopted two fully
connected layers and 0.01 learning rate, which had the best classification performance.

Table 1. Parameters for SVM and NN. The Cost parameter, Kernel parameter, and learning rate are the hyperparameters of
SVM and NN.

Model SVM NN

Input Normalized correlation outputs
Size: 21 × 20

Normalized correlation outputs
Size: 21 × 20

Output 2 classes (LOS/NLOS) 2 classes (LOS/NLOS)
with probability

Cost parameter 1 -
Kernel parameter 0.01 -

Batch size - 1024
Learning rate - 0.01

4.2. Correlation Outputs

The actual correlation output was obtained and visualized to investigate the extraction
of NLOS features from the correlation output of NLOS signals. Figure 10 shows a fish-eye
image of the Test #1 environment in Figure 11 and the actually received GPS satellite
position projected on the fish-eye image. Figure 10 shows that GPS satellite “G09” is LOS
and “G17” and “G19” are NLOSs.

Figure 10. GPS satellite projection on a fish-eye image.

We computed the GPS LOS and NLOS correlation outputs. Here, the sampling
frequency and bandwidth of the RF front end are 20 and 4.2 MHz, respectively. Figure 11
shows the 1 ms correlation outputs of the LOS and NLOS signals overlapping for 20 ms.
Figure 11 shows that the NLOS signal correlation functions (“G17” and “G19”) do not have
a clear peak at the center, and a plurality of local maxima exists at a point other than the
peak. Furthermore, the NLOS signals have a smaller correlation peak than the LOS signals
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even for a satellite with the same elevation angle. Figure 11 shows that the shape of the
correlation function of the actual NLOS signal is geometrically different from the shape of
the LOS correlation function.

We compute the proposed NLOS features for SVM from the actual correlation outputs.
Figure 12 shows the normalized NLOS features F1, F2, and F3 computed from Equations (11)–
(13), respectively. NLOS feature F1, which is based on the signal strength, has a smaller
value when the satellite is NLOS signals. NLOS features F2 and F3 of the actual NLOS
satellites “G17” and “G19” are larger than the features of the LOS satellites “G09”. SVM
is a classification method based on input features. In all features, there is a difference
between the LOS and NLOS satellites. This difference indicates that LOS and NLOS can be
separated by SVM, and the three features correctly contribute to the classification by SVM.

Figure 13 shows an example of the learning curve of the NN training process. The
upper figure in Figure 13 shows the training and validation accuracy, and the lower figure
shows the training and validation loss. The accuracy of the training data is converged
to 100%, and the accuracy of the validation data is also converged to 100% without any
decrease. Furthermore, there is no significant gap between training and validation, which
indicates that learning is proceeding without overfitting.

Figure 11. Examples of LOS and NLOS signal correlation outputs. 1 ms correlation outputs for a
20 ms period are overlapped in different colors. The left figure SHOWS the correlation outputs of
LOS satellites, and the two figures on the right show the correlation outputs of NLOS satellites.
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Figure 12. Evaluation of the extracted NLOS features of SVM. NLOS features F1, F2, and F3 are
calculated from Equations (10)–(12), respectively. There is a difference between the LOS and NLOS
satellites in all features.

Figure 13. Learning curve of NN. The upper figure shows the training and validation accuracy and
lower figure shows the loss.

4.3. Classification Results

We compared a general satellite selection method using the GNSS SNR threshold with
the two proposed methods. The SNRs of the reflected and diffracted NLOS signals are
typically lower than those of the direct signals. The SNR threshold was set to −5 dB from
the SNR–elevation curve shown in Equation (9). When the SNR of the input signal is lower
than the individual threshold, it is judged as an NLOS signal.

Figure 14 shows the results of the NLOS classification accuracy when using the
proposed methods. The NLOS classification based on the SNR has the lowest accuracy,
whereas the SVM and NN have almost the same classification accuracy. It can be confirmed
that the proposed NN has the best classification performance from the average classification
accuracy of all tests in Figure 14. Comparing the SVM with the NN, the classification
accuracy of the NN was slightly higher, and the NN had the highest classification accuracy
for all experimental data except for test #1. The average classification rate at which a signal
from the NLOS signal group was correctly classified as the NLOS signal was 97.8% when
using the proposed NN.
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Figure 14. Classification accuracy using SNR, SVM, and NN. NN has the best performance among
the three proposed classifiers.

