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Abstract Projection neurons (PNs) in the mammalian olfactory bulb (OB) receive input from the

nose and project to diverse cortical and subcortical areas. Morphological and physiological studies

have highlighted functional heterogeneity, yet no molecular markers have been described that

delineate PN subtypes. Here, we used viral injections into olfactory cortex and fluorescent nucleus

sorting to enrich PNs for high-throughput single nucleus and bulk RNA deep sequencing.

Transcriptome analysis and RNA in situ hybridization identified distinct mitral and tufted cell

populations with characteristic transcription factor network topology, cell adhesion, and

excitability-related gene expression. Finally, we describe a new computational approach for

integrating bulk and snRNA-seq data and provide evidence that different mitral cell populations

preferentially project to different target regions. Together, we have identified potential molecular

and gene regulatory mechanisms underlying PN diversity and provide new molecular entry points

into studying the diverse functional roles of mitral and tufted cell subtypes.

Introduction
The mammalian olfactory system is unique among sensory systems in that it bypasses the thala-

mus: olfactory receptor neurons (ORNs) in the nose project to the olfactory bulb (OB), a fore-

brain structure containing – in the mouse – approximately 500,000 neurons per hemisphere

(Parrish-Aungst et al., 2007). There, they synapse onto various interneurons and projection neu-

rons. The latter directly project to a variety of cortical structures, including the anterior olfactory

nucleus, piriform cortex, cortical amygdala, and the lateral entorhinal cortex (Ghosh et al., 2011;

Haberly and Price, 1977; Miyamichi et al., 2011; Sosulski et al., 2011). This places OB projec-

tion neurons at a pivotal position to distribute processed olfactory information broadly across

the brain.
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Each ORN in the mouse expresses only one of approximately 1000 olfactory receptor genes

(Buck and Axel, 1991; Yoshihito, 2012; Zhang and Firestein, 2002). ORNs expressing the same

receptor project axons onto defined spherical structures, glomeruli (Mori and Sakano, 2011), con-

taining a variety of neuropil including the apical dendrites of 10–50 projection neurons (Bartel et al.,

2015; Schwarz et al., 2018). Historically, OB projection neurons have been divided into mitral and

tufted cells (MCs, TCs), largely based on their soma location and dendritic and axonal projection

pattern (Figure 1—figure supplement 1; Haberly and Price, 1977; Imamura et al., 2020;

Mori et al., 1983; Orona et al., 1984): MC somata are located predominantly in a thin layer with

their dendrites covering the deeper part of the OB external plexiform layer. Their axons project to a

wide range of structures including posterior piriform cortex. TC axons, on the other hand, are

restricted to more anterior forebrain structures and their cell bodies are distributed across the exter-

nal plexiform layer, with dendrites largely restricted to superficial layers. Within the TC population,

subdivisions have been made into deep, middle, superficial, and external TCs, largely based on

soma position. MCs on the other hand are often morphologically described as a largely homoge-

neous population. However, branching patterns of lateral dendrites as well as soma size and apical

dendrite length might allow for further subdivision (Mouradian and Scott, 1988; Orona et al.,

1984; Schwarz et al., 2018). Moreover, projection patterns might differ based on soma position

along the dorsomedial–ventrolateral axis of the OB (Inokuchi et al., 2017; Chen et al., 2021).

In parallel to this morphological diversity, numerous studies have described physiological hetero-

geneity both as a result of differential inputs from granule cells onto TCs and MCs (Christie et al.,

2001; Ezeh et al., 1993; Geramita et al., 2016; Phillips et al., 2012) as well as intrinsic excitability

and glomerular wiring (Burton and Urban, 2014; Gire et al., 2019). Consequently, TCs respond

more readily, with higher peak firing rates, and to lower odor concentration in vivo (Griff et al.,

2008; Kikuta et al., 2013; Nagayama et al., 2014), and earlier in the respiration cycle compared to

MCs (Ackels et al., 2020; Fukunaga et al., 2012; Igarashi et al., 2012; Jordan et al., 2018;

Phillips et al., 2012).

Within the TC and MC populations, biophysical heterogeneity has been more difficult to tie to

specific cell types or subtypes. MCs show diversity in biophysical properties that is thought to aid

efficient encoding of stimulus-specific information and is, at least in part, experience dependent

(Angelo et al., 2012; Burton et al., 2012; Padmanabhan and Urban, 2010; Tripathy et al., 2013).

Both in vivo and in vitro recordings suggest that a subset of MCs show regular firing, while others

show ‘stuttering’ behavior characterized by irregular action potential clusters (Angelo et al., 2012;

Balu et al., 2004; Bathellier et al., 2008; Buonviso et al., 2003; Carey and Wachowiak, 2011;

Desmaisons et al., 1999; Fadool et al., 2011; Friedman and Strowbridge, 2000; Margrie and

Schaefer, 2003; Padmanabhan and Urban, 2010; Schaefer et al., 2006). While TCs are heteroge-

neous, with, for example, external TCs displaying prominent rhythmic bursting, driving the glomeru-

lar circuitry into long-lasting depolarizations in vitro (De Saint Jan et al., 2009; Gire and Schoppa,

2009; Gire et al., 2019; Najac et al., 2011), a systematic assessment of biophysical variety is lacking

so far. Moreover, differential centrifugal input from cortical and subcortical structures might further

amplify this overall heterogeneity both between MCs and TCs as well as potentially within those dif-

ferent classes (Boyd et al., 2012; Kapoor et al., 2016; Markopoulos et al., 2012;

Niedworok et al., 2012; Otazu et al., 2015).

Thus, anatomical projection patterns, in vivo odor responses, and intrinsic properties are known

to show substantial variability across different projection neurons. Systematic investigation of differ-

ent projection neurons, however, has been hampered by a scarcity of specific molecular tools. Inter-

neuron diversity, on the other hand, in general has received considerable attention with numerous

studies including in the OB (Parrish-Aungst et al., 2007; Tavakoli et al., 2018), aiming to provide a

systematic assessment of morphology, physiology, chemotype and the basis for genetic targeting of

distinct types of interneurons. For OB projection neurons, however, only little information about che-

motypes (Kiyokage et al., 2010) is available at this point: Cdhr1 and Tbx21 Haddad et al., 2013;

Nagai et al., 2005 have been shown to be selectively expressed in a subset of OB projection neu-

rons. CCK distinguishes a subset of TCs (superficial TCs, [Liu and Shipley, 1994; Seroogy et al.,

1985; Short and Wachowiak, 2019; Sun et al., 2020]). Vasopressin-expressing cells might consti-

tute a further subset of superficial TCs (Lukas et al., 2019), and recently, the Lbhd2 gene has been

used to obtain more specific genetic access to MCs (Koldaeva et al., 2021). Heterogeneous expres-

sion of both the GABAa receptor and voltage-gated potassium channel subunits have been
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observed (Padmanabhan and Urban, 2010; Panzanelli et al., 2005), albeit not linked to specific cell

types. Expression of axon guidance molecules such as Nrp2 might further allow subdivision of pro-

jection neurons across the OB (Inokuchi et al., 2017).

Hence, while some molecular markers can be used to define specific subsets of projection neu-

rons, this description is far from complete. A comprehensive molecular definition of projection neu-

ron types would help to classify and collate existing biophysical, morphological, and physiological

data and delineate the distinct output streams of the OB. Moreover, it would provide a platform

upon which further focused experimental approaches could be tied.

Single-cell or single-nucleus RNA sequencing has been used effectively to map out cell types

across a variety of brain areas (Macosko et al., 2015; Zeisel et al., 2018), including inhibitory inter-

neurons in the mouse OB (Tepe et al., 2018). As M/TCs constitute only ~10% of all OB neurons, we

decided to enrich for projection neurons for single-nucleus (sn)RNA-seq. We then combined snRNA-

seq with bulk RNA deep seq as well as additional snRNA-seq for OB neurons projecting to different

cortical areas, thereby allowing us to disentangle different projection neuron classes by target area.

We found that indeed both MCs and TCs fall into several, separable types, defined by expression of

both common and overlapping gene regulatory networks. This work will therefore provide a molecu-

lar entry point into disentangling the diversity of OB projection neurons and defining the functional

roles of different MC/TC types.

Results

Single-nucleus RNA sequencing of olfactory bulb projection neurons
distinguishes mitral and tufted cell types
To characterize the molecular diversity of OB projection neurons, we used viral targeting and fluo-

rescence-activated nuclei sorting (FANS) to enrich for OB projection neurons and characterized their

transcriptomes using single-nucleus RNA sequencing (snRNA-seq) (Figure 1A, Figure 1—figure sup-

plement 2A,B).

First, we injected a retrogradely transported Adeno-Associated Virus expressing nuclear GFP

(rAAV-retro-CAG-H2B-GFP; Tervo et al., 2016) into multiple sites along the antero-posterior axis of

the olfactory cortex, specifically into the anterior olfactory nucleus (AON) and piriform cortex (PCx)

(Figure 1A). Histological analysis revealed that virus injections resulted in GFP expression in a het-

erogeneous population of OB cells labelling cells in the mitral cell, external plexiform, glomerular,

and granule layers (Figure 1B). Sparse GFP expression in putative periglomerular and granule cells

may have resulted from viral infection of migrating immature neurons from the rostral migratory

stream or from diffusion of the virus from the injection site.

We dissected the olfactory bulbs of three injected mice, generated three independent replicates

of single-nucleus suspensions, enriched for GFP expression using FANS (Figure 1—figure supple-

ment 2), and performed snRNA-seq using 10� Genomics technology (Figure 1A). We performed a

detailed quality check of the individual replicates, then combined nuclei for downstream analyses

(Figure 2—figure supplement 1). We analyzed a total of 31,703 nuclei, grouped in 22 clusters that

were annotated post hoc based on the expression of established marker genes for excitatory and

inhibitory neurons and glial cell populations (Figure 2A–C). We initially used the combinatorial

expression patterns of glutamatergic and previously characterized M/T cell markers (Vglut1, Vglut2,

Vglut3, Tbx21, Cdhr1, Thy1) to identify putative OB projection neurons, comprising 23.66%

(n = 7504) of all nuclei.

