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ABSTRACT: COVID-19 is still placing a heavy health and
financial burden worldwide. Impairment in patient screening and
risk management plays a fundamental role on how governments
and authorities are directing resources, planning reopening, as well
as sanitary countermeasures, especially in regions where poverty is
a major component in the equation. An efficient diagnostic method
must be highly accurate, while having a cost-effective profile. We
combined a machine learning-based algorithm with mass
spectrometry to create an expeditious platform that discriminate
COVID-19 in plasma samples within minutes, while also providing
tools for risk assessment, to assist healthcare professionals in
patient management and decision-making. A cross-sectional study
enrolled 815 patients (442 COVID-19, 350 controls and 23 COVID-19 suspicious) from three Brazilian epicenters from April to
July 2020. We were able to elect and identify 19 molecules related to the disease’s pathophysiology and several discriminating
features to patient’s health-related outcomes. The method applied for COVID-19 diagnosis showed specificity >96% and sensitivity
>83%, and specificity >80% and sensitivity >85% during risk assessment, both from blinded data. Our method introduced a new
approach for COVID-19 screening, providing the indirect detection of infection through metabolites and contextualizing the findings
with the disease’s pathophysiology. The pairwise analysis of biomarkers brought robustness to the model developed using machine
learning algorithms, transforming this screening approach in a tool with great potential for real-world application.

Coronaviruses (CoVs) are enveloped, single-stranded
positive RNA viruses from the Coronaviridae family.1

The recent pandemic, caused by SARS-CoV-2 and denomi-
nated COVID-19, opened discussions about measures to
control disease spread, such as social distancing and population
screening.2 Currently, available tests are based on the direct
detection of SARS-CoV-2 virus through antigens or RNA
amplification (RT-PCR), serological tests, and the combina-
tion of RT-PCR and chest CT (computed-tomography). The
development of medical decision-making tools for patient’s risk
stratification and management is aligned with COVID-19
testing urgency. Even though the basis for the standard
procedures is well-established, there are increased concerns
about test’s sensitivity and specificity achieved on the field,
time and costs associated with procedures, reagents and
trained personnel availability, and the testing window.3−5

Difficulties for an accurate diagnosis of SARS-CoV-2 and
patient’s risk categorization are consequences of COVID-19
complexity. SARS-CoV-2 infection pathophysiology reflects in
a broad spectrum of patient symptoms, ranging from mild flu-
like manifestations to life-threatening acute respiratory distress
syndrome (ARDS), vascular dysfunction, and sepsis.2,6

Changes in lipid homeostasis, a common characteristic of
viral infections, have been associated with SARS-CoV-2
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pathology.7−9 Lipidomic and metabolomic profiling of plasma
samples indicate that exosomes enriched with monosialodi-
hexosyl ganglioside (GM3) are associated with the severity of
COVID-19.7 Moreover, Fan et al. (2020) proposed the
relationship between progressive decrease in serum low-density
lipoprotein cholesterol (LDL-C) and cholesterol within
deceased patients.8 Individual susceptibility to COVID-19
symptoms is not fully understood, thereby hampering any
potential outcome prediction.
Panels of biomarkers that translate disease pathophysiology

and sample profiling contribute to SARS-CoV-2 detection and
may be proposed through “omics” techniques.7,9−11 The
current trend in associating artificial intelligence-explained
algorithms and “omics” techniques has yielded platforms
involving machine learning (ML) to analyze mass spectrom-
etry (MS) data, aiming at biomarker identification of diseases,
including COVID-19 severity assessment.9,11,12 However,
applying traditional untargeted mass spectrometry for diag-
nostic purposes remains laborious.12,13

Considering that the testing tool for COVID-19 introduced
in this contribution is based on metabolites from actual
patients, it may be considered a new approach for SARS-CoV-
2 screening. The proposed end-to-end mass spectrometry and
machine learning combination aims at predictively identifying
and modeling putative biomarkers for COVID-19 identifica-
tion, risk assessment and low-risk discrimination from
noninfected individuals. The introduced pairwise features
approach is critical for effective implementation of untargeted
metabolomics on a real-world setting, adding robustness to the
model in spite of variations in the input data. Therefore, using
the potential of MS-ML techniques in COVID-19 fighting,14

we enrolled a cohort of 815 individuals for the development
and testing of this independent system that simultaneously
functions as an automated screening test using plasma samples,
and provides metabolic information related to the presence
and severity risk for the infection.

