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Summary. We consider a high dimensional regression model with a possible change point
due to a covariate threshold and develop the lasso estimator of regression coefficients as well
as the threshold parameter. Our lasso estimator not only selects covariates but also selects
a model between linear and threshold regression models. Under a sparsity assumption, we
derive non-asymptotic oracle inequalities for both the prediction risk and the l1-estimation loss
for regression coefficients. Since the lasso estimator selects variables simultaneously, we show
that oracle inequalities can be established without pretesting the existence of the threshold
effect. Furthermore, we establish conditions under which the estimation error of the unknown
threshold parameter can be bounded by a factor that is nearly n�1 even when the number
of regressors can be much larger than the sample size n. We illustrate the usefulness of our
proposed estimation method via Monte Carlo simulations and an application to real data.
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1. Introduction

The lasso and related methods have received rapidly increasing attention in statistics since the
seminal work of Tibshirani (1996). For example, see Bühlmann and van de Geer (2011) as well
as Fan and Lv (2010) and Tibshirani (2011) for a general overview and recent developments.

In this paper, we develop a method for estimating a high dimensional regression model with
a possible change point due to a covariate threshold, while selecting relevant regressors from a
set of many potential covariates. In particular, we propose the l1 penalized least squares (lasso)
estimator of parameters, including the unknown threshold parameter, and analyse its properties
under a sparsity assumption when the number of possible covariates can be much larger than
the sample size.

To be specific, let {.Yi, Xi, Qi/ : i = 1, : : : , n} be a sample of independent observations such
that
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Yi =X′
iβ0 +X′

iδ0 1{Qi < τ0}+Ui, i=1, : : : , n, .1:1/

where, for each i, Xi is an M × 1 deterministic vector, Qi is a deterministic scalar, Ui follows
N.0, σ2/ and 1{·} denotes the indicator function. The scalar variable Qi is the threshold variable
and τ0 is the unknown threshold parameter. Since Qi is a fixed variable in our set-up, expression
(1.1) includes a regression model with a change point at unknown time (e.g. Qi = i=n). In
this paper, we focus on the fixed design for {.Xi, Qi/ : i = 1, : : : , n} and independent normal
errors {Ui : i=1, : : : , n}. This set-up has been extensively used in the literature (e.g. Bickel et al.
(2009)).

A regression model such as model (1.1) offers applied researchers a simple yet useful frame-
work to model non-linear relationships by splitting the data into subsamples. Empirical ex-
amples include cross-country growth models with multiple equilibria (Durlauf and Johnson,
1995), racial segregation (Card et al., 2008) and financial contagion (Pesaran and Pick, 2007),
among many others. Typically, the choice of the threshold variable is well motivated in applied
work (e.g. initial per capita output in Durlauf and Johnson (1995), and the minority share in
a neighbourhood in Card et al. (2008)), but selection of other covariates is subject to applied
researchers’ discretion.

However, covariate selection is important in identifying threshold effects (i.e. non-zero δ0)
since a statistical model favouring threshold effects with a particular set of covariates could be
overturned by a linear model with a broader set of regressors. Therefore, it seems natural to
consider the lasso as a tool to estimate model (1.1).

The statistical problem that we consider is to estimate unknown parameters .β0, δ0, τ0/ ∈
R2M+1 when M is much larger than n. For the classical set-up (estimation of parameters without
covariate selection when M is smaller than n), estimation of model (1.1) has been well studied
(e.g. Tong (1990), Chan (1993) and Hansen (2000)). Also, a general method for testing threshold
effects in regression (i.e. testing H0 :δ0 =0 in model (1.1)) is available for the classical set-up (e.g.
Lee et al. (2011)).

Although there are many references on lasso-type methods and also equally many on change
points, sample splitting and threshold models, there seem to be only a handful of references
that intersect both topics. Wu (2008) proposed an information-based criterion for carrying out
change point analysis and variable selection simultaneously in linear models with a possible
change point; however, the method proposed in Wu (2008) would be infeasible in a sparse high
dimensional model. In change point models without covariates, Harchaoui and Lévy-Leduc
(2008, 2010) proposed a method for estimating the location of change points in one-dimensional
piecewise constant signals observed in white noise, using a penalized least square criterion with
an l1-type penalty. Zhang and Siegmund (2012) developed Bayes information criterion like
criteria for determining the number of changes in the mean of multiple sequences of independent
normal observations when the number of change points can increase with the sample size.
Ciuperca (2014) considered a similar estimation problem to ours, but the corresponding analysis
was restricted to the case when the number of potential covariates is small.

In this paper, we consider the lasso estimator of regression coefficients as well as the threshold
parameter. Since the change point parameter τ0 does not enter additively in model (1.1), the
resulting optimization problem in the lasso estimation is non-convex. We overcome this problem
by comparing the values of standard lasso objective functions on a grid over the range of possible
values of τ0.

Theoretical properties of the lasso and related methods for high dimensional data have been
examined by Fan and Peng (2004), Bunea et al. (2007), Candès and Tao (2007), Huang et al.
(2008a,b), Kim et al. (2008), Bickel et al. (2009) and Meinshausen and Yu (2009), among
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many others. Most of the references consider quadratic objective functions and linear or non-
parametric models with an additive mean 0 error. There has been recent interest in extending
this framework to generalized linear models (e.g. van de Geer (2008) and Fan and Lv (2011)),
to quantile regression models (e.g. Belloni and Chernozhukov (2011a), Bradic et al. (2011) and
Wang et al. (2012)), and to hazards models (e.g. Bradic et al. (2012) and Lin and Lv (2013)).
We contribute to this literature by considering a regression model with a possible change point
and then deriving non-asymptotic oracle inequalities for both the prediction risk and the l1-
estimation loss for regression coefficients under a sparsity scenario.