Next, we further subclustered the selected profiles, resulting in a total of nine molecularly dis-

tinct subpopulations. To assign preliminary labels to each of these cell types, we used marker

genes previously employed in functional or single cell RNA-seq studies (Nagayama et al., 2014;

Tepe et al., 2018). We also used available RNA in situ hybridization data from the Allen Insti-

tute for Brain Science to corroborate our preliminary assignments (Figure 3—figure supplements

1 and 2). Our analysis revealed eight molecularly distinct clusters of putative projection neurons

and one cluster of putative periglomerular cells (Figure 2D,E). Among projection neurons, we

identified three clusters of MCs (M1, M2, and M3) and five clusters of middle and external TCs

(T1, ET1, ET2, ET3, and ET4).
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smFISH validates mitral and tufted cell types
To identify genes selectively expressed in OB projection neurons, we used the R-package

glmGamPoi (Ahlmann-Eltze and Huber, 2021). We combined the average expression levels of

the top differentially expressed genes for each cell type and found it to be highly specific for

each cluster (Figure 3A,C). We then selected a few specific marker genes (Figure 3B,D) to vali-

date projection neuron type identity by combining single-molecule fluorescent in situ hybridiza-

tion (smFISH) with GFP staining upon rAAV-retro-CAG-H2B-GFP injection into the olfactory

cortex.

We first investigated MC type-specific gene expression. Differential expression (DE) analysis iden-

tified the voltage-gated potassium channel Kcng1, the transcriptional regulator LIM homeobox 5

(Lhx5) and the serine-rich transmembrane domain 1 (Sertm1) as putative M1-specific marker genes.

Two-color smFISH revealed extensive co-localization of Kcng1 and Lhx5 transcripts within the same

subpopulation of cells in the MC layer (Figure 3—figure supplement 1E,R). Furthermore, Kcng1,

Lhx5, and Sertm1 expression was consistently observed in neurons expressing GFP (Figure 3H, Fig-

ure 3—figure supplement 1B–D). Next, DE analysis identified the mechanosensory ion channel
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Figure 1. Comprehensive molecular profiling of olfactory bulb projection neurons. (A) Schematic representation of experimental design. Top: after

injection of rAAVretro-CAG-H2B-GFP into PCx and AON, single nuclei were dissociated from three mice (single nuclei (sn) R1,2,3: replicates 1,2,3) and

sorted using fluorescence-activated nuclei sorting (FANS). The population of nuclei is selected based on GFP and DRAQ5 (far-red fluorescent DNA

dye). See Figure 1—figure supplement 2 for detailed FANS plots. Sorted nuclei were sequenced using 10x single-nucleus RNA-seq. Middle and

bottom: after injection of rAAVretro-CAG-H2B-GFP into PCx (middle) or AON (bottom), single nuclei were dissociated from three mice for each

injection site and sorted using FANS (as described above and Figure 1—figure supplement 2). RNA extracted from sorted nuclei was prepared and

sequenced using bulk RNA deep sequencing. PCx: Piriform Cortex; AON: Anterior Olfactory Nucleus; R: replicate; GRN: Gene Regulatory Network. (B)

Representative coronal sections and high-magnification images showing GFP expression (in green) in the main olfactory bulb after injection of

rAAVretro-CAG-H2B-GFP into PCx and AON (top), PCx only (middle), and AON only (bottom). Injection of the virus into PCx and AON resulted in GFP-

expressing nuclei located in the mitral cell (empty arrowheads), external plexiform, glomerular (white arrowheads), and granule cell layers; injection into

PCx resulted in GFP-expressing nuclei located in the mitral cell layer (empty arrowheads); injection into AON resulted in GFP-expressing nuclei located

in the external plexiform and glomerular layers (white arrowheads) and granule cell layers. GL: glomerular layer; EPL: external plexiform layer; MCL:

mitral cell layer; GCL: granule cell layer. Neurotrace counterstain in blue. Scale bars, 100 mm and 50 mm (high magnification).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Schematic representation of olfactory bulb cell types and their cortical projection targets.

Figure supplement 2. Enrichment of GFP-expressing nuclei using fluorescence-activated nuclei sorting (FANS).
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Piezo2, the transcription cofactor vestigial like family member 2 (Vgll2) and the zinc finger protein

114 (Zfp114) as putative M2-specific markers. Two-color smFISH revealed extensive co-localization

of Piezo2 and Vgll2 transcripts within the same subpopulation of cells in the mitral cell layer (Fig-

ure 3—figure supplement 1J,R), and co-localization of M2-specific marker genes with GFP

(Figure 3I, Figure 3—figure supplement 1F,G). Finally, we identified the calcium-dependent
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Figure 2. Single-nucleus RNA sequencing distinguishes distinct cell types and molecular signatures of OB projection neurons. (A) UMAP

representation of gene expression profiles of 31,703 single nuclei combined from all replicates (R1, R2, R3) of mice injected into both AON and PCx,

grouped into 22 clusters color-coded by cell type membership (GC: granule cell, PG: periglomerular cell, OPC: oligodendrocyte precursor cell, Micro:

microglia, Astro: astrocyte, Oligo: oligodendrocyte, ET: external tufted cell, M: mitral cell, T: tufted cell, Imm-like: Immature-like cell). See Figure 2—

figure supplement 1 for detailed quality check of each replicate. (B) Matrix plot showing the z-scored expression levels of the top 50 differentially

expressed (DE) genes for each cell population ordered by hierarchical relationships between distinct clusters. Each column represents the average

expression level of a gene in a given cluster, color-coded by the UMAP cluster membership (from A). The dendrogram depicts the hierarchical

relationships and is computed from the PCA representation of the data using Pearson correlation as distance measure and link by complete linkage. (C)

UMAP representations of known marker genes for main cell populations (Syt1: neurons; Gad2: GABAergic neurons; Slc17a7: glutamatergic neurons;

Gfap, Tmem119, Pdgfra, Mobp: glial cells; Th, Calb1: periglomerular neurons; Cdhr1, Tbx21, Slc17a6: mitral/tufted cells). Nuclei are color-coded by the

raw expression level of each transcript. (D) UMAP representation of subclustering from the initial clusters M1, M2/M3, T1, ET1, and ET2 (cluster names

from A), selected for the expression of known excitatory and mitral/tufted cell markers (shown in C), resulting in 7504 putative projection neurons

grouped into nine distinct types. (E) Same matrix plot as described in (B) showing the z-scored expression levels of the top 50 DE genes for each

projection neuron type ordered by hierarchical relationships and color-coded by the UMAP subcluster membership (from D).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Quality check of individual replicates of sn-RNA seq (sn-R1/R2/R3 dataset) shows the reliability of the data and the replicability of
each cell type.
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Figure 3. Histological validation of molecularly distinct mitral and tufted cell types. (A) Combined average (avg) raw expression level of the top n

differentially expressed (DE) genes for each mitral cell type (M1 n=14, M2 n=11, M3 n=10), overlaid onto the subclustering UMAP space (shown in

Figure 2D). DE genes were selected if their log fold change was greater than 4 (see Materials and methods for details). M1-specific genes: Kcng1,

Lhx5, Sertm1, Gabra2, Doc2b, Cntn6, Olfr1259, Nrp2, C1ql1, Ebf1, Baiap3, Adgrl2, Dsc2, Chrna5; M2-specific genes: Piezo2, Vgll2, Zfp114, Nts, Ros1,

Samsn1, Grid2, Smpx, Itga4, Itga9, Sema6d; M3-specific genes: Cadps2, Calca, Fst, Ets1, Ednra, Cdkn1c, Mustn1, Smoc2, Cnr1, Ccno. (B) Violin plots

showing maximum raw expression value of selected mitral cell type-specific DE genes across mitral and tufted cell clusters for further validation with

smFISH. (C) Combined average (avg) raw expression level of the top n DE genes for each tufted cell type (T1 n=9, ET1 n=7, ET2 n=9, ET4 n=6), overlaid

onto the subclustering UMAP space (shown in Figure 2D). T1-specific genes: Barhl2, Sgcg, Vdr, Olfr111, Olfr110, Cacna1g, Fam84b, Kcna10, Tspan10;

ET1-specific genes: Coch, Wnt5b, Rorb, Chst9, Tpbgl, Clcf1, Rxfp1; ET2-specific genes: Lhx1, Ebf3, Trp73, Edn1, Ebf2, Nr2f2, Uncx, Psrc1, Dsp; ET4-

specific genes: Ly6g6e, Foxo1, Siah3, Galnt12, Itga8, Ets2, Grik4. (D) Violin plots showing maximum raw expression value of selected tufted cell type-

specific DE genes across mitral and tufted cell clusters for further validation with smFISH. (E, F) Schematic representations of the smFISH images for

validating projection neuron type-specific marker genes upon rAAVretro-CAG-H1B-GFP injection into PCx and AON. The schemes depict the laminar

location visualized in the histological images from a coronal section of the ipsilateral hemisphere to the injection site. EPL: external plexiform layer;

MCL: mitral cell layer; GL: glomerular layer. (G–I) smFISH showing combinatorial expression of mitral cell type-specific marker genes for M1, M2 and M3

cells in the mitral cell layer. High magnifications (top right) show co-labeling of viral GFP with the in situ mRNA probe. (G and G’). The M3 markers

Cadps2 and Calca are co-expressed in subpopulations of cells in the mitral cell layer, indicated by the yellow/magenta arrowheads. (H and H’) The M3

Figure 3 continued on next page
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secretion activator 2 (Cadps2), calcitonin (Calca), and follistatin (Fst) as putative M3-specific markers.

smFISH revealed selective and extensive co-localization of Cadps2 with Calca or with Fst transcripts

within the same subpopulation of cells in the MC layer (Figure 3G,G’, Figure 3—figure supplement

1N,R). Furthermore, Cadps2, Calca and Fst expression was consistently observed in neurons

expressing GFP (Figure 3G,H, Figure 3—figure supplement 1K–M). Importantly, two-color smFISH

revealed that type-specific M1, M2, and M3 markers were expressed in largely non-overlapping pop-

ulations of MCs: M1-specific Kcng1 and Lhx5 transcripts rarely co-localized with M2-specific Vgll2

and Piezo2 transcripts (Figure 3—figure supplement 1O,P,R); M1-specific Kcng1 transcripts rarely

co-localized with M3-specific Cadps2 and Calca transcripts (Figure 3H,H’, Figure 3—figure supple-

ment 1Q,R); M2-specific Vgll2 transcripts rarely co-localized with M3-specific Cadps2 transcripts

(Figure 3I,I’, Figure 3—figure supplement 1R). Together, the selective co-localization of type-spe-

cific genes in non-overlapping populations in the mitral cell layer validates these three types as accu-

rate and meaningful groupings of MCs, and their co-localization with GFP validates their identity as

projection neurons.