■ EXPERIMENTAL SECTION
Study Design and Patient Recruitment. Participants

were recruited from selected sites with proven expertise in
research from April to July, 2020 to increase data variability:
Hospital das Clinicas, Faculdade de Medicina, Universidade de
Saõ Paulo (HCFMUSP), Saõ Paulo, Brazil; Sumare ́ State
Hospital and Paulińia Municipal Hospital localized in Saõ
Paulo state inland, Brazil; and Hospital Delphina Rinaldi Abdel
Aziz, Manaus, Amazonas State, Brazil. The study was
conducted according to principles expressed in Declaration
of Helsinki and approved by local Ethics Committees (CAAE
32077020.6.0000.0005, CAAE 31049320.7.1001.5404 and
CAAE 30299620.7.0000.0068). All participants provided
informed consent before sample collection. Inclusion criteria
for COVID-19 group (CV) were adult patients with one or
more clinical symptoms of SARS-CoV-2 infection in the last 7
days (fever, dry cough, malaise and/or dyspnea) and positive
SARS-CoV-2 RT-PCR in nasopharyngeal samples, following
local hospital testing protocols based on Charite ́ and WHO
recommendations.15 Control (CT) was formed by sympto-
matic RT-PCR-negative participants, also discarded by clinical
and tomographic picture, and asymptomatic volunteers.
Patients with suspicious COVID-19 and negative RT-PCR
were separated in a group for posterior assessment.
In this study, 815 participants were included. Gender, age,

and fasting restrictions were not applied to simulate real-world

conditions and to provide results with no patient bias. Table 1
shows detailed COVID-19 and suspicious patients’ demo-
graphic information and Figure 1, a flowchart of study design.

COVID-19 Diagnostic Modeling (M1). Diagnosis model
(M1) was trained, validated, and tested using CV group
composed of 548 plasma samples from 442 symptomatic
SARS-CoV-2 confirmed cases upon hospital arrival, and 106
samples representing a second collection from hospitalized
patients (mean 9.6 days, SD 3.8). CT group was formed by 37
symptomatic individuals with COVID-19 discarded and 313
asymptomatic controls, totaling 350 individuals, with median
age of 50 years-old (IQR 32−72) and 64.9% female. Pooled
samples (n = 184) were introduced to the data set to increase
method sensitivity: 79 pooled CT, 5 pooled CV, 50 samples
with 1:5 (CV:CT) and 50 with 1:10 (CV:CT) dilutions.
Positivity rate of 23 suspicious individuals was assessed using
this model.

Risk Assessment and Mild Symptoms Discrimination
Modeling. Samples from 437 SARS-CoV-2 positive patients
with reported outcome were divided into severe cases (n =
191) and mild cases (n = 246). Severe cases were categorized
by required hospitalization for more than 10 days with
recovery as outcome, or invasive mechanical ventilation, or
deceased; mild group consisted of those with moderate
(hospitalization lower than 10 day with recovery) and mild
symptoms (homecare). Severe cases were compared against
mild group for classification and determination of risk
biomarkers (M2). The method sensitivity and specificity to
discriminate low-risk patients were also accessed comparing
controls (CT = 350) against mild group in a third machine
learning model (M3).

Table 1. Characteristics of COVID-19 Confirmed and
Suspicious Patients

characteristics CV = 442
suspiciou
s = 23

age, years, mean (SD) 50 (15.4) 56 (13.6)
female sex, N (%) 186 (42.1) 6 (26.1)
Severity, N (%)
homecare 189 (42.8) 1 (4.3)
hospitalization 253 (57.2) 22 (95.7)
≤10 days 125 (49.4) 8 (34.8)
>10 days 123 (48.6) 15 (65.2)
transferred 5 (2.0) -
in-hospital death 123 (49.6) 11 (47.8)
onset of symptoms to enrolment, days, mean
(SD)

10·6 (6.3)a 5.5 (3.5)