Our theoretical results build on Bickel et al. (2009). Since the lasso estimator selects variables
simultaneously, we show that oracle inequalities that are similar to those obtained in Bickel et al.
(2009) can be established without pretesting the existence of the threshold effect. In particular,
when there is no threshold effect (δ0 =0), we prove oracle inequalities that are basically equivalent
to those in Bickel et al. (2009). Furthermore, when δ0 �=0, we establish conditions under which
the estimation error of the unknown threshold parameter can be bounded by a factor of nearly
n−1 when the number of regressors can be much larger than the sample size. To achieve this,
we develop some sophisticated chaining arguments and provide sufficient regularity conditions
under which we prove oracle inequalities. The superconsistency result of τ̂ is well known when
the number of covariates is small (see, for example, Chan (1993) and Seijo and Sen (2011a, b)). To
the best of our knowledge, our paper is the first work that demonstrates the possibility of a nearly
n−1-bound in the context of sparse high dimensional regression models with a change point.

The remainder of this paper is as follows. In Section 2 we propose the lasso estimator, and
in Section 3 we give a brief illustration of our proposed estimation method by using a real data
example in economics. In Section 4 we establish the prediction consistency of our lasso estimator.
In Section 5 we establish sparsity oracle inequalities in terms of both the prediction loss and the
l1-estimation loss for .α0, τ0/, while providing low level sufficient conditions for two possible
cases of threshold effects. In Section 6 we present results of some simulation studies, and Section
7 concludes. The on-line appendices consist of six sections: appendix A provides sufficient
conditions for one of our main assumptions, appendix B gives some additional discussions on
identifiability for τ0, appendices C, D and E contain all the proofs, and appendix F provides
additional numerical results.

1.1. Notation
We collect the notation that is used in the paper here. For {.Yi, Xi, Qi/ : i= 1, : : : , n} following
model (1.1), let Xi.τ / denote the 2M ×1 vector such that Xi.τ /= .X′

i, X′
i 1{Qi <τ}/′ and let X.τ /

denote the n×2M matrix whose ith row is Xi.τ /′. For an L-dimensional vector a, let |a|p denote
the lp-norm of a, and |J.a/| denote the cardinality of J.a/, where J.a/={j ∈{1, : : : , L} :aj �=0}.
In addition, let M.a/ denote the number of non-zero elements of a, i.e. M.a/ =ΣL

j=1 1{aj �=
0}=|J.a/|. Let aJ denote the vector in RL that has the same co-ordinates as a on J and zero co-
ordinates on the complement Jc of J . For any n-dimensional vector W = .W1, : : : , Wn/′, define
the empirical norm as ‖W‖n := .n−1Σn

i=1W
2
i /1=2. Let the superscript ‘.j/’ denote the jth element

of a vector or the jth column of a matrix depending on the context. Finally, define f.α,τ /.x, q/ :=
x′β + x′δ 1{q < τ}, f0.x, q/ := x′β0 + x′δ0 1{q < τ0} and f̂ .x, q/ := x′β̂ + x′δ̂ 1{q < τ̂}. Then, we
define the prediction risk as

‖f̂ −f0‖n :=
[

1
n

n∑
i=1

{f̂ .Xi, Qi/−f0.Xi, Qi/}2
]1=2

:

2. Lasso estimation

Let α0 = .β′
0, δ′

0/′. Then, using notation defined above, we can rewrite model (1.1) as
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Yi =Xi.τ0/′α0 +Ui, i=1, : : : , n: .2:1/

Let y≡ .Y1, : : : , Yn/′. For any fixed τ ∈T, where T≡ [t0, t1] is a parameter space for τ0, consider
the residual sum of squares

Sn.α, τ /=n−1
n∑

i=1
.Yi −X′

iβ −X′
iδ 1{Qi < τ}/2

=‖y −X.τ /α‖2
n,

where α= .β′, δ′/′.
We define the following 2M ×2M diagonal matrix:

D.τ / :=diag{‖X.j/.τ /‖n, j =1, : : : , 2M}:

For each fixed τ ∈T, define the lasso solution α̂.τ / by

α̂.τ / := arg min
α∈A⊂R2M

{Sn.α, τ /+λ|D.τ /α|1}, .2:2/

where λ is a tuning parameter that depends on n and A is a parameter space for α0.
It is important to note that the scale normalizing factor D.τ / depends on τ since different

values of τ generate different dictionaries X.τ /. To see this more clearly, define

X.j/ ≡ .X
.j/
1 , : : : , X.j/

n /′,
X.j/.τ /≡ .X

.j/
1 1{Q1 < τ}, : : : , X.j/

n 1{Qn < τ}/′:
.2:3/

Then, for each τ ∈T and for each j =1, : : : , M, we have ‖X.j/.τ /‖n =‖X.j/‖n and ‖X.M+j/.τ /‖n =
‖X.j/.τ /‖n. Using this notation, we rewrite the l1-penalty as

λ|D.τ /α|1 =λ
2M∑
j=1

‖X.j/.τ /‖n|α.j/|

=λ
M∑

j=1
{‖X.j/‖n|α.j/|+‖X.j/.τ /‖n|α.M+j/|}:

Therefore, for each fixed τ ∈T, α̂.τ / is the weighted lasso that uses a data-dependent l1-penalty
to balance covariates adequately.