DE analysis for TC type-specific genes identified the transcription factor BarH-like homeobox 2

(Barhl2), the gamma-sarcoglycan Sgcg, the vitamin D receptor (Vdr), and the olfactory receptors

Olfr110 and Olfr111 as putative T1 markers. Two-color smFISH revealed extensive co-localization of

Barhl2 and Sgcg or Olfr110/Olfr111 transcripts within the same subpopulation of cells in the external

plexiform layer, indicative of middle tufted cells (Figure 3J,J’, Figure 3—figure supplement 2B,L).

Furthermore, Barhl2 and Sgcg expression was observed in neurons expressing GFP (Figure 3J). The

coagulation factor C homolog (Coch) and the Wnt family member 5b (Wnt5b) were identified as

putative ET1 markers. smFISH confirmed the expression of Coch and Wnt5b in a subpopulation of

cells in the external plexiform and glomerular layers, although co-expression could not be recovered

as consistently as for other markers (Figure 3K, Figure 3—figure supplement 2D,L). Moreover,

Coch expression was observed in neurons expressing GFP (Figure 3K). The LIM homeobox 1 (Lhx1)

and the early B-cell factor 3 (Ebf3) were identified as putative ET2 markers. Two-color smFISH

revealed consistent Lhx1 and Ebf3 co-expression in a sparse subpopulation of cells at the boundary

between the external plexiform and glomerular layers (Figure 3—figure supplement 2F,L), indica-

tive of external TCs. Finally, we identified the lymphocyte antigen 6 family member 6GE (Ly6g6e)

and the transcription factor Forkhead box O1 (Foxo1) as putative ET4 markers. smFISH revealed

selective co-expression of Ly6g6e and Foxo1 in a subpopulation of cells in the glomerular layer (Fig-

ure 3—figure supplement 2H,L), and co-localization of Ly6g6e with GFP validates their identity as

external TCs (Figure 3L). Importantly, two-color smFISH revealed that type-specific tufted cell

markers were expressed in largely non-overlapping populations of cells: ET1-specific Coch tran-

scripts did not co-localize with T1-specific Barhl2 transcript or with ET4-specific Ly6g6e transcripts

(Figure 3K,K’ ,L ,L’, Figure 3—figure supplement 2L). Furthermore, ET4-specific Foxo1 and Ly6g6e

transcripts did not co-localize with T1-specific Barhl2 transcript (Figure 3—figure supplement 2I,L),

with ET2-specific Ebf3 transcript (Figure 3—figure supplement 2J,L) or with ET1-specific Wnt5b

transcript (Figure 3—figure supplement 2K,L). Overall, the selective co-localization of type-specific

genes, their location within the olfactory bulb, their non-overlapping nature, and their co-localization

Figure 3 continued

marker Cadps2 and M1 marker Kcng1 are expressed in distinct subpopulations of cells in the mitral cell layer, indicated by the magenta and yellow

arrowheads respectively. (I and I’) The M3 marker Cadps2 and M2 marker Vgll2 are mutually exclusive in subpopulations of cells in the mitral cell layer,

indicated by the yellow and magenta arrowheads respectively. For additional histological analysis and quantification of co-expression see Figure 3—

figure supplement 1. (J–L) smFISH images showing combinatorial expression patterns of tufted cell type-specific marker genes for validating T1, ET1,

ET2 and ET4 clusters as distinct projection neuron types in the external plexiform and glomerular layers. High magnifications (top right) show co-

labeling of viral GFP with the in situ mRNA probe. As described for the mitral cell types, yellow or magenta arrowheads show non-overlapping patterns

(K, K’: T1–ET1 and L, L’: ET1–ET4), and yellow/magenta arrowheads show co-expression patterns (J, J’: T1–T1). For additional histological analysis and

quantification of co-expression see Figure 3—figure supplement 1. DAPI counterstain in blue. Scale bars, 50 mm and 10 mm (high magnifications).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Histological analysis of DE genes for distinct mitral cell types.

Figure supplement 2. Histological analysis of DE genes for distinct tufted cell types.

Figure supplement 3. Excitability-related, cell adhesion-related, and pan-OB projection neuron DE genes.
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with GFP validate these five types of middle and external TCs as accurate and meaningful

classifications.

Inferring gene regulatory networks for projection neurons
The differential gene expression patterns revealed by transcriptome analysis are determined by the

concerted action of transcription factors (TFs). We therefore set out to characterize cell types by

their TF activity. To do so, we predicted regulatory relationships between TFs and target genes (that

can be also TFs), taking into account independent genomic information about TF binding sites

around the target gene-specific promoter. These gene regulatory networks are more robust against

technical artifacts than the expression of individual genes, providing a complementary set of axes

along which to cluster MCs and TCs. Ultimately, gene regulatory network analysis can yield more

detail for classifying cell types and for understanding the molecular mechanisms that underlie their

transcriptional differences.

To infer the regulatory networks of each type of projection neuron, we used the Single-Cell

Regulatory Network Inference and Clustering pipeline (SCENIC, Aibar et al., 2017, Van de

Sande et al., 2020). In brief, SCENIC consists of co-expression analysis, followed by TF binding

motif enrichment analysis, and finally evaluation of the activity of regulons, that is a TF and its

predicted target genes (Figure 4A). The result is a list of regulons and a matrix of all the single

cells with their regulon activity scores (RAS, essentially an area-under-the-curve metric, see

Materials and methods for details).

Clustering on regulon activity corroborates molecular groupings of
mitral and tufted cell types and allows further subdivision
We applied SCENIC to MCs and TCs (6484 cells), computing 86 regulons with a range of 8–551 tar-

get genes (median = 23.5). This greatly reduces the dimensionality of the data from >30,000 genes

to 86 regulons, defining a new low-dimensional space in which to analyze relationships between

nuclei. Using the regulon activity matrix, we computed a UMAP space and performed a Louvain clus-

tering on the putative projection neurons (Traag et al., 2019; Wolf et al., 2018). We compared this

gene regulatory network (GRN)-based clustering to the transcriptome-based clustering and

observed that neighbor relationships are conserved between neurons (Figure 4—figure supplement

1). Indeed, several clusters in transcriptome space are clearly identifiable as clusters in GRN-space,

and vice versa (e.g. ET2, ET4, M1+M3). However, we also noted significant differences between

other clusters (ET1, T1, and M2). This disagreement suggests that network analysis provides orthog-

onal information relative to transcriptome analysis.

Combinations of regulon modules characterize mitral and tufted cell
subtypes
TFs activity is thought to be organized into coordinated network modules that determine cellular

phenotypes (Alexander et al., 2009; Irons and Monk, 2007; Suo et al., 2018). To characterize how

TFs are organized into such modules in OB projection neurons, we searched for combinatorial pat-

terns of regulon activity. We used the Connection Specificity Index (CSI) to this end, which is an asso-

ciation index known to be suited for the detection of modules (Fuxman Bass et al., 2013;

Suo et al., 2018). By computing the CSI on the basis of pairwise comparisons of regulon activity pat-

terns across cells, we found that the 86 regulons grouped into seven modules (mod1–7) (Figure 4B,

C).

Interestingly, regulon and module activity were not uniform within cell types. Rather, regulon

activity suggested the existence of distinct subtypes within mitral and tufted cell types (Figure 4D).

We used hierarchical clustering to further subdivide cell types, finding four subtypes of M1, three

subtypes each of M2, T1, and ET2, and two subtypes of ET1 and ET4. To further investigate these

subtypes, we used the modules to describe how the combined regulatory logic of distinct TFs con-

tributes to the diversity of MC and TC subtypes. We asked if combinations of modules could

uniquely describe the subtypes. To do so, we calculated the average module activity score per cell

subtype. Next, we performed a hierarchical clustering on the subtypes (Figure 4E). We found that,

when grouped by module activity, subtypes do not strictly group by type; rather, subtypes of differ-

ent cell types tend to share similar module activity (Figure 4E). This is a consequence of the
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Figure 4. Mitral and tufted cell-specific regulons combine into modules. (A) Schematic representation of the network analysis pipeline, including the

required input, the SCENIC protocol, and the output in the form of regulon modules and a regulatory network (in Figure 5). TSS: transcription start

site; TF: transcription factor. (B) Hierarchical clustering of mitral and tufted cell-specific regulons using the Connection Specificity Index (CSI) as a

distance measure results in seven modules (Ward linkage). The connection specificity index compares Pearson correlation coefficients (PCC) between

Figure 4 continued on next page

Zeppilli et al. eLife 2021;10:e65445. DOI: https://doi.org/10.7554/eLife.65445 9 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.65445


differences between transcriptome- and GRN-based analysis: transcriptome clusters (cell types) are

subdivided along the boundaries of GRN-based clusters. As we observed the grouping of subtypes

along three neighboring clusters – ET1, T1, and M2 – we set out to better understand how module

activity changes along these cell types. To this end, we used PAGA (PArtition-based Graph Abstrac-

tion) for trajectory analysis along the sequence of ET4, ET1, T1, M2, M3, M1, ET2 (Figure 4F, and

for the corresponding UMAPs, see Figure 4G). We observed clear module activity gradients

between ET4-ET1-T1, where modules 1, 3, 4, and 7 are high at the ET4 end of the cluster and low at

T1. Module two forms an antagonistic gradient across ET1, high at T1 and low at ET4. Similarly,

activity of module five changes in a gradient fashion from T1 to M2. Importantly, trajectory analysis

not only detects gradients, but also discrete changes between cell types. For instance, the activity of

module six shows a step-wise dynamic: high activity at ET2, medium at M1, and low for the other

cell types. And module two has no activity in M3, while it is clearly present in its neighboring cell

types M1 and M2.

