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Prediction and real-time compensation
of qubit decoherence via machine learning
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The wide-ranging adoption of quantum technologies requires practical, high-performance

advances in our ability to maintain quantum coherence while facing the challenge of state

collapse under measurement. Here we use techniques from control theory and machine

learning to predict the future evolution of a qubit’s state; we deploy this information to

suppress stochastic, semiclassical decoherence, even when access to measurements is

limited. First, we implement a time-division multiplexed approach, interleaving measurement

periods with periods of unsupervised but stabilised operation during which qubits are

available, for example, in quantum information experiments. Second, we employ predictive

feedback during sequential but time delayed measurements to reduce the Dick effect as

encountered in passive frequency standards. Both experiments demonstrate significant

improvements in qubit-phase stability over ‘traditional’ measurement-based feedback

approaches by exploiting time domain correlations in the noise processes. This technique

requires no additional hardware and is applicable to all two-level quantum systems where

projective measurements are possible.
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T
he applications of quantum-enabled technologies are
compelling and already demonstrating significant impacts,
especially in the realm of sensing1–5 and metrology6.

However, in nearly all applications the phenomenon of
decoherence—effectively the randomization of a quantum
system’s state by the environment—limits the viability of
quantum technologies. In the case of qubits, fundamental
building blocks in many applications, the net result is that the
useful lifetime of the qubit state is shortened, reducing their
deployability for quantum information7, quantum simulation8–13

or other applications. Methodologies for stabilising qubits against
decoherence represent a critical need in quantum technology.

Control engineering14 techniques are emerging as a promising
alternative to engineering passive robustness at the device level in
realising stable quantum systems15–18. Beyond widely adopted
open-loop control18–20, a qubit subjected to stochastic evolution
of its phase degree of freedom—dephasing (inset Fig. 1a)—can be
stabilised by cyclically performing measurements on the qubit
and then compensating for the measured phase evolution in a
feedback loop21–23. However, so far, feedback control24–28

has largely been limited by state-collapse under projective
measurement, mandating access to weak measurements22 or
ancilla states29, or largely sacrificing useful quantum coherence in
the controlled system23.

Our objective is to enhance the performance of incoherent
feedback stabilization (that is, using only classical information) of
a qubit experiencing dephasing while also relaxing the need for
projective measurements. Our approach is based on predictive
control; a variety of techniques in filtering14,30–32 and machine
learning33 allow the estimation of future state evolution based on
past measurement outcomes of the system. Here, we deploy a well
established algorithm from machine learning to learn about a
random dephasing process affecting a qubit, and then predict the
impact of future dephasing based only on standard projective
measurements. We use this information to perform real-time
stabilization of the qubit state during periods in which the
qubit is unsupervised but still subject to stochastic dephasing. Our
method exploits the presence of commonly encountered temporal
correlations in the dephasing process34 to allow future prediction;
no deterministic model of qubit state evolution is required. To the
best of our knowledge, despite its ubiquity in classical settings,
predictive control has not been employed in the context of
quantum-coherent technologies.

Results
Supervised learning based on qubit-phase measurements. In
the language of machine learning, we consider the qubit’s
instantaneous phase which we would like to predict at a future
discretized time, tk, as labels, fP(tk), and an arbitrary number, n,
of previous measurements, fi

M (indexed by i and obtained by any
appropriate method), as their associated features. We then cal-
culate a linear combination of the features with optimized
weighting coefficients, w¼ {w}i,k, as a prediction of the label,
fPðtkÞ ¼ w0;kþ

Pn
i¼1 wi;kf

M
i . Based on measured features, the

entries of w are optimized for each time step, tk, reflecting the
time-varying correlations in the dephasing process, captured
through the power spectrum.

We demonstrate prediction of a qubit’s state subject to
stochastic dephasing by performing experiments using the
ground-state hyperfine states, |F¼ 0, mF¼ 0i and |F¼ 1, mF¼ 0i,
in trapped 171Ybþ ions as a qubit with transition frequency near
12.6 GHz. A coherent superposition of the qubit states in the
measurement basis induced by microwave control35 evolves freely
under the influence of an engineered dephasing interaction
larger than any intrinsic noise in our experimental system

(Supplementary Methods). In general we work in a regime
where the noise evolves slowly during a single measurement
period TM, but we allow the rate at which measurements of qubit-
phase evolution are taken—the sampling frequency os—to vary
relative to the highest frequency in the noise power spectrum, oc

(c.f. Fig. 3f). The dephasing noise processes presented here are all
derived from a flat-top frequency power spectrum with
characteristic cut-off at oc. More complex spectra are discussed
in Supplementary Discussion and demonstrate similar perfor-
mance.