We now estimate τ0 by

τ̂ :=arg min
τ∈T⊂R

[Sn{α̂.τ /, τ}+λ|D.τ /α̂.τ /|1]: .2:4/

In fact, for any finite n, τ̂ is given by an interval and we simply define the maximum of the
interval as our estimator. If we wrote the model by using 1{Qi >τ}, then the convention would
be the minimum of the interval being the estimator. Then the estimator of α0 is defined as
α̂ := α̂.τ̂ /. In fact, our proposed estimator of .α, τ / can be viewed as the one-step minimizer
such that

.α̂, τ̂ / := arg min
α∈A⊂R2M , τ∈T⊂R

{Sn.α, τ /+λ|D.τ /α|1}: .2:5/

It is worth noting that we penalize β0 and δ0 in expression (2.5), where δ0 is the change of
regression coefficients between two regimes. Model (1.1) can be written as

Yi =
{

X′
iβ0 +Ui, if Qi � τ0,

X′
iβ1 +Ui, if Qi < τ0,

.2:6/
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where β1 ≡β0 + δ0. In view of model (2.6), alternatively, one might penalize β0 and β1 instead
of β0 and δ0. We opted to penalize δ0 in this paper since the case δ0 =0 corresponds to the linear
model. If δ̂ =0, then this case amounts to selecting the linear model.

3. Empirical illustration

In this section, we apply the proposed lasso method to growth regression models in economics.
The neoclassical growth model predicts that economic growth rates converge in the long run.
This theory has been tested empirically by looking at the negative relationship between long-
run growth rate and initial gross domestic product (GDP) given other covariates (see Barro
and Sala-i-Martin (1995) and Durlauf et al. (2005) for literature reviews). Although empirical
results confirmed the negative relationship between growth rate and initial GDP, there has been
some criticism that the results depend heavily on the selection of covariates. Recently, Belloni
and Chernozhukov (2011b) showed that lasso estimation can help to select the covariates in
the linear growth regression model and that the lasso estimation results reconfirm the negative
relationship between long-run growth rate and initial GDP.

We consider the growth regression model with a possible threshold. Durlauf and Johnson
(1995) provided the theoretical background of the existence of multiple steady states and estim-
ated the model with two possible threshold variables. They checked the robustness by adding
other available covariates to the model, but it is not still free from the criticism of ad hoc variable
selection. Our proposed lasso method might be a good alternative in this situation. Furthermore,
as we shall show later, our method works well even if there is no threshold effect in the model.
Therefore, one might expect more robust results from our approach.

The regression model that we consider has the form

gri =β0 +β1lgdp60i +X′
iβ2 +1{Qi < τ}.δ0 + δ1 lgdp60i +X′

iδ2/+ "i, .3:1/

where gri is the annualized GDP growth rate of country i from 1960 to 1985, lgdp60i is the
log-GDP in 1960 and Qi is a possible threshold variable for which we use the initial GDP or
the adult literacy rate in 1960 following Durlauf and Johnson (1995). Finally, Xi is a vector of
additional covariates related to education, market efficiency, political stability, market openness
and demographic characteristics. In addition, Xi contains cross-product terms between lgdp60i

and education variables. Table 1 gives a list of all covariates used and a description of each
variable. We include as many covariates as possible, which might mitigate the potential omitted
variable bias. The data set mostly comes from Barro and Lee (1994), and the additional adult
literacy rate is from Durlauf and Johnson (1995). Because of missing observations, we have 80
observations with 46 covariates (including a constant term) when Qi is the initial GDP (n=80
and M = 46), and 70 observations with 47 covariates when Qi is the literacy rate (n = 70 and
M =47). It is worthwhile to note that the number of covariates in the threshold models is bigger
than the number of observations (2M>n in our notation). Thus, we cannot adopt the standard
least squares method to estimate the threshold regression model.

Table 2 summarizes the model selection and estimation results when Qi is the initial GDP.
In the on-line appendix F (see Table 4), we report additional empirical results with Qi being
the literacy rate. To compare different model specifications, we also estimate a linear model,
i.e. all δs are 0s in model (3.1), by standard lasso estimation. In each case, the regularization
parameter λ is chosen by the ‘leave-one-out’ cross-validation method. For the range T of the
threshold parameter, we consider an interval between the 10% and 90% sample quantiles for
each threshold variable.

Main empirical findings are as follows. First, the marginal effect of lgdp60i, which is given by
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Table 1. List of variables

Variable name Description

Dependent variable
gr Annualized GDP growth rate in the period 1960–1985

Threshold variables
gdp60 Real GDP per capita in 1960 (1985 price)
lr Adult literacy rate in 1960

Covariates
lgdp60 Log-GDP per capita in 1960 (1985 price)
lr Adult literacy rate in 1960 (only included when Q= lr)
lsk log(investment/output) annualized over 1960–1985; a proxy for log(physical

savings rate)
lgrpop log(population growth rate) annualized over 1960–1985
pyrm60 log(average years of primary schooling) in the male population in 1960
pyrf60 log(average years of primary schooling) in the female population in 1960
syrm60 log(average years of secondary schooling) in the male population in 1960
syrf60 log(average years of secondary schooling) in the female population in 1960
hyrm60 log(average years of higher schooling) in the male population in 1960
hyrf60 log(average years of higher schooling) in the female population in 1960
nom60 Percentage of no schooling in the male population in 1960
nof60 Percentage of no schooling in the female population in 1960
prim60 Percentage of primary schooling attained in the male population in 1960
prif60 Percentage of primary schooling attained in the female population in 1960
pricm60 Percentage of primary schooling complete in the male population in 1960
pricf60 Percentage of primary schooling complete in the female population in 1960
secm60 Percentage of secondary schooling attained in the male population in 1960
secf60 Percentage of secondary schooling attained in the female population in 1960
seccm60 Percentage of secondary schooling complete in the male population in 1960
seccf60 Percentage of secondary schooling complete in the female population in 1960
llife log(life expectancy at age 0) averaged over 1960–1985
lfert log(fertility rate) averaged over 1960–1985
edu/gdp Government expenditure on eduction per GDP averaged over 1960–1985
gcon/gdp Government consumption expenditure net of defence and education per GDP

averaged over 1960–1985
revol Number of revolutions per year over 1960–1984
revcoup Number of revolutions and coups per year over 1960–1984
wardum Dummy for countries that participated in at least one external war over