Regulon-based transcription factor networks reveal overlapping
features of cell type identity
While TFs regulate a large number of target genes, central to cell identity are the interactions

between them: TFs can regulate their own expression as well as the expression of other TFs, gener-

ating a TF network thought to be a core determinant of cell type identity (Arendt et al., 2016;

Becskei et al., 2001; Thieffry, 2007). We thus looked at TF–TF interactions to visualize the TF net-

work topology that defines MCs and TCs. We specifically asked whether MC and TC classes share

common TF network features, or whether, as suggested by the analysis of genome-wide transcrip-

tome and regulon analysis (Figures 2–4), MC and TC subtypes are defined by specific yet overlap-

ping TF network features.

As a regulon is defined by a TF and a set of target genes, we constructed a (directed) network of

TFs by taking from each regulon’s target genes only the TFs that have regulons themselves

(Figure 5A). Overall, we found one large set of interconnected TFs, one small component of two

TFs, and 18 isolated TFs. Fifty-five of the 86 TFs (64%) show possible self-activating regulation, and

several others form mutually activating pairs (e.g. Lhx1 and Uncx). The network is dominated by

three hub genes, two of which may self-activate: Pbx3 (activates 17 TFs), Bclaf1 (activates 11 TFs),

and Taf1 (activates 9 TFs). Their central position in this network suggests important roles in regulat-

ing transcription broadly across different cell types (e.g. Taf1, Bclaf1) or selectively in cell type-spe-

cific networks (e.g. Pbx3, Figure 5—figure supplement 1).

As anticipated from our module analysis, we find features that are shared across certain types

of MCs and TCs rather than MC- or TC-specific network features (Figure 5B,C). For instance, we

Figure 4 continued

regulons. If we take regulons A and B, their CSI is the number of PCC of A with other regulons and of B with other regulons that are lower than the

PCC between A and B. This means that the CSI contextualizes a correlation between two regulons given how these regulons correlate to the rest.

Prominent cross-module interactions are observed for mod1–2, mod3–4, and mod6–7. Module four showed interactions with all other modules. (C)

Table listing the mitral and tufted cell-specific modules, their regulons, the number of unique target genes in each module, and cluster-specific marker

genes found also as target genes in a given module. Marker genes were established by transcriptome analysis and shown in Figure 3B and D. (D)

Regulon activity (columns) in mitral and tufted cell types (rows) defines subtypes within each cluster. Within each cell type, rows were ordered by

hierarchical clustering (correlation distance, complete linkage). Columns clustered as in (B). (E) Module activity per cell subtype. Module activity is

calculated as the average activity of its regulons for a given cell subtype. Rows were ordered by hierarchical clustering (correlation distance, complete

linkage). Each cell subtype may be defined by a combination of active and inactive modules. For example, M2b and M2c are defined by relatively high

activity in modules 1 and 2. (F) Quantification of changes in module activity through trajectory analysis. A single trajectory that traverses the cell types in

the order ET4, ET1, T1, M2, M3, M1, ET2, is computed using PAGA (Wolf et al., 2019). Module activity along the trajectory is the average over a

sliding window of 100 nuclei. Trajectory progression is depicted as a greyscale gradient from white to black. Along the same trajectory is also

computed the regulon activity and expression levels of the corresponding TFs (Figure 4—figure supplement 3). (G) Module activity mapped on the

projection neuron UMAP space (Figure 2D, rightmost UMAP for convenience). Color range as in (E).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparing transcriptomic and gene regulatory network-defined mitral and tufted cell types.

Figure supplement 2. Mitral and tufted cell type-specific marker genes found in regulons.

Figure supplement 3. PAGA-based trajectory analysis of mitral and tufted cell types.
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Figure 5. Mitral and tufted cell-specific transcription factor network derived from regulons. (A) Overview of mitral and tufted cell-specific transcription

factor (TF) network, with node size scaled by the number of target genes and nodes colored with different shades of gray based on the outdegree

(number of outgoing edges). Thick borders and edges denote cycles of 2 or three regulons. The three main hubs are: Pbx3 (outdegree 17, target genes

545), Bmyc (outdegree 11, target genes 523) and Taf1 (outdegree 9, target genes 551). (B) Same network as shown in A specific for mitral cell types (M1,

M2, M3) with standardized regulon activity for the top 10 most specific regulons mapped onto the corresponding TF nodes (compare Figure 4D,E).

Regulon specificity scores are shown in Figure 5—figure supplement 1A, with expression of the corresponding TFs visualized on UMAPs in Figure 5—

figure supplement 1B. Mitral and tufted cell type-specific marker genes are visualized in the network in Figure 5—figure supplement 2. (C) Same

network as shown in (A) specific for tufted cell types (T1, ET1, ET2, ET4) with standardized regulon activity for the top 10 most specific regulons. We

omitted ET3 as it only has a few nuclei. As for mitral cell types, see also Figure 5—figure supplements 1 and 2.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure 5 continued on next page
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find that M1 and ET2 are characterized by the hub Pbx3. Yet both cell types are distinguishable

by other TFs: M1 uses Egr1 and Dlx5 with Pbx3, whilst ET2 has a 2-cycle involving Lhx1 and

Uncx, which were both identified as marker genes specific for this cell type (Figure 4—figure

supplement 2, Figure 5—figure supplement 2). Between T1, ET1, and ET4, we observe the

gradients discussed above recapitulated in a transition between three groups of closely linked

TFs. T1 is characterized by the close-knit group of Bcl11a, Cux1, Cux2, Hlf, and Rcor1, which

are all members of module 2. Next, ET1 also employs these TFs, with the exception of Hlf and

with the addition of Hmgb3 and Ppargc1a (modules 3 and 4, respectively). Interestingly, the

estrogen receptors Esrra and Esrrg are in the top 15 of specific regulons for ET1, creating a tar-

get-gene-rich three-cycle with Ppargc1a: the second group of TFs. For ET4, Hmgb3 and

Ppargc1a remain characteristic (but not Esrra and Esrrg), with Hmgb3 closely linked to the (third)

group of Junb, Fos, and Atf4 (also members of modules 3 and 4).

Taken together, the analysis of TF regulatory networks suggests that individual MC and TC types

share key TF network features, which might point towards common physiology or connectivity fea-

tures. The differentially active TF network hubs and loops provide starting points for future investiga-

tion of the functional differences between the MC and TC types described here (Figure 5—figure

supplement 2). Thus, the modules and the network serve as complementary approaches for study-

ing cell type identity, with modules suited to classifying cells into types and subtypes and network

analysis suited to investigating their functional differences.

Simulating single-nucleus gene expression from bulk RNA deep
sequencing
TCs preferentially target anterior olfactory regions, including the Anterior Olfactory Nucleus (AON),

while MCs target anterior and posterior olfactory areas (Imamura et al., 2020). Therefore, we asked

whether the genetic diversity within MC types could provide information about their projection tar-

gets. To investigate this question, we again injected rAAV-retro-CAG-H2B-GFP into the olfactory

cortex, albeit now either into the AON or the posterior piriform cortex (pPCx) (Figure 1A). For each

injection site and in three biological replicates, we then enriched for GFP expression using FANS

(Figure 1—figure supplement 2C–F) and prepared RNA for bulk RNA deep sequencing

(Figure 1A).

Bulk RNA sequencing represents molecular information from a variety of different cell types.

Given that a substantial fraction of isolated nuclei in our experiments was comprised of granule and

periglomerular cells, in addition to projection neurons, we devised a novel computational approach

to recapitulate the constituent cell types from bulk RNA sequencing data by simulating single-

nucleus expression profiles. Previous methods simulated the transcriptome of a single cell based on

the overall distribution of gene expression levels in the bulk RNA sequencing data, producing many

nuclei that were similar to each other and to the original bulk expression profile

(Konstantinides et al., 2018; Avila Cobos et al., 2018; Zhu et al., 2016). This worked well for clean

bulk RNA-seq datasets with only one cell type, but for our mixed datasets, the simulated nuclei

resembled an unrealistic average of the constituent cell types. Therefore, to capture the diversity

contained within our bulk RNA-seq datasets, we used regulons as the unit of analysis to create simu-

lated nuclei with more biologically realistic transcriptomes (Figure 6A,B).

We first compared simulated and sn-R1/R2/R3 nuclei by using principal component analysis to

project both sets of nuclei into a shared low-dimensional space. We used these principal compo-

nents as input to a UMAP projection to visually inspect relationships between simulated and sn-R1/

R2/R3 nuclei (Figure 6B, step 1). Consistent with histology and sn-R1/R2/R3 analyses (Figures 1 and

2), simulations from both AON-injection and pPCx-injection bulk RNA-seq datasets (AON-sim and

PCx-sim, respectively) contained cell types other than projection neurons, and this contamination

was more pronounced in the AON-sim dataset. The dispersion of simulated nuclei throughout this

space indicated that simulations successfully recapitulated the diversity of cell types in the bulk

Figure 5 continued

Figure supplement 1. Top five mitral and tufted cell type-specific regulons.