An important aspect of our approach is that measurements
providing data serving as features may be performed through any
suitable protocol. For instance, performing a series of p projective
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Figure 1 | Prediction of the future evolution of a qubit subject to

stochastic dephasing. (a) The average, random phase evolution of the

qubit during each measurement under the influence of an engineered noise

trace, fA, is probed via Ramsey spectroscopy and a projective

measurement performed before the qubit state is reinitialised and the

process repeated (Supplementary Methods). Time is represented in

discrete increments of Dt, approximately corresponding to the

measurement time. Values of tkr0 refer to past measurements used to

make predictions and tk40 refer to future predictions. Noise possesses a

quasi-white power spectral density up to frequency cut-off oc, which we

sample at os¼40oc. Future qubit evolution is calculated offline based on

these measurements. Data labelled ‘n¼ 1*’ correspond to traditional

feedback (no prediction). (inset) Bloch sphere representation of

randomization of qubit phase. (b) Correlation between fM(tk) and fA(tk)

represented as a scatter plot for all measurements in this data set. Ellipses

are guides to the eye calculated to have major and minor axis determined

by the eigenvectors of the data’s covariance matrix. The Pearson product-

moment correlation coefficient, r, is calculated to quantify the quality of the

measurements—here 97%. (c) Normalized r.m.s. errors Êr:m:s: between

fA(tk) and fP(tk) as a function of past measurements and discrete steps

forward in time, averaged over all elements of the data set. Data are

normalized to the lowest overall value in the field and are presented using a

logarithmic scale to highlight differences over a broad dynamic range. The

first row corresponds to traditional feedback.
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measurements on a single qubit to obtain ensemble-averaged
information simply sets the scale of the measurement period,

TM-pTð1ÞM , with Tð1ÞM the duration of a single experiment. Here,
we employ a projective measurement that captures statistical
information through a spatial ensemble. The impact of such
differences is explicitly captured in the sampling frequency of the
measurement process.

Forward prediction of stochastic qubit-phase evolution. We
begin by accumulating a series of projective measurements of the
qubit’s phase under engineered dephasing. These serve as training
data for the algorithm to optimize the coefficients in w. We then
perform another series of measurements (shown, Fig. 1a) under
application of a different noise process possessing similar

statistical characteristics as used in acquiring the training data.
This approach ensures that our estimates of prediction accuracy
are conservative and exhibit reasonable model robustness and
generality. Performing the learning algorithm on a single data set
can enhance performance of the prediction algorithm but intro-
duces extreme sensitivity to the input model, ultimately reducing
prediction efficacy in the presence of variations in the detailed
form of the noise.

An example engineered noise trace in time with overlaid
measurement outcomes, fM, is depicted in Fig. 1a, with 97%
correlation between fM and the applied phase fA (Fig. 1b).
Beyond time t0 we predict future labels of qubit-phase evolution
fP(tk), up to step t150 using a variable number, n, of past
measurements and the trained coefficients in w. Calculated
predictions approximate fA well, reproducing key features
including inflection points, maxima and minima as a function
of tk. Our knowledge of the noise is used exclusively for
quantitative evaluation of prediction efficacy—it does not enter
into the machine-learning algorithm in any form.

Prediction accuracy increases with n, as the algorithm learns
more about the temporal correlations in fA. For values of k]n,
corresponding to prediction times exceeding the range over
which the algorithm possesses knowledge about the noise
features, the prediction quality diminishes. In addition, over very
large values of tk the prediction tends towards the mean of the
noise. Comparing predictive estimation to a ‘traditional feedback’
model, in which future estimates are based simply on the last
measured value fM(t0), the algorithm shows a distinct advantage
as it allows for temporal evolution of the noise in the future.

The quantitative benefits of predictive estimation relative to
traditional feedback, and the large tk behaviour of the predictive
algorithm are succinctly captured in the root-mean-square
(r.m.s.) prediction error averaged over the entire data set, Er:m:s:,
and calculated as a function of tk and n (Fig. 1c). This
demonstrates that even over a large ensemble of predictions the
algorithm’s advantages remain robust. We now move on to
provide examples of real-time qubit stabilization in which the
incorporation of future state prediction shows significant
advantages over existing techniques.