1960–1984
wartime Fraction of time over 1960–1985 involved in external war
lbmp log(1 + black market premium averaged over 1960–1985)
tot Term-of-trade shock
lgdp60 × ‘educ’ Product of two covariates (interaction of lgdp60 and education variables from

pyrm60 to seccf60); total 16 variables

@gri

@lgdp60i

=β1 + educ′
iβ̃2 +1{Qi <γ}.δ1 + educ′

iδ̃2/,

where educi is a vector of education variables and β̃2 and δ̃2 are subvectors of β2 and δ2 corres-
ponding to educi, is estimated to be negative for all the observed values of educi. This confirms
the theory of the neoclassical growth model. Second, some non-zero coefficients of interaction
terms between lgdp60 and various education variables show the existence of threshold effects in
both threshold model specifications. This result implies that the growth convergence rates can
vary according to different levels of the initial GDP or the adult literacy rate in 1960. Specifically,
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Table 2. Model selection and estimation results with QDgdp60†

Variable Value for the Values for the
linear model threshold model, τ̂ =2898

β̂ δ̂

Constant −0.0923 −0.0811 —
lgdp60 −0.0153 −0.0120 —
lsk 0.0033 0.0038 —
lgrpop 0.0018 — —
pyrf60 0.0027 — —
syrm60 0.0157 — —
hyrm60 0.0122 0.0130 —
hyrf60 −0.0389 — −0.0807
nom60 — — 2.64 × 10−5

prim60 −0.0004 −0.0001 —
pricm60 0.0006 −1.73 × 10−4 −0:35×10−4

pricf60 −0.0006 — —
secf60 0.0005 — —
seccm60 0.0010 — 0.0014
llife 0.0697 0.0523 —
lfert −0.0136 −0.0047 —
edu/gdp −0.0189 — —
gcon/gdp −0.0671 −0.0542 —
revol −0.0588 — —
revcoup 0.0433 — —
wardum −0.0043 — −0.0022
wartime −0.0019 −0.0143 −0.0023
lbmp −0.0185 −0.0174 −0.0015
tot 0.0971 — 0.0974
lgdp60 × pyrf60 — −3:81×10−6 —
lgdp60 × syrm60 — — 0.0002
lgdp60 × hyrm60 — — 0.0050
lgdp60 × hyrf60 — −0.0003 —
lgdp60 × nom60 — — 8:26×10−6

lgdp60 × prim60 −6:02×10−7 — —
lgdp60 × prif60 −3:47×10−6 — −8:11×10−6

lgdp60 × pricf60 −8:46×10−6 — —
lgdp60 × secm60 −0.0001 — —
lgdp60 × seccf60 −0.0002 −2:87×10−6 —

λ 0.0004 0.0034
M.α̂/ 28 26
Number of covariates 46 92
Number of observations 80 80

†The regularization parameter λ is chosen by the ‘leave-one-out’ cross-validation method. M.α̂/
denotes the number of covariates to be selected by the lasso estimator and a dash indicates that
the regressor is not selected. Recall that β̂ is the coefficient when Q� γ̂ and that δ̂ is the change
of the coefficient value when Q< γ̂.

in both threshold models, we have δ1 =0, but some δ2s are not 0. Thus, conditionally on other
covariates, there are different technological diffusion effects according to the threshold point.
For example, a developing country (lower Q) with a higher education level will converge faster
perhaps by absorbing advanced technology more easily and more quickly. Finally, the lasso
with the threshold model specification selects a more parsimonious model than that with the
linear specification even though the former doubles the number of potential covariates.
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4. Prediction consistency of lasso estimator

In this section, we consider the prediction consistency of the lasso estimator. We make the
following assumptions.

Assumption 1.

(a) For the parameter space A for α0, any α≡ .α1, : : : , α2M/∈A⊂R2M , including α0, satisfies
maxj=1,:::,2M |αj|�C1 for some constant C1 > 0. In addition, τ0 ∈T≡ [t0, t1] that satisfies
mini=1,:::,n Qi < t0 <t1 < maxi=1,:::,n Qi.

(b) There are universal constants C2 > 0 and C3 > 0 such that ‖X.j/.τ /‖n �C2 uniformly in j

and τ ∈T, and ‖X.j/.t0/‖n �C3 uniformly in j, where j =1, : : : , 2M.
(c) There is no i �= j such that Qi =Qj:

Assumption 1(a) imposes the boundedness for each component of the parameter vector. The
first part of assumption 1(a) which implies that |α|1 � 2C1M for any α∈A, seems to be weak,
since the sparsity assumption implies that |α0|1 is much smaller than C1M. Furthermore, in the
literature on change point and threshold models, it is common to assume that the parameter
space is compact. For example, see Seijo and Sen (2011a, b).

The lasso estimator in expression (2.5) can be computed without knowing the value of C1,
but T≡ [t0, t1] must be specified. In practice, researchers tend to choose some strict subset of the
range of observed values of the threshold variable. Assumption 1(b) imposes that each covariate
is of the same magnitude uniformly over τ . In view of the assumption that mini=1,:::,nQi < t0, it
is not stringent to assume that ‖X.j/.t0/‖n is bounded away from zero.