Figure supplement 2. Mitral and tufted cell type-specific marker genes visualized as target genes in the gene regulatory network.

Zeppilli et al. eLife 2021;10:e65445. DOI: https://doi.org/10.7554/eLife.65445 12 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.65445


A

D Simulated ‘connectivity’ UMAP

2. Selection of TFs from each bulk RNA-Seq dataset

TF1

TF1

TF1

TF1TF1

TF1

TF1

TF2

TF2

TF1

TF1

TF1TF1

TF2

TF2

TF2
TF2

bulk-AON bulk-PCx

B C D E F

TF1 TF2

A

Regulon X Regulon Y

Target 

genes

C LDA classifier

AON-simPN

PCx-simPN

B3. Simulated nuclei from bulk RNA-Seq datasets 

Raw expression level

Regulon 2

A
O

N
-s

im

TF1 A B TF2 D E FC

Regulon X

P
C

x
-s

im

 

Regulon Y

0

Max

S
im

u
la

te
d

 n
u

c
le

i

Regulons

classifier runs0 1000

1. Regulons from sn-R1/R2/R3

U
M

A
P

2

UMAP1

Step 1.

Project AON-sim, 

PCx-sim and sn-R1/R2/R3 

nuclei into shared UMAP space 

Step 2.

Train LDA classifier

to identify 

sn-R1/R2/R3 PN 

Step 3.

Apply classifier 

to filter for AON-simPN

and PCx-simPN 

Filter for AON- and PCx- simulated projecting neurons

AON-sim PCx-simsn-R1/R2/R3 PNsn-R1/R2/R3

U
M

A
P

2

UMAP1

M1

M2

M3

M1

M2

M3

Figure 6. Regulon-based simulations from bulk RNA deep sequencing data suggest that mitral cell types have distinct projection targets. (A)

Schematic representation of strategy to integrate bulk RNA-seq and single nucleus RNA-seq data. (A1) Simulations use regulons inferred from sn-R1/

R2/R3 data. A regulon consists of a transcription factor (TF) and all target genes (A, B, etc) that are activated by that transcription factor. (A2) When

simulating nuclei from bulk RNA-seq data, the probability of selecting a given regulon is determined by the abundance of its transcription factor in the

bulk RNA-seq dataset. (A3) Nuclei are simulated from each bulk dataset (AON-sim and PCx-sim) through random sampling of regulons with

replacement. This method maintains broad differences between datasets while accounting for heterogeneity within each dataset. (B) AON-sim, PCx-sim

and sn-R1/R2/R3 nuclei projected into a shared UMAP representation. Step 1: Blue indicates AON-sim nuclei and purple indicates PCx-sim nuclei. Step

2: Darker color indicates sn-R1/R2/R3 projection neurons. Step 3: Blue indicates AON-projecting simulated projection neurons (AON-simPN) and purple

indicates pPCx-projecting simulated projection neurons (PCx-simPN). (C) Linear Discriminant Analysis (LDA) classifiers were trained on AON-simPN and

PCx-simPN, then used to predict the projection target of sn-R1/R2/R3 mitral cells to investigate projection targets of sn-R1/R2/R3 derived types. Each

row represents one mitral cell. Each column represents one of 1000 LDA classifiers. Blue indicates that the mitral cell was classified as AON-simPN, and

purple indicates that the mitral cell was classified as PCx-simPN. Within each mitral cell type, cells are sorted vertically by their predicted projection

target. (D) UMAP representation color-coded by predicted projection target. Cells in blue were predicted to be AON-simPN by all 1000 classifiers.

Cells in purple were predicted to be PCx-simPN by all 1000 classifiers.
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RNA-seq datasets, as each cell class from the combined sn-R1/R2/R3 data had some simulated

nuclei in its vicinity (Figure 6B, step 1). To account for this contamination and filter for only putative

simulated projection neurons, we trained linear discriminant analysis (LDA) classifiers to predict

whether sn-R1/R2/R3 nuclei were projection neurons based on the 30 top principal components that

defined the shared low-dimensional space. These classifiers accurately and consistently classified

projection neurons, with a mean Jaccard index (a measure of similarity between predicted and true

labels) of 99.0% and a standard deviation of 0.07% over 1000 classifiers. We then applied this classi-

fier to the AON-sim and PCx-sim nuclei, designating those simulations predicted to be projection

neurons by all 1000 classifications as putative simulated AON- and PCx-projecting neurons (AON-

simPN and PCx-simPN, respectively) (Figure 6B, step 3).

To directly compare AON-simPN and PCx-simPN to MCs characterized through sn-R1/R2/R3, we

next used principal component analysis to define a shared low-dimensional space for MCs, AON-

simPN and PCx-simPN only. To investigate potential differences in projection target between MC

types, we trained 1000 LDA classifiers to predict the projection target of simulated projection neu-

rons based on the 30 top principal components that defined this shared low-dimensional space

(mean Jaccard index: 94.3%; standard deviation: 6.1%). We then used these classifiers to predict the

projection targets of sn-R1/R2/R3 MCs. Interestingly, we consistently found different predicted tar-

gets for the molecularly defined MC types. All M2 and M3 MCs were classified as PCx-simPN by

100% of classifiers, suggesting that these mitral types preferentially project to posterior targets

(Figure 6C). In contrast, 73.5% of M1 MCs were classified as AON-simPN by at least 80% of classi-

fiers, suggesting that M1 MCs preferentially project to anterior targets (Figure 6C). These findings

suggest that the molecular subcategorization of MCs may delineate differences in connectivity. The

types M1, M2, and M3 were defined by gene expression and regulon activity, but these results sug-

gest that they also describe projection target specificity. This correspondence between molecular

identity and projection target is further demonstrated by the segregation of MCs by predicted pro-

jection target in a UMAP space defined by gene expression (Figure 6D).

Targeted snRNA-seq validates predictions of preferential connectivity
for molecularly defined mitral cell types
To validate our prediction that M2 MCs preferentially project to posterior targets and M1 MCs

preferentially project to anterior targets, we performed a small volume rAAV-retro-CAG-H2B-

GFP injection into the pPCx. While small volumes will likely result in a smaller number of labeled

projection neurons overall, such focal injection will enhance specificity. We dissected the olfac-

tory bulbs, generated single nuclei, enriched for GFP expression using FANS, and performed

snRNA-seq using 10x Genomics technology (sn-PCx dataset) (Figure 7A). To assign cell type

identity, we first identified projection neurons by transforming the expression matrix into the

space of 30 principal components defined on the original, larger sn-R1/R2/R3 RNA-seq dataset.

One thousand LDA classifiers, each trained and validated on the original sn-R1/R2/R3 dataset

(mean jaccard index = 0.95), designated 57 out of 62 cells from the sn-PCx dataset as projection

neurons (Figure 7B).

Next, we transformed the expression matrix of these projection neurons into a low-dimensional

space defined by the expression of the 86 regulons from our SCENIC analysis on the original projec-

tion neurons sn-R1/R2/R3 dataset. These regulons create a low-dimensional space in which to com-

pare this new, targeted sn-PCx dataset to our original dataset. To quantify this comparison, we used

LDA classifiers, trained on the original mitral cells, to predict the cell type of these new projection

neurons based on regulon activity scores. These classifiers were then applied to the regulon activity

scores of the new projection neurons (Figure 7C).

Consistent with our prediction based on simulated transcriptomes, the vast majority (44 of 57)

PCx-projecting mitral cells were classified as M2 cells by at least 80% of classifiers. In contrast, only 6

of 57 PCx-projecting mitral cells were classified as M1 cells (analysis of M3 projections was pre-

cluded by their low prevalence). Were M2 cells present in the sn-PCx population at the same rate as

in the general mitral cell population, observing this many or more M2 cells would be unlikely (bino-

mial test, p=0.001, see Materials and methods for details). Similarly, the scarcity of M1 neurons

would be unlikely if M1 cells were present in the sn-PCx mitral population at the same rate as the

general mitral population (binomial test, p=5.57e-05).

Zeppilli et al. eLife 2021;10:e65445. DOI: https://doi.org/10.7554/eLife.65445 14 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.65445


Together, these findings validate the predictions made by simulating single-nucleus regulon-

based transcriptomes from bulk RNA deep sequencing and suggest that the molecular subcategori-

zation of MCs delineates differences in connectivity (Figure 7C,D).
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Figure 7. Targeted snRNA-seq experiment validates simulation-based predictions of molecularly defined-mitral

cell types with distinct projection targets. (A) Schematic representation of experimental design. Top: after injection

of rAAVretro-CAG-H2B-GFP into PCx, single nuclei were dissociated from one mouse and sorted using

Fluorescence-activated Nuclei Sorting (FANS). The population of nuclei is selected based on GFP and DRAQ5 (far-

red fluorescent DNA dye). Sorted nuclei were sequenced using 10x single-nucleus RNA-seq and integrated with

the main sn-R1/R2/R3 dataset. (B) Linear discriminant analysis (LDA) classifiers were trained on the main sn-R1/R2/

R3 dataset, then used to predict the projection neuron identity of sn-PCx cells. Each row represents one cell in the

new, targeted sn-PCx data. Each column represents one of 1000 LDA classifiers trained to discriminate projection

neurons from other cell types. The color indicates the prediction made by each classifier (dark: projection neuron,

light: other). (C) LDA classifiers were trained on the main dataset sn-R1/R2/R3, then used to predict the cell type

identity of sn-PCx projection neurons. Each row represents one sn-PCx projection neuron. Each column represents

one of 1000 LDA classifiers trained to predict cell type identity based on regulon expression. Color indicates the

predicted cell type identity (orange: M1, red: M2, yellow: M3). (D) UMAP showing sn-R1/R2/R3 mitral cells and sn-

PCx projection neurons integrated in the same low-dimensional space. UMAP was computed based on regulon

expression. sn-PCx projection neurons are in purple, while sn-R1/R2/R3 mitral cells are in color according to their

cell type identity (orange: M1, red: M2, yellow: M3) on the top UMAP, while in grey on the bottom (same) UMAP.
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Discussion
Morphological differences between OB mitral and tufted cells have been described since the time of

Cajal (The croonian lecture, 1894). Electrophysiological and functional imaging experiments in vivo

and in vitro, developmental studies, as well as anatomical reconstructions from light and electron

microscopy studies have further highlighted the heterogeneity of OB projection neurons

(Christie et al., 2001; Ezeh et al., 1993; Fukunaga et al., 2012; Geramita et al., 2016;

Haberly and Price, 1977; Kawasawa et al., 2016; Mori et al., 1983; Phillips et al., 2012). We here

provide the first detailed molecular profiling of mouse OB projection neurons and delineate types

and subtypes of mitral and tufted cells together with their key gene regulatory networks and connec-

tivity patterns.