Respiratory Support, N (%)
no oxygen received 213 (48.2) 2 (8.7)
oxygen 76 (17.2) 4 (17.4)
invasive mechanical ventilation 153 (34.6) 17 (73.9)
Comorbidities, N (%)
diabetes 115 (26.4)b 8 (34.8)
hypertension 176 (40.5)b 12 (52.2)
obesity 113 (29.9)c 2 (8.7)
cardiomyopathy 35 (8.1)d 5 (21.7)
respiratory diseases 37 (8.5)b 8 (34.8)
chronic renal diseases 13 (3.0)c 3 (13.0)
chronic hepatic diseases 15 (34.6)c -
HIV 6 (13.9)d 1 (4.2)
aN = 431. bN = 435. cN = 378. dN = 432. eN = 433.
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Mass Spectrometry Sample Preparation. Plasma
samples from peripheral venous blood were carefully handled
due biohazard, and frozen at −80 °C until analysis. A 20 μL
aliquot of plasma was diluted in 200 μL of tetrahydrofuran,
followed by homogenization for 30 s at room temperature.
Thus, 780 μL of methanol was added followed by
homogenization for 30 s and centrifugation for 5 min, 3400
rpm at 4 °C. An aliquot of 5 μL of the supernatant was diluted
in 495 μL of methanol and positively ionized by the addition of
formic acid (0.1% final concentration) prior analysis.
Mass Spectrometry Analysis and Biomarker Elucida-

tion. All samples were randomized for data acquisition intra-
and interdaily and directly infused in a HESI-Q Exactive
Orbitrap-MS (Thermo Scientific, Bremen, Germany) with
140 000 FWHM of mass resolution on positive ion mode. MS
parameters were set as follows:m/z range 150−1700, 10 mass
spectral acquisition per sample, flow rate 10 μL/min, sheath
gas flow rate 5 units, capillary temperature 320 °C, aux gas
heater temperature 33 °C, spray voltage 3.70 kV, automatic
gain control (AGC) at 1 × 106, S-lens RF level 50, and
injection time <2 ms. After ML modeling, the presence of each
discriminant m/z determined by the algorithm was confirmed
in mass spectra using Xcalibur 3.0 software (Thermo, Bremen,

Germany). Molecule identity was proposed using METLIN
(https://metlin.scripps.edu) database and literature search
with mass accuracy ≤5 ppm and confirmed through MSn

experiments using an ESI-LTQ XL (Thermos Scientific,
Bremen, Germany) with collision energy ranging from 20 to
50 eV (He) and Mass Frontier software (Thermos Scientific,
Bremen, Germany) for fragmentation modeling. Biomarkers
pathway and meaning were attributed based on Kegg database
(https://www.genome.jp/kegg/) and scientific literature.

Machine Learning Data Analysis. The MS-ML plat-
form16 consists of two primary data analysis phases. The first
phase comprises the development of a ML model using a
classification algorithm over MS data to determine potential
m/z biomarkers. The second phase entails a deployed
prediction model for diagnosing and determining risk, used
for individuals screening in the field (blind data), as described
in Figure 2. First, mass spectrometric data is preprocessed for
ion annotation (intensity, width, resolution, and m/z),
alignment, normalization, and denoising.17 Three partitions
of data are segregated according to the best practices of ML,
consisting of fitting (training and validation), test, and blind
test partitions. The final classification results are reported using
the blind test (see Figure 2a). For the COVID-19 model (M1),

Figure 1. Study design flowchart. Abbreviations: Hosp, hospitalization; IMV, invasive mechanical ventilation.

Figure 2. End to end process for putative biomarkers determination and diagnosis test generation. (a) MS data acquisition and preparation; (b)
Sequential steps of ML data analysis and metabolomics biomarkers validation.
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a second blind test using suspicious cases was performed to
evaluate the positivity rate between SARS-CoV-2 RT-PCR
negative patients. The most discriminant features are
determined and validated using the ML algorithms (ADA
tree boosting (ADA), gradient tree boosting (GDB), random
forest (RF), and extreme random forest (XRF), partial least
squares (PLS), and support-vector machines (SVM)).18−20

Applied recursive fitting to training and validation data (Figure
2b), with the annotation of averaging and computing the
related standard deviation of selected performance metrics is
defined in Table 2 for each round of validation (optimized
through accuracy, F1score, MCC).