Assumption 1(c) imposes that there is no tie among Qis. This is a convenient assumption
such that we can always transform general Qi to Qi = i=n without loss of generality. This holds
with probability 1 for the random-design case if Qi is continuously distributed.

Define

rn := min
1�j�M

‖X.j/.t0/‖2
n

‖X.j/‖2
n

,

where X.j/ and X.j/.τ / are defined in expression (2.3). Assumption 1(b) implies that rn is
bounded away from zero. In particular, we have that 1� rn �C3=C2 > 0.

Recall that

‖f̂ −f0‖n :=
[

1
n

n∑
i=1

{f̂ .Xi, Qi/−f0.Xi, Qi/}2
]1=2

, .4:1/

where f̂ .x, q/ :=x′β̂ +x′δ̂ 1{q < τ̂} and f0.x, q/ :=x′β0 +x′δ0 1{q < τ0}. To establish theoretical
results in the paper (in particular, oracle inequalities in Section 5), let .α̂, τ̂ / be the lasso estimator
defined by expression (2.5) with

λ=Aσ

{
log.3M/

nrn

}1=2

.4:2/

for a constant A>2
√

2=μ, where μ∈ .0, 1/ is a fixed constant. We now present the first theoretical
result of this paper.

Theorem 1 (consistency of the lasso). Let assumption 1 hold. Let μ be a constant such that
0 < μ < 1, and let .α̂, τ̂ / be the lasso estimator defined by expression (2.5) with λ given by
equation (4.2). Then, with probability at least 1− .3M/1−A2μ2=8, we have

‖f̂ −f0‖n �K1{λM.α0/}1=2,
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where K1 ≡{2C1C2.3+μ/}1=2 > 0.

The non-asymptotic upper bound on the prediction risk in theorem 1 can be translated easily
into asymptotic convergence. Theorem 1 implies the consistency of the lasso, provided that
n→∞, M →∞ and λM.α0/→0. Recall that M.α0/ represents the sparsity of model (2.1). In
view of equation (4.2), the condition λM.α0/→0 requires that M.α0/=o[{nrn= log.3M/}1=2].
This implies that M.α0/ can increase with n.

Remark 1. Note that the prediction error increases as A or μ increases; however, the prob-
ability of correct recovery increases if A or μ increases. Therefore, there is a trade-off between
the prediction error and the probability of correct recovery.

5. Oracle inequalities

In this section, we establish finite sample sparsity oracle inequalities in terms of both the predic-
tion loss and the l1-estimation loss for unknown parameters. First of all, we make the following
assumption.

Assumption 2 (uniform restricted eigenvalue (URE) .s, c0, S/). For some integer s such that
1� s�2M, a positive number c0 and some set S⊂R, the following condition holds:

κ.s, c0, S/ :=min
τ∈S

min
J0⊆{1,:::,2M},

|J0|�s

min
γ �=0,

|γJc
0

|1�c0|γJ0
|1

|X.τ /γ|2√
n|γJ0 |2

> 0:

If τ0 were known, then assumption 2 is just a restatement of the restricted eigenvalue assump-
tion of Bickel et al. (2009) with S={τ0}. Bickel et al. (2009) provided sufficient conditions for
the restricted eigenvalue condition. In addition, van de Geer and Bühlmann (2009) showed the
relationships between the restricted eigenvalue condition and other conditions on the design
matrix, and Raskutti et al. (2010) proved that restricted eigenvalue conditions hold with high
probability for a large class of correlated Gaussian design matrices.

If τ0 is unknown as in our set-up, it seems necessary to assume that the restricted eigenvalue
condition holds uniformly over τ . We consider separately two cases depending on whether δ0 =0
or not. On the one hand, if δ0 =0 so that τ0 is not identifiable, then we need to assume that the
URE condition holds uniformly on the whole parameter space, T. On the other hand, if δ0 �=0
so that τ0 is identifiable, then it suffices to impose that the URE condition holds uniformly on a
neighbourhood of τ0. In the on-line appendix A, we provide two types of sufficient conditions
for assumption 2. One type is based on modifications of assumption 2 of Bickel et al. (2009) and
the other type is in the same spirit as van de Geer and Bühlmann (2009), section 10.1. Using
the second type of results, we verify primitive sufficient conditions for the URE condition in
the context of our simulation designs. See the on-line appendix A for details.

The URE condition is useful for us to improve the result in theorem 1. Recall that, in theo-
rem 1, the prediction risk is bounded by a factor of {λM.α0/}1=2. This bound is too large
to give us an oracle inequality. We shall show below that we can establish non-asymptotic
oracle inequalities for the prediction risk as well as the l1-estimation loss, thanks to the URE
condition.

The strength of the proposed lasso method is that it is not necessary to know or pretest whether
δ0 = 0 or not. It is worth noting that we do not have to know whether there is a threshold in
the model to establish oracle inequalities for the prediction risk and the l1-estimation loss for
α0, although we divide our theoretical results into two cases below. This implies that we can
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make prediction and estimate α0 precisely without knowing the presence of a threshold effect
or without pretesting for it.

5.1. Case I: no threshold
We first consider the case that δ0 =0. In other words, we estimate a threshold model via the lasso
method, but the true model is simply a linear model Yi =X′

iβ0 +Ui. This is an important case
to consider in applications, because one may not be sure not only about covariates selection but
also about the existence of the threshold in the model.