We have performed single-nucleus and bulk RNA deep sequencing to characterize the molecular

diversity of mouse OB projection neurons. We identified, based on transcriptome and RNA in situ

analysis, three distinct types of MCs and five distinct types of TCs. We then used comprehensive

gene regulatory network analysis to reveal potential molecular determinants of cell type-specific

functional properties. Finally, we describe a novel computational approach for integrating single

nucleus and bulk RNA sequencing data, and we provide evidence that different MC types preferen-

tially project to anterior versus posterior regions of the olfactory cortex. Our analyses provide a com-

prehensive resource for investigating olfactory circuit function and evolution.

The molecular diversity of olfactory bulb projection neurons
Given that the vast majority of OB neurons are interneurons, notably granule cells and juxtaglomeru-

lar neurons, we devised a retrograde viral targeting strategy to substantially enrich for OB projection

neurons. This allowed us to analyze the transcriptomes of over 7500 putative projection neurons that

could in turn be grouped into eight molecularly distinct mitral and tufted cell types. We validated

neuronal identity using smFISH with multiple type-specific marker genes, and we determined the

localization of identified neuronal types within the mitral cell, external plexiform, and glomerular

layers of the main olfactory bulb. Finally, we used retrograde viral tracing combined with marker

genes to confirm that the molecularly distinct neuronal types we describe indeed project to the

olfactory cortex. Based on our analysis, we define three molecularly distinct types of MCs and five

distinct types of TCs.

The neuronal cell types we have characterized here likely represent the major categories of OB

projection neurons. More extensive sampling might reveal additional rare cell types, and more fine-

grained clustering could further subdivide subtypes of neurons. However, our samples contained

7504 putative projection neurons compared to current estimates of 10,000–30,000 projection neu-

rons overall per OB (Nagayama et al., 2014; Richard et al., 2010). Furthermore, we sorted nuclei

rather than whole cells, which is thought to more accurately reflect relative cell-type abundance

(Habib et al., 2017; Lake et al., 2017). Altogether we are therefore confident that our analysis cap-

tures the key biologically relevant types of projection neurons. Independent from the number of

molecularly distinct neuronal cell types, the gene expression profiles we have described here provide

critical new tools for refining projection neuron cell type identities by aligning a cell’s molecular fea-

tures with its functional properties. Previous experiments have highlighted the heterogeneity of

odor responses of MCs and TCs (Balu et al., 2004; Bathellier et al., 2008; Carey and Wachowiak,

2011; Desmaisons et al., 1999; Friedman and Strowbridge, 2000; Schaefer et al., 2006). We pro-

pose that this functional diversity can be explained, at least in part, by the molecular diversity of OB

projection neurons, a model that can now be tested experimentally.

Specificity of mitral cell projections
A critical feature of neuronal cell type identity is their projection target specificity. Earlier studies

have shown that TCs project to anterior regions of the olfactory cortex only, while MCs project to

both anterior and posterior olfactory cortex (Imamura et al., 2020; Nagayama et al., 2010;

Scott et al., 1980). Furthermore, and in contrast to the organization of neuronal projections to sen-

sory cortexes for vision, hearing, or touch, projections from the OB to the piriform cortex appear to

lack apparent topographical organization (Ghosh et al., 2011; Miyamichi et al., 2011;

Sosulski et al., 2011, see also Chen et al., 2021).
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We have analyzed, using bulk RNA deep sequencing, gene expression profiles of cells projecting

to anterior versus posterior olfactory cortex (AON versus PCx). Using simulations based on gene reg-

ulatory network analysis, we have then mapped the bulk RNA sequencing data onto MC types

defined by single-nucleus RNA sequencing. Interestingly, our analysis suggested that cells of the M1

MC type preferentially target the AON, while M2 and M3 cells preferentially target the pPCx. A tar-

geted snRNA-seq experiment of posterior-projecting MCs supported this prediction. Our findings

that MC types preferentially target anterior or posterior cortical areas is consistent with recent

observations using MAP-seq (Chen et al., 2021). Our results are consistent with the model that

gene expression and connectivity provide overlapping yet complementary axes for cell-type classifi-

cation (Kim et al., 2020).

Molecular mechanisms underlying the functional diversity of olfactory
bulb projection neurons
Gene regulatory network analysis can reveal the transcriptional programs that determine the

functional properties of neuronal subtypes. Here, we describe cell-type-specific modules of gene

regulation, defined by the interactions of transcription factors and their target genes. One

intriguing result of this analysis is that cell subtypes do not fall into clearly delineated MC and

TC classes. For example, module activity of M2b and M2c MC subtypes is more similar to that

of T1c TCs than other M1 and M2 MC subtypes. We obtained similar results from analyzing the

TF-TF network that is thought to be closely linked to maintenance of cell identity. This demon-

strated that while some MC subtypes indeed share key TFs with each other, regulon activity and

network features in MC subtypes and TC subtypes are highly overlapping. For example, the

most prominent hub, Pbx3, is predominantly expressed in M1 and ET2 types. More generally,

projection neurons are characterized by a variety of TFs, often closely linked through feedback

cycles, that are used by both MC and TC types in a combinatorial manner. The prominent hub

and cycle-related genes we have identified here may act as candidate master regulators of neu-

ronal function, which can be targeted for experimental validation. Together, these results sug-

gest that subtypes of MCs and TCs may share important functional properties, possibly blurring

at the transcriptional level the traditional division into tufted and mitral cells as the two major

classes of OB projection neurons. Moreover, the gradients of module activity that we observed

over the MC and TC subtypes theoretically provide a mechanism for generating multiple distinct

cellular phenotypes, similar to how morphogenetic gradients allow for spatial patterning and cell

differentiation (Wolpert, 1969). Through non-linear regulatory interactions, gradual differences at

the transcriptomic level can be translated into selective expression of functional genes.

For example, we found that the Kcng1 gene was selectively expressed in M1 MCs. The Kcng1

gene encodes for a voltage-gated potassium channel, which forms heterotetrameric channels with

the ubiquitously expressed delayed rectifying Kv2.1 potassium channel (indeed also expressed in the

M1 cluster) and modifies the kinetics of channel activation and deactivation (Kramer et al., 1998).

Other voltage-gated potassium channels exhibiting prominent differential expression levels in MC

and TC subtypes include Kcnd3, Kcng1, Kcnh5, Kcnq3, Kcnj2 and 6, and Hcn1 (for details see accom-

panying website link in Materials and methods). These channels represent intriguing candidates for

controlling the differential excitability of different MC and TC types.

We also found that a large number of cell adhesion and axon guidance genes known to control

the formation and maintenance of neuronal connectivity were differentially expressed in OB projec-

tion neuron types. Examples include members of the cadherin superfamily of cell adhesion glycopro-

teins (Cdh6, 7, 8 c, 9, 13, and 20) and components of the Semaphorin/Neuropilin/Plexin complexes,

including Nrp1, Nrp2, Plexna3, Sema3e, and Sema5b. Semaphorin/Neuropilin/Plexin complexes are

known to play critical roles in the development and maintenance of neuronal connections, including

in OB MCs (Inokuchi et al., 2017; Saha et al., 2007). Heterogeneity in these cell adhesion and guid-

ance genes might inform subdivisions in projection neurons across the OB, in particular along the

dorsomedial–ventrolateral axis.

Our data set will be an important resource for the emerging study of the evolution of olfactory

neural circuits across species. Adaptation to distinct olfactory environments, and the critical role of

olfaction in survival and reproduction, has shaped the evolution of the repertoire of odorant recep-

tors and olfactory sensory neurons (Bargmann, 2006; Yoshihito, 2012). However, little is known

about how evolving sensory inputs from the nose are accommodated at the level of the OB and its
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connections to the olfactory cortex. The detailed molecular description of mouse OB projection neu-

rons presented here provides an entry point toward understanding the evolution of olfactory sensory

processing across species.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(M. musculus)

C57Bl/6 Jackson Laboratory Stock #: 000664
RRID:IMSR_JAX:000664

Genetic reagent
(Adeno-associated virus)

rAAVretro-CAG-H2B-GFP Tervo et al., 2016 PMID:27720486

Commercial
assay or kit

Nuclei PURE Prep Sigma cat#: NUC201-1KT

Commercial
assay or kit

Arcturus PicoPure RNA Isolation Kit ThermoFisher cat#: KIT0204

Other DRAQ5 ThermoFisher cat#: 65-0880-92

Software, algorithm Cell Ranger version 3.0 10x Genomics RRID:SCR_017344

Software, algorithm Seurat v3.6 Butler et al., 2018 RRID:SCR_007322

Software, algorithm Scanpy v1.7.1 Wolf et al., 2018 RRID:SCR_018139

Software, algorithm glmGamPoi R-package Ahlmann-Eltze and Huber, 2021 PMID:33295604

Software, algorithm SCENIC Aibar et al., 2017 RRID:SCR_017247

Software, algorithm Cytoscape Shannon et al., 2003 RRID:SCR_003032

Software, algorithm ImageJ version 2.1.0. Schindelin et al., 2012 RRID:SCR_003070

Experimental model and subject details
Male and female C57Bl/6 mice (6–8 weeks old) were used in this study and obtained by in-house

breeding. All animal protocols were approved by the Ethics Committee of the board of the Francis

Crick Institute and the United Kingdom Home Office under the Animals (Scientific Procedures) Act

1986 (project license number PA2F6DA12), as well as Brown University’s Institutional Animal Care

and Use Committee (protocol number: 21-03-0004) followed by the guidelines provided by the

National Institutes of Health.