After the observation of performance metrics, the discrim-
inant features are evaluated through ΔJ importance (see Table
2) and selected for metabolomics biomarkers identification.
The marker importance is given by a cumulative distribution

function (CDF) analysis: for a specific m/z, a CDF of the
feature values for the negative samples (CT group) is
compared with the CDF of positive samples (CV group)
used in the fitting partition using first the Kolmogorov−
Smirnov (KS-test) two samples equality hypothesis test to
determine whether those distributions are different (failed on
equality hypothesis). Then the ΔJ metric is used to determine
if the features contribute negatively ΔJ < 0, or positively ΔJ > 0
for the disease. Features are discarded if CDFs are equal
according to KS-test or ΔJ = 0.21 The selected discriminant
biomarkers undergo a second round of training and validation
with the development software (Figure 2b). As putative
biomarkers are validated via metabolomics, they are submitted
to pairwise model creation, where the relationship between the
biomarker’s intensities are used instead of their relative
abundance solely provided in each spectrum, leading to an
applied untargeted metabolomics diagnosis software. Features
correlated to the selected biomarkers through the correlation
index (Table 2) r ≥ 80% were also identified. Detailed
information on ML method is displayed in the Supporting
Information (SI).

■ RESULTS AND DISCUSSION

COVID-19 Testing Through MS-ML Platform: Model-
ing and Performance. The full data set was segregated as
shown in Table 3 for the fitting process (shuffled in 10 rounds
of training and validation), and testing. The novel sequential
processing of metabolomics data with ML algorithms resulted
in a predictive model used for the diagnosis and risk
assessment in the field (blind test). Table 4 shows metric
results for the predictive models (automated diagnosis (M1),
risk assessment (M2), and low-risk discrimination (M3)) using
pairwise features. Features selected through recursive fitting
using MCC as metric are used to project groups separation
(Figure 3). During this process, discriminant features are
evaluated through ΔJ importance, with posterior identification
into molecules by metabolomics approach. The best final
results were obtained with gradient tree boosting (GDB) to
COVID-19 automated diagnosis with 96.0% of specificity and
83.1% of sensitivity. COVID-19 suspicious patients with RT-
PCR negative results were assessed using the final COVID-19
classifier, resulting in a positivity rate of 78.3%, which may
indicate the presence of false negative among RT-PCR results.
The best results for risk assessment were obtained with ADA
Boosting algorithm with 80.3% of specificity and 85.4% of
sensitivity, from blind test.
To assess model specificity and sensitivity, we compared

selected moderate and mild symptoms cases with noninfected
controls (M3) with ADA boosting, which resulted in the
metrics of 92.9% of specificity and 91.3% of sensitivity from
blinded data. Supporting data from validation metrics obtained

Table 2. Statistical Metrics Definition to Evaluate
Classification Resultsa

metric formula

sensitivity (SEN) TP/(TP+FN)
specificity (SPE) TN/(TN+FP)
precision (PRE) TP/(TP+FP)
accuracy (ACC) (SEN+SPE)/2
F1-score (F 1s) 2·PRE·SEN/(PRE+SEN)
Matthews’ Correlation
Coefficient (MCC)

((TP·TN)-(FP·FN))/sqrt((TP+FP)·(TP+FN)·
(TN+FP)·(TN+FN))

ΔJ
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aAbbreviations: TP = true positives; TN = true negatives; FP = false
positives; FN = false negatives; sqrt = square root; A = set of all
vectors; xj

i = value of variable j of vector i in A, xj
i ∈ R ; yi = label of

vector i in A, yi = [0,1]; Xj set of all values of variable j in A; AQ = set
of all vectors of negative samples in A, i.e., labeled yQ = 0; mj

Q =
median of values of variable j for all vectors in AQ; Q(xj) = the
cumulative probability function (CDF) of values xj ∈ Xj in AQ; AP =
set of all vectors of positive samples in A, i.e., labeled yP = 1; mj

P =
median of values of variable j for all vectors in AP; P(xj) = the
cumulative probability function (CDF) of values xj ∈ Xj in A

P; t and u
= features.