We used typical evaluation statistics used in binary classification. We calculated true
positive (TP, correct detection), true negative (TN, correct rejection), false negative (FN, an
omission error), and false positive (FP, a commfission error) in each classification test. We
then calculated the average classification rate (A), average recall (R), average precision (P),
and average F-Measure (F) using the following equations [36].

A =
TP + TN

TP + TN + FP + FN
(14)

R =
TP

TP + FN
(15)

P =
TP

TP + FP
(16)

F = 2
R · P

R + P
(17)

Figure 15 show the evaluation statistics. Here, the proposed NN classifier achieves
good results for all performance measures in comparison to all other classifiers. From
the viewpoint of the positioning accuracy, it is important for the recall of the NLOS
signal discrimination to be close to 100% because the positioning accuracy significantly
deteriorates when the NLOS signal is used for positioning. These results show that the
recall was close to 100% for both the SVM and NN, and that most of the NLOS signals can
be detected.

Figure 15. Performance of NLOS classifiers using SNR, SVM, and NN.
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5. Discussion

The NLOS detection methods using machine learning for the GNSS signal correlation
values could discriminate the NLOS with much higher accuracy than a method using the
GNSS SNR threshold. We believe that this was because we had extracted the appropriate
features of the NLOS correlation outputs by SVM and NN. In the cross-validation results
from Figure 14, the classification accuracy of Test #1 using the SNR threshold was worse
than the that of the other tests. The training model is dependent on the training location
because we used the data set in four of five different locations for training in the cross-
validation test. There is a possibility that Test #1 includes the NLOS signals with high
SNR compared with other locations. As a result, the traditional method based only on
SNR could not correctly classify the NLOS signal. In contrast, SVM and NN show high
classification accuracy even in Test #1. The cross-validation results also show that even
when Test #1 was included in the training (Test #2, #3, and #4), LOS and NLOS could be
identified without any problem. This suggests that the proposed method has sufficient
generalization performance.

Comparing the results of NN and SVM, the performance of NN was slightly higher.
This result suggests that the NLOS features extracted by NN using the signal correlation
values directly were more effective than the NLOS features designed by humans.

The data presented in this paper were obtained in the same city, and it has not been
verified whether the same model can be applied to different cities. In the future, we plan to
check whether the model learned across different cities has sufficient generalizability. If
the model is to be applied to cities with completely different shapes and distributions of
buildings, it is thought that it may be necessary to add training data obtained in those cities.

In terms of the computational cost, an NN has a higher computational cost than an
SVM. During the training stage of the NNs, the computation time depends on various
hyperparameters, although it is 5 to 10 times longer than training with SVM. During the
test stage, the average processing time required for 100 samples in the current model using
MATLAB was 0.66 ms for the SVM and 1.27 ms for the NN. Both methods can be executed
in real-time; however, because an SVM is less computationally expensive, in cases in which
the computational resources are limited, an SVM is considered more effective than an NN.

6. Conclusions

We proposed NLOS multipath detection methods that can employ machine learning
techniques and software-based GNSS receiver to enhance the GNSS positioning perfor-
mance in urban environments, where NLOS multipath signals lead to major positioning
errors. We employed SVM and NN to construct the NLOS signal classifier in this study.
In the SVM, we extracted the three features of the shape of the multi-correlator output.
In the NN, we directly input the multi-correlator output to construct the NLOS classifier.
The NLOS classification experiments in actual urban environments show that the NN has
slightly better classification performance than SVM, and 97.7% of the NLOS multipath
signals were correctly discriminated. In future studies, we plan to collect more training
data for the NLOS classifier to improve the NLOS classification ratio and create classifiers
for satellites other than those used by GPS.

In this study, we evaluated the discrimination performance using a cross-validation
method. However, the data are all taken within the same city (Tokyo). To further evaluate
the generality of the proposed method, it is necessary to evaluate the NLOS discrimination
method using data obtained from different cities and to evaluate the NLOS discrimination
of mobile vehicles in the future.
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The following abbreviations are used in this manuscript:

GPS global positioning system
GNSS global navigation satellite system
LOS line-of-sight
NLOS non-line-of-sight
SNR signal-to-noise ratio
SVM support vector machine
NN neural network
PVT position, velocity, and time
PRN pseudo-random noise
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