Stereotaxic injections and histology
Mice were anaesthetized using isoflurane and prepared for aseptic surgery in a stereotaxic frame

(David Kopf Instruments). A retrogradely transported Adeno Associated Virus (rAAV-retro-CAG-

H2B-GFP, Tervo et al., 2016) was injected stereotaxically into multiple sites of piriform cortex (PCx)

and anterior olfactory nucleus (AON). The following coordinates, based on the Paxinos and Franklin

Mouse Brain Atlas, were used: Coordinates (AP/ML/DV) in mm for PCx injections: (1) �0.63/�4.05/

�4.10, (2) �0.8/�4.00/�4.10. For AON injections: (1) 2.8/1.25/2.26 and 2.6, (2) 2.68/1.25/2.3 and

2.75, and (3) 2.34/0.7/3.5. Using a micromanipulator, a pulled glass micropipette was slowly lowered

into the brain and left in place for 30 s before the virus was dispensed from the micropipette using a

Nanoject injector (Drummond Scientific) at a rate of 46 nl/min (0.3 ml for PCx and 0.2 ml for AON per

injection site). The micropipette was left in place for an additional 5 min before being slowly with-

drawn to minimize diffusion along the injection tract. Craniotomies were covered with silicone seal-

ant (WPI), and the skin was sutured. Mice were provided with 5 mg/kg Carprofen in their drinking

water for 2 days following surgery.

Histology was used to validate viral targeting of olfactory bulb projection neurons. Mice were

deeply anaesthetized with 2.5% of 250 mg/kg Avertin and transcardially perfused with 10 ml of ice-

cold phosphate-buffered saline (PBS) followed by 10 ml of 4% paraformaldehyde (PFA). Brains were

dissected and post-fixed for 5 hr in 4% PFA at 4˚C. Coronal sections (100 mm thick) were prepared
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using a vibrating-blade Leica VT100S Vibratome. Sections were rinsed in PBS and incubated in PBS/

0.1% Triton X-100 and Neurotrace counterstain (1:1000, ThermoFisher) at 4˚C overnight, then

mounted on SuperFrost Premium microscope slides (Fisher, cat# 12-544-7) in Fluorescent Vecta-

shield Mounting Medium (Vector). Images were acquired at 20� using a Nikon A1R-HD confocal

microscope. While this injection strategy cannot fully exclude labeling of axons of passage (e.g.

axons passing through AON), these are unlikely to constitute a significant sub-population of labeled

neurons as, e.g., we identified exclusively PCx projecting cell types as well.

Single-nuclei isolation, FANS, and RNA extraction
To isolate GFP-labeled nuclei, 10 individual biological replicates were used. For bulk RNA deep

sequencing: three replicates of AON-injected mice and three replicates of PCx-injected mice (all

females, AON1 = 7 w, AON2 = 6w, AON3 = 8w, PCx1 = 7w, PCx2 = 6w, PCx3 = 7w); for single-

nucleus RNA sequencing (sn-R1/R2/R3 dataset): three replicates of AON- and PCx-injected mice (all

males, 7 w); for validating the simulation results using single-nucleus RNA sequencing (sn-PCx data-

set): 1 PCx-injected mouse (female, 11 w). Mice were deeply anaesthetized with an overdose of keta-

mine/xylazine and transcardially perfused with ice-cold PBS. Both hemispheres of the olfactory bulb

were dissected, and the hemisphere ipsilateral to the injection site was carefully separated from the

contralateral hemisphere. Both hemispheres were minced separately and placed into two different

tubes. To dissociate single nuclei, Nuclei PURE Prep was used according to the manufacturer instruc-

tions (Sigma, cat# NUC201-1KT) with some modifications. The minced tissue was gently homoge-

nized in 2.75 ml Nuclei PURE Lysis Buffer and 27.5 ml 10% Triton X-100 using an ice-cold dounce and

pestle, and filtered two times through a 40 mm cell strainer on ice. After centrifuging at 500 rpm for

5 min at 4˚C, the supernatant was aspirated and gently resuspended in 500 ml of cold buffer (1� of

cold Hanks’ Balanced Salt Solution HBSS, 1% nuclease-free BSA, 22.5 ml of RNasin Plus [Promega

N2611] and 1/2000 DRAQ5). The remaining PBS-perfused brain of the PCx-injected mouse (for sn-

PCx dataset) was post-fixed 5 hr in 4% PFA at 4˚C and used for histology validation of the injection

points.

Fluorescence-activated nuclei sorting of single nuclei was performed using a BD FACSAria III Cell

Sorter with a 70 mm nozzle at a sheath pressure of 70 psi. Precision mode (yield mask set to 16,

purity mask set to 16 and phase mask set to 0) was used for stringent sorting. For single-nucleus

RNA sequencing, GFP+ nuclei were sorted into a 1.5 ml centrifuge tube. For bulk RNA deep

sequencing, GFP+ nuclei were sorted into 100 ml Trizol and 1.43 ml of RNA carrier, and total RNA

was extracted using the Arcturus PicoPure RNA Isolation Kit (ThermoFisher, cat# KIT0204).

Single-nucleus RNA sequencing
The sn-R1/R2/R3 cDNA(s) were prepared using the 10� kit version Chromium Single Cell 3’ v3.

Libraries were prepared using the Next Single Cell/Low Input RNA Library Prep Kit (New England

Biolabs). The quality and quantity of the final libraries were assessed with the TapeStation D5000

Assay (Agilent Technologies) before sequencing with an Illumina HiSeq 4000 platform. cDNA con-

centrations were measured as: 14.4 (R1), 23.3 (R2), 7.9 (R3) ng/ml (n = 3 animals).

The sn-PCx cDNA and library were prepared using the 10x kit version Chromium Single Cell 3’

v3.1. The quality and quantity of the final library was assessed with the TapeStation D1000 Assay

(Agilent Technologies) before sequencing with an Illumina NextSeq500. The cDNA concentration

was measured as 1.09 ng/ml.

Bulk RNA deep sequencing
Libraries were prepared using the Next Single Cell/Low Input RNA Library Prep Kit (New England

Biolabs). The quality and quantity of the final libraries was assessed with the TapeStation D1000

Assay (Agilent Technologies) before sequencing with an Illumina HiSeq 4000 platform. RNA concen-

trations were measured as: AON injections (n = three animals), 1.495, 1.682, 1.881 ng/ml and RNA

integrity numbers (RIN) 8.3, 8.7, 9.0; PCx injections (n = 3 animals), 0.257, 0.165, 0.133 ng/ml; RIN =

8.0, 10.0, 7.8 for each replicate, respectively.
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Single-nucleus RNA sequencing analysis
Raw sequencing datasets were processed using Cell Ranger version 3.0 (10x Genomics). Count

tables were loaded into R (version 3.6, https://www.r-project.org) and further processed using Seurat

v3.6 (Butler et al., 2018) and Scanpy v1.7.1 (Wolf et al., 2018).

For all four datasets (three biological replicates sn-R1/R2/R3 and sn-PCx), we removed all nuclei

with fewer than 1000 distinct genes detected or with more than 5% of unique molecular identifiers

stemming from mitochondrial genes. After quality control, for the large sn-RNAseq dataset we

merged the three replicates using standard functionality of Seurat: we apply NormalizeData and

FindVariableFeatures on the individual replicates, then apply Canonical Correlation Analysis (CCA)

(Stuart et al., 2019). We retained a total of 31,703 nuclei (median of 2300 genes per nucleus; for

each replicate median genes per nucleus: R1 = 2,266; R2 = 2419; R3 = 2,322). For the sn-PCx data-

set, we retained a total of 74 nuclei (median genes per nucleus: 6,092). We describe in detail its

downstream analysis in the Materials and methods section ‘Validation of regulon-based simulations’.

For the sn-R1/R2/R3 dataset, principal component analysis (PCA) was then performed on highly vari-

able genes and the first 30 principal components were selected as input for clustering and UMAP,

based on manual inspection of a principal component variance plot (PC elbow plot). Clustering was

performed using the default method (Louvain) from the Seurat package, with the resolution parame-

ter of the FindClusters function set to 0.3.

Subclustering of projection neurons was carried out by selecting clusters M1, M2/M3, T1, ET1

and ET2 from the initial single-nuclei analysis based on the combinatorial expression patterns of glu-

tamatergic and previously characterized mitral/tufted cell markers (Tbx21, Pcdh21, Thy1, Vglut1,

Vglut2, and Vglut3). For subclustered nuclei, we again performed the above steps of highly variable

genes selection, principal component analysis, and clustering, this time with the Louvain resolution

parameter set to 0.5.

Differential gene expression analysis on single-nuclei data was performed using the glmGamPoi

R-package (Ahlmann-Eltze and Huber, 2021). Gene set enrichment analysis (GSEA) on the resulting

log-fold changes was performed as described in Subramanian et al., 2005.