Table 3. Dataset Subdivisions for Model Fitting (Training and Validation), Testing and Blind Testa

model COVID-19 diagnosis (M1) (n = 1082) risk assessment (M2) (n = 437) low-risk discrimination (M3) (n = 595)

class positive negative subtotal severe mild subtotal - mild negative subtotal

training 260 231 491 (45) 94 104 198 (45) 113 140 253 (13)
validation 105 95 200 (18) 37 43 80 (18) 34 42 76 (13)
testing 57 53 110 (10) 19 23 42 (10) 23 28 51 (9)
blind test 231 50 281 (26) 41 76 117 (27) 76 139 215 (36)

aNumbers correspond to individual (N) average and percentages in parentheses.
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Table 4. Performance Metrics Using Pairwise Features in 10 Validation Tests, Final Development Testing and Deployed
Software Blind Testa

Model COVID-19 diagnosis (M1) Risk assessment (M2) Low-risk discrimination (M3)

Algorithm GDB ADA ADA

Data set Validation Test Blind Test Validation Test Blind Test Validation Test Blind Test

Vector length 39 39 39 32 32 32 29 29 29
# of Estimators 260 (3) 256 256 260 (3) 256 256 260 (3) 256 256
TN 90 (3) 50 48 38 (2) 21 61 40 (2) 26 121
FP 5 (2) 3 2 5 (2) 2 15 2 (1) 2 18
FN 4 (2) 3 39 4 (2) 4 6 3 (1) 2 4
TP 101 (4) 54 192 33 (3) 15 35 31 (2) 21 72
Accuracy (%) 95.6 (1.1) 94.5 89.6 88.7 (3.2) 85.1 82.8 93.4 (1.8) 92.1 90.9
Sensitivity (%) 95.9 (1.8) 94.7 83.1 88.1 (4.6) 79.0 85.4 91.8 (3.1) 91.3 94.7
Specificity (%) 95.2 (2.1) 94.3 96.0 89.3 (4.7) 91.3 80.3 95.0 (2.4) 92.9 87.1
Precision (%) 95.3 (1.9) 94.4 95.4 89.3 (4.2) 90.1 81.2 94.9 (2.3) 92.7 88.0
F1 Score (%) 95.6 (1.1) 94.6 88.8 88.6 (3.2) 84.2 83.2 93.3 (1.9) 92.0 91.2
MCC 0.91 (0.02) 0.89 0.80 0.78 (0.06) 0.71 0.66 0.87 (0.04) 0.84 0.82

aNumbers correspond to individual’s classification average and standard deviations in parentheses. Abbreviations: ADA, ADA Boosting; GDB,
gradient tree boosting; FN, false negative; FP, false positive; TN, true negative; TP, true positive; MCC, Mathew’s Correlation Coefficient.

Figure 3. Recursive fitting of mass spectra data followed by model optimization processes allowed the determination of putative biomarkers ranked
by ΔJ importance and group contribution. Abbreviations: CE, cholesteryl ester; DG diacylglycerol; DHEA, dehydroepiandrosterone; DeoxyGU,
deoxyguanosine; LysoPC, lysophosphatidylcholine; PC, phosphatidylcholine; PE, phosphatidyethanolamine; PG, phosphatidylglycerol; PS,
phosphatidylserine; SM, sphingomyelin; TG, triacylglycerol; UNK, unknown.
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during models’ development with different algorithms are
displayed in SI Tables S1 and S2.
Panel of Discriminant Metabolites for COVID-19

Patients Using Untargeted Metabolomics. Twenty-six
ions were selected by the ML and used for COVID-19
diagnosis (M1) (Table 4, metrics) and further validated
through mass spectrometric data. From those, 19 discriminant
biomarkers for COVID-19 infection were proposed, divided
into 8 with positive and 11 with a negative contribution to the
condition. Out of 19 molecules, seven belong to the
glycerophospholipid class, three sterol lipids, three glycer-
olipids, two fatty acids, one sphingosine, one purine
metabolite, and two unknown peptides. The remaining seven
molecules have not yet been identified, a common element of
nontargeted metabolomics.13 A decrease in lysophosphatidyl-
cholines (LysoPC), cholesterol species and unsaturated fatty
acids followed by increased intensities of triacylglycerols (TG),
diacylglycerols (DG) and a purine were the main findings that
discriminated SARS-CoV-2 infected patients from noninfected
individuals. Biomarkers data are displayed in Figure 3 and
detailed in SI Table S3.
For risk assessment (M2), 26 ions achieved the metrics