Time-division multiplexed decoherence suppression. As
described above, a reliance on feedback involving frequent
projective measurements renders a qubit effectively useless for
quantum information or other applications, but omission of
stabilization techniques in the presence of dephasing noise may
lead to phase errors and eventually to total decoherence. To
mitigate the effect of dephasing, we tailor an approach in which
we temporally multiplex the necessary measurement and actua-
tion operations in distinct probe and stabilization periods
respectively (Fig. 2a,b). During the probe period, a fixed number
of measurements are taken and processed in real time. From these
measurement outcomes the algorithm produces a prediction of
the future time-dependent evolution of the noise during the
subsequent stabilization period up to some tk; the qubit is dedi-
cated exclusively to measurement of the dephasing process in the
probe period. During the stabilization period, corrections are
applied during each discrete time step to compensate the pre-
dicted stochastic phase evolution, but no measurements are
conducted; this permits periods of unsupervised evolution during
which the qubit is useful and stabilised against dephasing.

As an example we set the objective of maintaining zero net
qubit-phase accumulation (in the rotating frame) during each
time step of the stabilization period such that arbitrary high-
fidelity operations may be conducted on the qubit; here we apply
only the identity. Diagnostic measurements are performed after a
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Figure 2 | Experimental time-division multiplexing for qubit stabilization

against dephasing. (a) Schematics showing the key aspects of the

implementation. Noise is continuously injected into the system.

Measurements are taken up to t0 and processed in real-time to predict

future evolution of the qubit phase many time steps ahead, fP(tk). From t0

measurement-free compensation based on fP(tk) is applied during each

discrete time step (light green arrows) up to tk when a diagnostic

measurement is performed to verify the accuracy of the prediction/

correction process. Full details appear in Supplementary Methods.

(b) Probe and stabilization cycles of a time-division multiplexed

measurement using n¼ 100 past measurements and prediction/correction

up to k¼ 50 time steps ahead. Green shading indicates reduced

residual phase errors. (c) r.m.s. results from time-division multiplexed

measurements for different tk and n compared against traditional feedback

and averaged over 50 unique stabilization periods. Data are normalized to

the r.m.s. of fA indicated by the horizontal dashed line. The other dotted/

dashed lines are simulations. Markers represent the averaged results of

diagnostic measurements. For these data os¼40oc.
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variable number of corrections to demonstrate the efficacy of this
approach but would not ordinarily be required. Two representa-
tive S probe/stabilization cycles are displayed in Fig. 2b showing a
reduction in integrated phase error of about 70% after a

stabilization delay of t50 during the first cycle and a reduction
of about 85% during the second. These improvements are
partially limited by measurement fidelity, as illustrated in the
ensemble-averaged data (Fig. 2c). Predictive compensation in all
tested regimes is superior to corrections based only on traditional
feedback down to measurement fidelity limits. Compared against
numerical simulations we see that for small tk the algorithm can
provide large relative gains.

Predictive estimation inside a periodic feedback loop. In a
second application we employ real-time predictive control in a
metrological context. Qubits realised in atoms are frequently used
as stable references against which local oscillators (LOs) may be
disciplined36. However, stochastic evolution of the LO frequency
between interrogations leads to imperfect corrections in the
feedback loop. This scenario is commonly encountered when
classical processing, actuation and system reinitialisation
introduce dead time, producing an effective lag in the feedback
loop which degrades the long-term stability of the locked
oscillator37. The impact of rapid fluctuations in the LO
frequency relative to dead time is generally referred to as the
Dick effect38, and represents a significant limiting phenomenon
in passive frequency standards using atomic references. The
correspondence between LO-induced instabilities in frequency
references and dephasing in qubits39 thus invites the application
of predictive control in a setting where periodic interrogation and
projective measurement are native to the feedback loops used in
precision frequency metrology.

The usefulness of predictive estimation in improving correc-
tion accuracy inside a feedback loop is demonstrated in Fig. 3b–d,
where we plot the predicted phase fP(tk) (based on two different
techniques) against the applied phase error fA(tk). A prediction
with unity correlation to the applied noise would form a
diagonal line along fP¼fA (similar to Fig. 1b), while imperfect
predictions—hence imperfect corrections—result in a dispersion
of points around this line in an ellipse.