Let φmax denote the supremum (over τ ∈T) of the largest eigenvalue of X.τ /′ X.τ /=n. Then,
by definition, the largest eigenvalue of X.τ /′ X.τ /=n is bounded uniformly in τ ∈T by φmax. The
following theorem gives oracle inequalities for the first case.

Theorem 2. Suppose that δ0 =0. Let assumptions 1 and 2 hold withκ=κ{s, .1+μ/=.1−μ/, T}
for 0<μ<1, and M.α0/� s�M. Let .α̂, τ̂ / be the lasso estimator defined by expression (2.5)
with λ given by expression (4.2). Then, with probability at least 1− .3M/1−A2μ2=8, we have

‖f̂ −f0‖n �K2
σ

κ

{
log.3M/

nrn
s

}1=2

,

|α̂−α0|1 �K2
σ

κ2

{
log.3M/

nrn

}1=2

s,

M.α̂/�K2
φmax

κ2 s

for some universal constant K2 > 0.

To appreciate the usefulness of the inequalities derived above, it is worth comparing inequal-
ities in theorem 2 with those in theorem 7.2 of Bickel et al. (2009). The latter corresponds to
the case that δ0 =0 is known a priori and λ=2Aσ log.M=n/1=2 in our notation. If we compare
theorem 2 with theorem 7.2 of Bickel et al. (2009), we can see that the lasso estimator in model
(2.5) gives qualitatively the same oracle inequalities as the lasso estimator in the linear model,
even though our model is much more overparameterized in that δ and τ are added to β as
parameters to estimate.

Also, as in Bickel et al. (2009), there is no requirement on α0 such that the minimum value
of non-zero components of α0 is bounded away from zero. In other words, there is no need to
assume the minimum strength of the signals. Furthermore, α0 is well estimated here even if τ0
is not identifiable at all. Finally, note that the value of the constant K2 is given in the proof of
theorem 2 and that theorem 2 can be translated easily into asymptotic oracle results as well,
since both κ and rn are bounded away from zero by the URE condition and assumption 1
respectively.

5.2. Case II: fixed threshold
This subsection explores the case where the threshold effect is well identified and discontinuous.
We begin with the following additional assumptions to reflect this.

Assumption 3 (identifiability under sparsity and discontinuity of regression). For a given
s�M.α0/, and for any η and τ such that |τ − τ0|>η � mini |Qi − τ0| and α∈{α : M.α/� s},
there is a constant c> 0 such that

‖f.α, τ / −f0‖2
n >cη:
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Assumption 3 implies, among other things, that for some s �M.α0/, and for any α∈ {α :
M.α/� s} and τ such that .α, τ / �= .α0, τ0/,

‖f.α,τ / −f0‖n �=0: .5:1/

This condition can be regarded as identifiability of τ0. If τ0 were known, then a sufficient
condition for the identifiability under the sparsity would be that URE.s, c0, {τ0}/ holds for
some c0 � 1. Thus, the main point in result (5.1) is that there is no sparse representation that
is equivalent to f0 when the sample is split by τ �= τ0: In fact, assumption 3 is stronger than
just the identifiability of τ0 as it specifies the rate of deviation in f as τ moves away from τ0,
which in turn dictates the bound for the estimation error of τ̂ . We provide further discussions
on assumption 3 in the on-line appendix B.

Remark 2. The restriction η�mini|Qi −τ0| in assumption 3 is necessary since we consider the
fixed design for both Xi and Qi. Throughout this section, we implicitly assume that the sample
size n is sufficiently large such that mini�=j|Qi −Qj| is very small, implying that the restriction
η � mini�=j|Qi − Qj| never binds in any of the inequalities below. This is typically true for the
random-design case if Qi is continuously distributed.

Assumption 4 (smoothness of design). For any η > 0, there is a constant C<∞ such that

sup
j

sup
|τ−τ0|<η

1
n

n∑
i=1

|X.j/
i |2|1.Qi < τ0/−1.Qi < τ /|�Cη:

Assumption 4 has been assumed in the classical set-up with a fixed number of stochastic
regressors to exclude cases like Qi has a point mass at τ0 or E.Xi|Qi = τ0/ is unbounded. In our
set-up, assumption 4 amounts to a deterministic version of some smoothness assumption for the
distribution of the threshold variable Qi. When .Xi, Qi/ is a random vector, it is satisfied under
the standard assumption that Qi is continuously distributed and E.|X.j/

i |2|Qi =τ / is continuous
and bounded in a neighbourhood of τ0 for each j.

To simplify the notation, in the following theorem, we assume without loss of generality that
Qi = i=n. Then T = [t0, t1] ⊂ .0, 1/. In addition, let η0 = max[n−1, K1

√{λM.α0/}] where K1 is
the same constant in theorem 1.

Assumption 5 (well-defined second moments). For any η such that 1=n � η � η0, h2
n.η/ is

bounded, where

h2
n.η/ := 1

2nη

max{[n.τ0+η/],n}∑
i=min{1,[n.τ0−η/]}

.X′
iδ0/2

and [·] denotes an integer part of any real number.

Assumption 5 assumes that h2
n.η/ is well defined for any η such that 1=n�η�η0. Assumption

5 amounts to some weak regularity condition on the second moments of the fixed design.
Assumption 3 implies that δ0 �=0 and that h2

n.η/ is bounded away from zero. Hence, assumptions
3 and 5 imply that h2

n.η/ is bounded and bounded away from zero.
To present the theorem below, it is necessary to make one additional technical assumption

(see assumption 6 in the on-line appendix E). We opted not to show assumption 6 here, since we
believe that this is just a sufficient condition that does not add much to our understanding of the
main result. However, we would like to point out that assumption 6 can hold for all sufficiently
large n, provided that sλ|δ0|1 →0, as n→0. See remark 4 in the on-line appendix E for details.