displayed in Table 4. Among them, seven markers contributed
to the COVID-19 severe condition and 19 contributed to mild
group. The main findings shown in Figure 3 pointed to a
relative reduction of certain species of LysoPC, phosphati-
dylcholine (PC), phosphatidylcholine derived plasmalogens,
cholesterol, TG, sphingomyelins (SM), and N-acylethanol-
amines in severe cases in comparison to patients with mild and
moderate symptoms (SI Table S4). Severe cases were
represented by deoxyguanosine/adenosine, N-stearoyl valine
and sterol lipid derivatives. The metrics for low-risk
discrimination (M3) (Table 4) were achieved with 24 ions
divided in four glycerophospholipid and two glycerolipid
markers, one peptide and nine unknown metabolites for mild
group, whereas COVID-19 negative patients showed enhanced
eicosatrienoic acid, three sterol lipid metabolites, one peptide,
and three unknowns (Figure 3, SI Table S5).
Elected Biomarkers and COVID-19 Pathophysiology.

The use of AI-explained algorithms allowed the creation of
reliable models that facilitate decision-making in clinics and the
investigation of the pathophysiological meaning of distinct
biomarker’s levels. Viral recognition is an essential for initial
host immune response, and the rapid course and cytokine
storm associated with SARS-CoV infection may be involved

with the guanosine- and uridine-rich (GU) single-strand RNA
potential role as PAMP (pathogen-associated molecular
patterns).1 Deoxyguanosine, a metabolite from purine
metabolism, triggers the enhanced signaling of TLR7 in the
presence of ssRNA, inducing cytokine secretion in macro-
phages.22 Therefore, further investigations are required to
understand the potential role of deoxyguanosine in SARS-
CoV-2 immune hyperactivation. On the other hand, N-
linoleoyl-glycine and N-acylethanolamines (C20:1 and
C22:0), found in this study associated with mild cases,
regulate immune response by promoting anti-inflammatory
effects.23,24

The main lipidic findings pointed to a remodeling of
glycerophospholipid metabolism. We identified enhanced
presence of phosphatidylglycerol (PG) [PG(20:5)], phospha-
tidylethanolamine (PE) [PE(38:4)] and phosphatidylcholine
(PC) [PC(38:8)], a diminishment of LysoPCs [Ly-
soPC(16:0), and correlated m/z LysoPC(18:0), Ly-
soPC(18:1), and LysoPC(18:2)] and plasmalogens species25

(PS(O-36:2), PC(O-36:3), PC(O-34:2), PC(O-36:3)) in
COVID-19 positive patients; the same PG, PC, and PE
markers discriminated low-risk patients from noninfected
individuals, as illustrated in Figure 4 by glycerophospholipid
pathway recurrence. LysoPC(18:2) were also found as negative
contributors in plasma samples from patients with higher risk
of death, as well as such PCs markers (PC(34:2), PC(36:3),
PC(38:5)) and correlated PC molecules (PC(36:2),
PC(36:4), PC(38:3), PC(38:4), PC(38:6)). Cell responses
to various stimuli may be mediated by lysophospholipids,
which actively participates in inflammation processes.26,27 The
relative intensities decrease of LysoPCs and PCs in severely ill
patients are in accordance with recent studies of metabolic
changes in ARDS and sepsis,26−28 characteristics of COVID-19
severity.2,6 LysoPC is formed through the cleavage of PC by
phospho-lipase A2 (PLA2), whose modulation has a crucial role
in inflammation processes. PLA2 up-regulation promotes fatty
acids formation, precursors of eicosanoids, and LysoPCs.29

Data shows that SARS-CoV nucleocapsid protein stimulates
the expression of Cyclooxygenase-2,30 an essential enzyme in
the catalysis of prostanoids production from fatty acids,
molecules that have been found downregulated in ARDS.31

The availability of LysoPCs is also finely regulated by the
acyltransferase activity of LCAT1 (lysophosphatidylcholine
acyltransferase 1), which may promote the restoration of PCs
via Lands cycle. The most abundant lipid specie found in