We vary the sampling frequencies os as a proxy for
introducing a variable dead time in the feedback loop
(Supplementary Discussion). In a regime where the LO-induced
dephasing process evolves slowly, quantified as oscoc, both
fM(t0) and the predicted phase fP(tk) show positive correlation
to fA(tk) (Fig. 3b). As we decrease os, noise evolution during the
dead time leads to diminishing correlation between the prediction
and actual noise, causing the ellipses to rotate and broaden—a
manifestation of the Dick effect.

Predictive estimates are compared with the traditional feedback
model described above. For os approaching the Nyquist limit we
observe that the traditional prediction can become anticorrelated
with the rapidly evolving applied noise (blue ellipse, Fig. 3d),
which in real-world applications would lead to an unstable system
under feedback. By contrast, using optimized predictions, the
decrease in correlation is much slower and the machine-learning
algorithm prevents the prediction from ever becoming antic-
orrelated with the applied dephasing noise. In circumstances
tested we always find the optimal prediction correlation rP4rT

for traditional feedback. Corrections used to discipline the qubit
or LO based on predictive estimation can therefore possess
enhanced average accuracy relative to traditional feedback.

We now implement real-time evaluation of fP(tk) inside a
feedback loop, demonstrating the ability to improve the
individual corrections and ultimately achieve improved long-
term stability of the locked qubit. In our experiment we set
n¼ 20, calculate fP(tk) on the fly, and cyclically correct based on
these predictions (Fig. 3a), again comparing against traditional
feedback. The long-term stability achieved under both methods is
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Figure 3 | Experimental comparison of long-term stabilization using

traditional and predictive feedback. (a) Schematics showing the key

aspects of our cyclic feedback implementation using overlapping

measurements. (b–d) Demonstration of feedback accuracy for different

sampling frequencies os quantified in units of oc, presented through

correlation plots (c.f. Fig. 1c) for traditional feedback (blue) and prediction

(magenta). Data presented are derived from Fig. 1a. (e) Measured sample

variance for various protocols as a function of the number of cycles. Data

are normalized to the sample variance of the uncorrected (free-running)

signal at 1,000 samples. Each line represents data taken for one particular

noise realization and thick lines represent the ensemble average. The inset

shows an example suppression of variance over measurement outcomes

using predictive against traditional feedback (normalized to the noise

amplitude). (f) Sample variance at N¼ 1,000 as a function of sampling

frequency os in units of oc, normalized to the sample variance of the

uncorrected signal. The measurement time is fixed and os varied through

introduction of dead time between measurements. Dotted lines display

simulations and markers the measurement results averaged over ten noise

realizations. Error bars represent the s.d. of the mean and the shaded areas

show the maximum spread of outcomes. For fixed noise parameters varying

os serves as a proxy for changing the ratio of T � 1
M =oc (Supplementary

Discussion). Simulations and measurements in all panels use n¼ 20.
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calculated via the sample variance40 over a variable number of
feedback cycles (Fig. 3e).

Over the range of dead times explored experimentally, the use
of optimized predictive feedback, in which future estimates are
updated as new measurements are acquired in real time, yields
net enhancements over the free-running LO (Fig. 3e,f). This
includes regimes near the Nyquist limit where rapid evolution of
the noise can result in feedback-induced instability as in Fig. 3d.
Over most of this range and for the noise parameters we have
employed, performance gains over traditional feedback are B2�
using optimized predictive feedback—a metrologically significant
improvement using only enhanced software in the stabilization.
Similar performance enhancements have been observed for a
wide range of noise spectra and parameters (Supplementary
Discussion).

Predictive estimation applied to intrinsic system noise. Finally,
with quantitative evaluation of these techniques in hand using
engineered noise, we move on to a study of the intrinsic
dephasing noise in our system, which arises due to a combination
of LO phase noise and magnetic field fluctuations. We perform
thousands of sequential projective measurements on the
free-running qubit–LO system and process predictions offline.
The spectrum of measured fluctuations combines a 1/f2 type
low-frequency tail with an approximately white plateau, resulting
in significant spectral weight near the measurement cycle time.
We perform an analysis similar to that presented in Fig. 1, with
prediction accuracy quantified using the r.m.s. error between
predictions and the future measurement outcomes as a function
of tk (Fig. 4a).