We now give the main result of this section.
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Theorem 3. Suppose that assumptions 1 and 2 hold with S = {|τ − τ0| � η0}, κ =
κ{s, .2+μ/=.1−μ/, S} for 0 < μ < 1, and M.α0/ � s � M. Furthermore, assumptions 3, 4
and 5 hold and let n be sufficiently large that assumption 6 in the on-line appendix E holds.
Let .α̂, τ̂ / be the lasso estimator defined by expression (2.5) with λ given by expression (4.2).
Then, with probability at least 1− .3M/1−A2μ2=8 −C4.3M/−C5=rn for some positive constants
C4 and C5, we have

‖f̂ −f0‖n �K3
σ

κ

{
log.3M/

nrn
s

}1=2

,

|α̂−α0|1 �K3
σ

κ2

{
log.3M/

nrn

}1=2

s,

|τ̂ − τ0|�K3
σ2

κ2

log.3M/

nrn
s,

M.α̂/�K3
φmax

κ2 s

for some universal constant K3 > 0.

Theorem 3 gives the same inequalities (up to constants) as those in theorem 2 for the pre-
diction risk as well as the l1-estimation loss for α0. It is important to note that |τ̂ − τ0| is
bounded by a constant times s log.3M/=.nrn/, whereas |α̂−α0|1 is bounded by a constant times
s{log.3M/=.nrn/}1=2. This can be viewed as a non-asymptotic version of the superconsistency
of τ̂ to τ0. As noted at the end of Section 5.1, since both κ and rn are bounded away from zero
by the URE condition and assumption 1 respectively, theorem 3 implies asymptotic rate results
immediately. The values of constants C4, C5 and K3 are given in the proof of theorem 3.

The main contribution of this section is that we have extended the well-known superconsis-
tency result of τ̂ when M<n (see, for example, Chan (1993) and Seijo and Sen (2011a, b)) to the
high dimensional set-up (M �n). In both cases, the main reason that we achieve the supercon-
sistency for the threshold parameter is that the least squares objective function behaves locally
linearly around the true threshold parameter value rather than locally quadratically, as in regu-
lar estimation problems. An interesting remaining research question is to investigate whether it
would be possible to obtain the superconsistency result of τ̂ under a weaker condition, perhaps
without a restricted eigenvalue condition.

6. Monte Carlo experiments

In this section we conduct some simulation studies and check the properties of the lasso estimator
proposed. The baseline model is model (1.1), where Xi is an M-dimensional vector generated
from N.0, I/, Qi is a scalar generated from the uniform distribution on the interval of .0, 1/ and
the error term Ui is generated from N.0, 0:52/. The threshold parameter is set to τ0 =0:3, 0:4, 0:5
depending on the simulation design, and the coefficients are set to β0 = .1, 0, 1, 0, : : : , 0/, and
δ0 = c.0, −1, 1, 0, : : : , 0/ where c =0 or c =1. Note that there is no threshold effect when c =0.
The number of observations is set to n = 200. Finally, the dimension of Xi in each design is
set to M = 50, 100, 200, 400, so that the total numbers of regressors are 100, 200, 400 and 800
respectively. The range of τ is T= [0:15, 0:85].

We can estimate the parameters by the standard lasso–least angle regression algorithm of
Efron et al. (2004) without much modification. Given a regularization parameter value λ, we
estimate the model for each grid point of τ that spans over 71 equispaced points on T. This
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Table 3. Simulation results with M D50†

Threshold Estimation Constant for Prediction error E[M(α̂)] E|α̂−α0|1 E|τ̂ − τ0|1
parameter method λ

Mean Median Standard
deviation

Jump scale: c = 1
τ0 =0:5 Least squares None 0.285 0.276 0.074 100.00 7.066 0.008

Lasso A=2:8 0.041 0.030 0.035 12.94 0.466 0.010
A=3:2 0.048 0.033 0.049 10.14 0.438 0.013
A=3:6 0.067 0.037 0.086 8.44 0.457 0.024
A=4:0 0.095 0.050 0.120 7.34 0.508 0.040

Oracle 1 None 0.013 0.006 0.019 4.00 0.164 0.004
Oracle 2 None 0.005 0.004 0.004 4.00 0.163 0.000

τ0 =0:4 Least squares None 0.317 0.304 0.095 100.00 7.011 0.008
Lasso A=2:8 0.052 0.034 0.063 13.15 0.509 0.016

A=3:2 0.063 0.037 0.083 10.42 0.489 0.023
A=3:6 0.090 0.045 0.121 8.70 0.535 0.042
A=4:0 0.133 0.061 0.162 7.68 0.634 0.078

Oracle 1 None 0.014 0.006 0.022 4.00 0.163 0.004
Oracle 2 None 0.005 0.004 0.004 4.00 0.163 0.000

τ0 =0:3 Least squares None 2.559 0.511 16.292 100.00 12.172 0.012
Lasso A=2:8 0.062 0.035 0.091 13.45 0.602 0.030

A=3:2 0.089 0.041 0.125 10.85 0.633 0.056
A=3:6 0.127 0.054 0.159 9.33 0.743 0.099
A=4:0 0.185 0.082 0.185 8.43 0.919 0.168

Oracle 1 None 0.012 0.006 0.017 4.00 0.177 0.004
Oracle 2 None 0.005 0.004 0.004 4.00 0.176 0.000

Jump scale: c = 0
—‡ Least squares None 6.332 0.460 41.301 100.00 20.936 —‡

Lasso A=2:8 0.013 0.011 0.007 9.30 0.266
A=3:2 0.014 0.012 0.008 6.71 0.227
A=3:6 0.015 0.014 0.009 4.95 0.211
A=4:0 0.017 0.016 0.010 3.76 0.204