Figure 4. Proposed role of identified biomarkers in COVID-19 pathophysiology. Abbreviations: ARDS, acute respiratory distress syndrome; COX-
2, cyclooxygenase-2, deoxyGU, deoxyguanosine; LPCAT1, lysophosphatidylcholine acyltransferase 1; LysoPC, lysophosphatidylcholine; PC,
phosphatidylcholine; PLA2, phospholipase A2.
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alveolar surfactant formed by LCAT1 activity over LysoPC is
dipalmitoylphosphatidylcholine (DPPC, PC(16:0/16:0)). This
molecule corresponds to 70−80% of surfactant lipid
composition, and the dysregulation of surfactant film is directly
related to lung injury and ARDS.29 Since DPPC formation is
dependent on the availability of lipid substrates and the Lands
cycle functioning, interferences in this process may disturb
LysoPC and PC availability. Ferrarini et al. (2017) described a
decrease in LysoPC species in serum of patients with ARDS
derived from influenza infection and sepsis, reinforcing our
findings.26

Moreover, COVID-19 pathophysiology seems to impair
cholesterol homeostasis.7,8 We found cholesterol and choles-
teryl ester (CE (16:0)) diminished in COVID-19 positive
patients, and cholesterol decreases within mild/moderate
symptoms, which was similarly reported by Song et. al
(2020). They demonstrated the correlation between CE
abundance and bis (monoacylglycero)phosphate, BMP(38:5),
a lipid that influences cellular exportation of cholesterol from
endosomes. During recovering progression, it was found
increased alveolar macrophages BMP with enhanced CEs.7

Cholesterol and LDL-C (low-density lipoprotein cholesterol)
lowering was also observed in clinical practice associated with
COVID-19 poor prognosis,8 corroborating to our findings.
Herein, based on the proposed m/z markers, we discriminated
COVID-19 patients using a diagnostic, risk assessment and
low-risk discrimination classifier generated from a MS-ML
combination. Although the proposed biomarkers correlates
COVID-19 pathophysiology to the mathematical process, a
mechanistic biomarker evaluation is needed to better under-
stand their contribution to COVID-19, and identify the
unknowns.

■ CONCLUSIONS
The use of machine learning as a mean for the discrimination
of diseases from mass spectrometric data aims to develop
diagnostic and prognostic tools, treatment targets, and patient
management systems.11,12 From published articles to date,
mass spectrometry-machine learning approaches employed a
MALDI-MS direct method for untargeted analysis of SARS-
CoV-2 specimens for diagnosis based on spectra profile,11 or
focused on biomarkers evaluation and their significance to
severity levels of COVID-19 patients,9 keeping the traditional
chromatography−mass spectrometry approach. Our method-
ology introduced the pairwise m/z analysis, an essential
advance in untargeted metabolomics application to provide
diagnosis directly from raw data. By combining different m/z,
this approach supports the spectra acquired by different mass
spectrometers, including the robust use of flow-injection mass
spectrometry (FI-MS), on an effort to overcome the ion
competition effect.32 Moreover, the proposed MS-ML platform
for COVID-19 presented reliable qualitative results, with
specificity of 96.0% and sensitivity of 83.1% (in a blind test),
similar or even better in performance when compared to
available serological and RT-PCR methods.4,5 Our analysis also
brings molecular information about the disease pathophysiol-
ogy that may aid in prognostic markers and treatment targets
for COVID-19. Overall, it aggregates, in one solution, an
alternative for populational COVID-19 screening and guidance
for public health efforts through risk classification. One future
work consists in exploring a multiclass model (preliminary
results in SI Table S6) for COVID-19 diagnosis and risk
assessment. The same approach may be applied to other

diseases involved with patient management during the
pandemic and contribute to the COVID-19 MS Coalition’s
collective effort14 by consolidating the combination of mass
spectrometry and artificial intelligence in a real-world setting.
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(4) Döhla, M.; Boesecke, C.; Schulte, B.; Diegmann, C.; Sib, E.;
Richter, E.; Eschbach-Bludau, M.; Aldabbagh, S.; Marx, B.; Eis-
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