Our machine-learning algorithm enhances the prediction of
future qubit evolution by B30% relative to the r.m.s. error of the
uncorrected measurements. We achieve similar performance
gains relative to both traditional feedback and the free-running
system in calculated sample variance over thousands of correction
cycles based on predicted qubit phase, Fig. 4b. In this case the
rapid evolution of the noise causes traditional feedback to
produce a larger sample variance than free evolution—a situation
similar to that experienced in Fig. 3d. The calculated performance
enhancements of our method on the intrinsic system noise are
significant and show that our algorithm possesses the capability

to improve the stability against the noise background in our
system.

Discussion
In this work we have demonstrated the ability to deploy machine-
learning techniques to predict and pre-emptively compensate for
stochastic qubit dephasing. By exploiting temporal correlations in
noise processes, we are able to suppress dephasing during periods
when probing the qubit state is not possible, even though we have
no deterministic model of the qubit’s evolution. Implementing
this approach requires neither additional quantum resources nor
extra experimental hardware. Instead we rely on software-based
machine-learning techniques, which extract optimal performance
from information that would have already been collected during
common experimental implementations. It has been shown
numerically that it is possible to implement an analytical solution
to maximally exploit noise correlations captured through the
noise power spectrum41. However in our experimental
demonstration the ease of implementation lends itself to use for
large values of k and n where prediction is extended far into the
future and the computational requirement of large matrix
inversions make analytic techniques impractical. In addition,
deviations from the idealization of noise characteristics
represented by use of a simple power spectral density, as well
as correlations appearing in the measurement process, are easily
captured by the machine-learning algorithm but invisible to such
analytic approaches.

The capability to suppress errors in quantum systems under-
going stochastic evolution has direct implications for the
metrology and quantum information communities. In particular
the ability to suppress the magnitude of residual dephasing errors
makes this technique an attractive complement to open-loop
dynamic error suppression for quantum information. Any
reduction in the strength of the effective noise experienced by
the qubit exponentially improves the fidelity of an operation
implemented using dynamic error suppression20. Even in the
limit of quasi-static noise, reducing the magnitude of the
dephasing error experienced during a dynamically protected
operation will improve the ultimate fidelity achievable in a
nontrivial quantum logic operation42. The complementarity
between open- and closed-loop stabilization is a common

100

r.m.s.
0.75 1.00a b

75

50

25

1*

1 5 10

Time forward tk (Δt) Past measurements, n

10–4 10–2

�/2� (Hz)

S
(�

) 
(r

ad
2 )

100
100

104

108

15 20

1.2

1.0

0.8

0.6
0 20 40 60 80 100

N
or

m
al

iz
ed

 S
2 5,

00
0

P
as

t m
ea

su
re

m
en

ts
, n

Trad. feedback Predictive feedback

Figure 4 | Application of predictive qubit state estimation to intrinsic system noise. (a) r.m.s. errors between predictions, fP and actual values f(A) for

various numbers of past measurements and discrete steps forward in time, averaged over the whole set of validation data. The r.m.s. values are normalized

to the r.m.s.d. of the uncorrected data from zero. The bottom row (1*) corresponds to traditional feedback. (b) Sample variance of the corrected

measurements averaged over 5,000 cycles, as a function of past measurements used for prediction, normalized to the sample variance of the uncorrected

system. The expected sample variance obtained by performing traditional feedback is added for comparison. Data are split into two subsets, where the first

70% serve for training purposes and the remaining 30% are used for validation. (Inset) Power spectrum of a series of projective measurements on the free-

running qubit–LO system. The data is overlaid with a smoothed version to visualize the general trend. The maximum frequency in the spectrum

corresponds to our sampling frequency and is about 1.7 Hz.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14106 ARTICLE

NATURE COMMUNICATIONS | 8:14106 | DOI: 10.1038/ncomms14106 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


theme in control engineering and translates well to the current
setting. Future experiments will involve an expansion to a
greater variety of machine-learning algorithms for system
characterization and stabilization, and treatment of more
complex control scenarios with non-commuting noise terms in
the qubit Hamiltonian, nonlinearities in the control, and use of
various measurement bases.

Data availability. Data published in this article and the computer
code used for simulation is available from the authors.
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