Oracle 1 and None 0.002 0.002 0.003 2.00 0.054
oracle 2

†M denotes the column size of Xi and τ denotes the threshold parameter. Oracle 1 and oracle 2 are estimated by
least squares when sparsity is known and when sparsity and τ0 are known respectively. All simulations are based
on 400 replications of a sample with 200 observations.
‡Not applicable.

procedure can be conducted by using the standard linear lasso. Next, we plug in the estimated
parameter α̂.τ / := .β̂.τ /′, δ̂.τ /′/′ for each τ into the objective function and choose τ̂ by expression
(4.2). Finally, α̂ is estimated by α̂.τ̂ /. The regularization parameter λ is chosen by expression
(4.2) where σ = 0:5 is assumed to be known. For the constant A, we use four different values:
A=2:8, 3:2, 3:6, 4:0.

Table 3 and Figs 1 and 2 summarize these simulation results. To compare the performance of
the lasso estimator, we also report the estimation results of the least squares estimation (‘least
squares’) available only when M = 50 and two oracle models (oracle 1 and oracle 2). Oracle 1
assumes that the regressors with non-zero coefficients are known. In addition to that, oracle 2
assumes that the true threshold parameter τ0 is known. Thus, when c �= 0, oracle 1 estimates
.β.1/, β.3/, δ.2/, δ.3// and τ by using least squares estimation whereas oracle 2 estimates only
.β.1/, β.3/, δ.2/, δ.3//. When c=0, both oracle 1 and oracle 2 estimate only .β.1/, β.3//. All results
are based on 400 replications of each sample.
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Fig. 1. Mean prediction errors and mean M.α̂/ (}, τ D 0:3; �, τ D 0:4; �, τ D 0:5; 4, c D 0): (a) M D 100;
(b) M D200; (c) M D400

The reported mean-squared prediction error PE for each sample is calculated numerically
as follows. For each sample s, we have the estimates β̂s, δ̂s and τ̂ s. Given these estimates, we
generate new data {Yj, Xj, Qj} of 400 observations and calculate the prediction error as

P̂Es = 1
400

400∑
j=1

{f0.xj, qj/− f̂ .xj, qj/}2: .6:1/

The mean, median and standard deviation of the prediction error are calculated from the 400
replications, {P̂Es}400

s=1. We also report the mean of M.α̂/ and l1-errors for α and τ . Table 3
reports the simulation results for M =50. For simulation designs with M> 50, the least squares
estimator is not available, and we summarize the same statistics only for the lasso estimator in
Figs 1 and 2.

When M =50, across all designs, the lasso estimator proposed performs better than the least
squares estimator in terms of mean and median prediction errors, the mean of M.α̂/ and the
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Fig. 2. Mean l1-errors for α and τ (}, τ D 0:3; �, τ D 0:4; �, τ D 0:5; 4, c D 0): (a) M D 100; (b) M D 200;
(c) M D400

l1-error for α. The performance of the lasso estimator becomes much better when there is no
threshold effect, i.e. c=0. This result confirms the robustness of the lasso estimator for whether
or not there is a threshold effect. However, the least squares estimator performs better than the
lasso estimator in terms of estimation of τ0 when c = 1, although the difference here is much
smaller than the differences in prediction errors and the l1-error for α.

From Figs 1 and 2, we can reconfirm the robustness of the lasso estimator when M =
100, 200, 400. As predicted by the theory that was developed in previous sections, the prediction
error and l1-errors for α and τ increase slowly as M increases. The graphs also show that the
results are quite uniform across different regularization parameter values except A=4:0.

In the on-line appendix F, we report additional simulation results, while allowing correlation
between covariates. Specifically, the M-dimensional vector Xi is generated from a multivariate
normal N.0, Σ/ distribution with .Σ/i,j = ρ|i−j|, where .Σ/i,j denotes the (i,j) element of the
M × M covariance matrix Σ and ρ = 0:3. All other random variables are the same as above.
We obtained very similar results to those for the previous cases: the lasso outperforms the
least squares estimator, and the prediction error, the mean of M.α̂/ and l1-errors increase
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very slowly as M increases. See further details in the on-line appendix F, which also reports
satisfactory simulation results regarding frequencies of selecting true parameters when both
ρ=0 and ρ=0:3.

In sum, the simulation results confirm the theoretical results that were developed earlier
and show that the lasso estimator proposed will be useful for the high dimensional threshold
regression model.

7. Conclusions

We have considered a high dimensional regression model with a possible change point due to
a covariate threshold and have developed the lasso method. We have derived non-asymptotic
oracle inequalities and have illustrated the usefulness of our proposed estimation method via
simulations and a real data application.

We conclude this paper by providing some areas of future research. First, it would be interest-
ing to extend other penalized estimators (e.g. the adaptive lasso of Zou (2006) and the smoothly
clipped absolute deviation penalty of Fan and Li (2001)) to our set-up and to see whether we
would be able to improve the performance of our estimation method. Second, an extension to
multiple change points is also an important research topic. There has been some advance in this
direction, especially regarding key issues like computational cost and the determination of the
number of change points (see, for example, Harchaoui and Lévy-Leduc (2010) and Frick et al.
(2014)). However, they are confined to a single regressor case, and the extension to a large num-
ber of regressors would be highly interesting. Finally, it would be also an interesting research
topic to investigate the minimax lower bounds of the estimator proposed and its prediction risk
like Raskutti et al. (2011, 2012) did in high dimensional linear regression set-ups.
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