Network inference
Gene regulatory networks were inferred using the pySCENIC pipeline (Single-Cell rEgulatory Net-

work InferenCe, Aibar et al., 2017; Van de Sande et al., 2020) and visualized using Jupyter note-

books and Cytoscape (Shannon et al., 2003). We used pySCENIC on the projection neuron

subcluster data after removal of nuclei assigned the PG cell type. pySCENIC is a three-step

approach: (1) predict TF-target gene pairs using Arboreto; (2) filter TF-target gene associations for

false positives using TF binding site enrichment in a window of 5 kb around a target’s transcription

start site (TSS) and group TFs with their target genes into so-called regulons; (3) calculate the activity

of regulons in each cell in terms of the area under the recovery curve (AUC). Step one depends on a

stochastic search algorithm and is therefore performed n = 100 times. Only TFs that are found >80

times and with TF-target gene interactions that occur >80 times are considered. To avoid technical

issues in the analysis, regulons with fewer than eight target genes are removed from the final list.

Subsequent analysis in Step three involves a stochastic downsampling to speed up computation;

hence, we verified that the chosen sample size was sufficient for accurate AUC approximations. We

calculated n = 25 AUC matrices and confirmed that they contained few zeros and the variance of

each matrix entry (i.e. approximated regulon activity in a given cell) was low.

Quantification along cell type trajectories
Gradual and sudden changes between cell types are studied using pseudotime trajectory analysis.

We used the partition-based graph abstraction (PAGA) functionality offered by the Python package

Scanpy (Wolf et al., 2019). Given a set of clusters, PAGA computes a graph as a condensed repre-

sentation of how the clusters are distributed in transcriptomic/PCA space. It then uses a diffusion

map to smoothly travel along the paths in the graph (Figure 4—figure supplement 3). We focused

on a single path, namely ET4, ET1, T1, M2, M3, M1, ET2 (ignoring ET3, as it has few neurons). We

then computed trajectories of module and regulon activity levels, and TF expression levels using a

running average with window size of 100 nuclei to smoothen the signal.
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Bulk RNA deep sequencing analysis
The ‘Trim Galore!’ utility version 0.4.2 was used to remove sequencing adaptors and to quality trim

individual reads with the q-parameter set to 20. Sequencing reads were then aligned to the mouse

genome and transcriptome (Ensembl GRCm38 release-89) using RSEM version 1.3.0 (Li and Dewey,

2011) in conjunction with the STAR aligner version 2.5.2 (Dobin et al., 2013). Sequencing quality of

individual samples was assessed using FASTQC version 0.11.5 and RNA-SeQC version 1.1.8

(DeLuca et al., 2012). Differential gene expression was determined using the R-bioconductor pack-

age DESeq2 version 1.24.0 (Love et al., 2014). GSEA was conducted as described in

Subramanian et al., 2005.

Integration of single-nucleus and bulk RNA deep sequencing data using
regulon-based simulations
Nuclei were simulated from bulk RNA deep sequencing data using a weighted random sampling of

regulons with replacement. A regulon’s relative weight corresponded to the prevalence of its tran-

scription factor in the given bulk RNA-seq sample. Each time a regulon was selected, the counts for

its transcription factor and all its target genes increased by one. This weighted random sampling of

regulons maintains key information from the starting bulk RNA-seq data (in the form of weights)

while also maintaining key co-expression patterns of single nuclei (in the form of regulons), creating

a population of biologically-realistic simulated transcriptomes that reflect the starting bulk RNA-seq

data. The number of regulons expressed in each simulated nucleus was randomly selected from a

list of how many unique transcription factors each nucleus from snRNA-seq expressed (normalized

expression > 2). Simulated nuclei were treated as raw count matrices and integrated with snRNA-

seq nuclei using the sctransform package in R (Hafemeister and Satija, 2019). Briefly, this integra-

tion algorithm normalizes counts as the Pearson residuals from a regularized negative binomial

regression model with sequencing depth as a covariate. The main result is the removal of batch

effects related to sequencing depth, which facilitates pooling of our snRNA-seq replicates and

makes the results of the simulation pipeline invariant to the number of regulons chosen for each

nucleus, keeping results driven by proportions in the starting bulk RNA-seq data rather than abso-

lute numbers.

To filter simulated nuclei, we trained 1000 LDA classifiers with the python package scikit-learn

(Pedregosa et al., 2011). For each classifier, snRNA-seq nuclei were split into test and train data-

sets, with 75% of nuclei used for training and the other 25% used for testing. This train-test split was

unique to each classifier. Each classifier was trained to predict whether a nucleus was a projection

neuron (i.e. whether it was selected for subclustering in the initial transcriptome-based Seurat analy-

sis) based on values for the 30 top principal components from the sctransform integration. Principal

component analysis projects all data points into the same space and reduces the number of features,

enabling better classification performance. Each classifier was applied to the remaining snRNA-seq

nuclei for testing, and accuracy was evaluated using the Jaccard index calculated by scikit-learn

(Pedregosa et al., 2011). The classifiers were then applied to the simulated nuclei. Simulated nuclei

predicted to be projection neurons by all 1000 classifiers were designated as putative simulated pro-

jection neurons and selected for further analysis. Similarly, these putative simulated projection neu-

rons were integrated with snRNA-seq mitral cells using sctransform. One thousand LDA classifiers

were trained to classify simulated nuclei as AON-projecting or PCx-projecting based on values for

the 30 top principal components from the sctransform integration. Each classifier was trained on

75% of the simulated projection neurons and tested on the other 25%, with accuracy evaluated using

the Jaccard index. Each classifier was then applied to snRNA-seq mitral cells.

Validation of regulon-based simulations
To assign the cell type identity in the sn-PCx dataset, we first identified projection neurons by trans-

forming the expression matrix into the space of 30 principal components defined on the larger sn-

R1/R2/R3 dataset. One thousand LDA classifiers were trained to classify cells as projection neurons

or not based on the values for these 30 principal components. Each classifier was trained on 75% of

the original sn-R1/R2/R3 dataset and tested on the other 25%. sn-PCx cells were considered projec-

tion neurons if they were predicted to be such by all 1000 classifiers.
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Sn-PCx projection neurons were then transformed into a low-dimensional space defined by their

expression of the 86 regulons from our SCENIC analysis on the original sn-R1/R2/R3 projection neu-

rons. These regulons create a low-dimensional space in which to compare this new, targeted sn-PCx

dataset to our original, larger sn-R1/R2/R3 dataset. To quantify this comparison, we used LDA classi-

fiers, trained on the original mitral cells, to predict the cell type of the new projection neurons. Each

of 1000 LDA classifiers was trained on 75% of the original data and tested on the other 25% to pre-

dict cell type identity based on regulon activity scores. These classifiers were then applied to the

regulon activity scores of the new projection neurons. Statistics were performed on the results using

binomial distributions. To calculate a p-value for the abundance of M2 cells in the sn-PCx dataset,

we used the R command pbinom(44,57,1241/2114, lower.tail=F) to quantify the probability of

observing that many or more M2 cells in a population of that size were the probability of sampling

M2 as opposed to a different MC equal to that of sampling M2 from our sn-R1/R2/R3 dataset. With

similar logic, to calculate a p-value for the scarcity of M1 cells in the sn-PCx data, we used the R

command pbinom(6,57,711/2114) to calculate the probability of observing that many or fewer M1

cells.

smFISH in tracing experiments and quantification
Experiments were performed according to the manufacturer’s instructions, using the RNAscope

Fluorescent Multiplex kit (Advanced Cell Diagnostics [ACD]) for fresh frozen tissue. Briefly, a total of

six mice were injected into the AON and PCx with the rAAVretro-CAG-H2B-GFP. After 15 days

post-injection, mice were deeply anaesthetized with 2.5% of 250 mg/kg Avertin and transcardially

perfused with 10 ml of ice-cold phosphate-buffered saline (PBS). The brains were dissected out from

the skull, immediately embedded in Tissue Plus O.C.T. compound (Fisher Healthcare) and snap-fro-

zen in a bath of 2-methylbutane on dry ice. Brains were cryo-sectioned coronally at 20 mm thickness,

mounted on Fisherbrand Superfrost Plus microscope slides (Fisher Scientific), and stored at �80 ˚C

until use. In situ probes against the following mouse genes were ordered from ACD and multiplexed

in the same permutations across sections: Foxo1 (#485761-C2 and 485761), Kcng1 (#514181-C2),

Lxh1 (#488581), Sertm1 (#505401-C2), Ebf3(#576871-C3), Sgcg (#488051-C3), Cadps2 (#529361-C3

and 529361), Coch (#530911-C3), Ly6g6e (#506391-C2), Wnt5b (#405051), Fst (#454331), Barhl2

(#492331-C2), Vdr (524511-C3), Gfp (#409011, #409011-C2 and #409011-C3), Piezo2 (#500501),

Olfr110/111 (#590641), Calca (#578771), Lhx5 (#885621-C3), and Vgll2 (#885631-C2). Following

smFISH, high-resolution images of a single z-plane were obtained using a 60� oil immersion objec-

tive on an Olympus FV3000 confocal microscope and a 40� oil immersion objective on a Nikon A1R-

HD confocal microscope.

For each image, we first counted the number of cells positive for the less abundant probe (probe

A), on average 60 cells for each probe. We then counted amongst probe A-positive cells how many

cells also expressed the second probe (probe B). We report overlap as the percentage of probe

A-positive cells also expressing probe B. For mitral cell markers we only considered cells along the

mitral cell and internal plexiform layers. For tufted cell markers, we only considered cells in the exter-

nal plexiform and glomerular layers. We considered a cell positive for a given smFISH probe if more

than five dots/cell were present, and if the dots were located within the nucleus and perinuclear

compartment of the cell, visualized by DAPI counterstain.
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