

Review

# Novel Architecture Titanium Carbide (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) MXene Cocatalysts toward Photocatalytic Hydrogen Production: A Mini-Review

Van-Huy Nguyen <sup>1,2,\*</sup>, Ba-Son Nguyen <sup>3</sup>, Chechia Hu <sup>4</sup>, Chinh Chien Nguyen <sup>5,6</sup>, Dang Le Tri Nguyen <sup>5</sup>, Minh Tuan Nguyen Dinh <sup>7</sup>, Dai-Viet N. Vo <sup>8</sup>, Quang Thang Trinh <sup>9</sup>, Mohammadreza Shokouhimehr <sup>10</sup>, Amirhossein Hasani <sup>11</sup>, Soo Young Kim <sup>12,\*</sup> and Quyet Van Le <sup>5,\*</sup>

- <sup>1</sup> Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- <sup>2</sup> Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- <sup>3</sup> Key Laboratory of Advanced Materials for Energy and Environmental Applications, Lac Hong University, Bien Hoa 810000, Vietnam; nbsonhd@gmail.com
- <sup>4</sup> Department of Chemical Engineering, R&D center for Membrane Technology and Research Center for Circular Economy, Chung Yuan Christian University, Chungli Dist., Taoyuan City 32023, Taiwan; chechiahu@cycu.edu.tw
- <sup>5</sup> Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam; nguyenchinhchien@duytan.edu.vn (C.C.N.); dltnguyen@yahoo.com (D.L.T.N.)
- <sup>6</sup> Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
- <sup>7</sup> Faculty of Chemical Engineering, University of Science and Technology, The University of Da Nang, 54 Nguyen Luong Bang, Da Nang 550000, Vietnam; ndmtuan@dut.udn.vn
- <sup>8</sup> Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; daivietvnn@yahoo.com
- <sup>9</sup> Cambridge Centre for Advanced Research and Education in Singapore (CARES), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; qttrinh@ntu.edu.sg
- <sup>10</sup> Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea; mrsh2@snu.ac.kr
- <sup>11</sup> School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Korea; amirhossein.hasani88@gmail.com
- <sup>12</sup> Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
- \* Correspondence: nguyenvanhuy@tdtu.edu.vn (V.-H.N); sooyoungkim@korea.ac.kr (S.Y.K.); levanquyet@dtu.edu.vn (Q.V.L.); Tel.: +84-968-485-175 (V.-H.N.); +82-109-3650-910 (S.Y.K.); +84-344-176-848 (Q.V.L.)

Received: 26 February 2020; Accepted: 23 March 2020; Published: 25 March 2020



**Abstract:** Low dimensional transition metal carbide and nitride (MXenes) have been emerging as frontier materials for energy storage and conversion.  $Ti_3C_2T_x$  was the first MXenes that discovered and soon become the most widely investigated among the MXenes family. Interestingly,  $Ti_3C_2T_x$  exhibits ultrahigh catalytic activity towards the hydrogen evolution reaction. In addition,  $Ti_3C_2T_x$  is electronically conductive, and its optical bandgap is tunable in the visible region, making it become one of the most promising candidates for the photocatalytic hydrogen evolution reaction (HER). In this review, we provide comprehensive strategies for the utilization of  $Ti_3C_2T_x$  as a catalyst for improving solar-driven HER, including surface functional groups engineering, structural modification, and cocatalyst coupling. In addition, the reaming obstacle for using these materials in a practical system is evaluated. Finally, the direction for the future development of these materials featuring high photocatalytic activity toward HER is discussed.

**Keywords:** photocatalysis; Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>; MXenes; photocatalysis; water splitting; HER

#### 1. Introduction

To date, sustainable solar hydrogen (H<sub>2</sub>) production, which directly produces by utilizing semiconductor photocatalysts, could provide a promising and environmental-friendly approach to solve the worldwide energy issues and reduce the dependence on fossil fuels [1,2]. Particularly, enormous progress has been made in developing a new system of photocatalysts such as transition metal dichalcogenides [3–15], transition metal oxide (TMOs) [16,17], transient metal sulfides (TMSs), graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) [18–22], metal–organic framework (MOFs) [23–25], transition metal nitride (TMNs) [26], and transition metal carbide (TMCs) [27–30] that could efficiently enhance the H<sub>2</sub> production, and readily scale up for commercialization [2].

As an advanced and broad group of novel nanostructured materials, MXenes has been discovered and synthesized from the parent layered solids MAX phases (as shown in Figure 1) [31].



**Figure 1.** The schematic diagram is representing the process of synthesizing MXenes from MAX phases. Reproduced with permission from [31]. Copyright Wiley-VCH, 2014 and [32] Copyright American Chemical Society, 2012.

In essence, the chemical formula of MAX phases is  $M_{n+1}AX_n$ , which is defined by Barsoum [33–37]. In detail, the M element stands for transition metals from groups 3 (Sc), 4 (Ti, Zr, and Hf), 5 (V, Nb, and Ta), and 6 (Cr and Mo), the A element represents from groups 12 (Cd), 13 (Al, Ga, In, and Tl), 14 (Si, Ge, Sn, and Pb), 15 (P and As), or 16 (S), and the X element is C and/or N [33,38,39]. MXenes are generally prepared by selectively getting rid of the element of A from the parent MAX phase to form  $M_{n+1}X_nT_x$  (n = 1-3), where  $T_x$  is the surface termination groups ((–O), (–F), and (–OH)) [31]. MXenes materials, which offer many advantages electronic, optical, plasmonic, and thermoelectric properties [36], have attracted much interest recently. They are currently explored for a variety of applications, including energy, environment, catalysis, photocatalysis, optical devices, electronics, biomedicals, sensors, electromagnetic, others, etc. (Figure 2) [40–43]. Among MXenes, many efforts have been devoted to promoting titanium carbide (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) as the most promising candidate of cocatalysts [44–46]. Based on the published literature dealing with MXenes, which was taken from 2011–2019 on the Web of Science, there was about 70% of researches on MXenes associated with Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, as seen in the third ring of the pie chart in Figure 2 [40]. It also notes that the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> also shows a high potential to replace

the expensive Pt cocatalyst in photocatalysis. In 2017, Alhabeb et al. have provided an excellent report to give step-by-step guidance to preparing of  $Ti_3C_2T_x$  by using different etchants (HF and in situ HF) and delamination methods (Figure 3a) [38]. Their corresponded scanning electron microscopy (SEM) images were obtained and shown in Figure 3b-g. For detail, Ti<sub>3</sub>AlC<sub>2</sub> sample show compactly layered morphology (Figure 3b), while the morphology of the multilayered  $Ti_3C_2T_x$  samples was influenced by weight percent (wt %) of HF (Figure 3c-e). On the other hand, the morphology of the multilayered  $NH_4-Ti_3C_2T_x$  sample (Figure 3f) and MILD- $Ti_3C_2T_x$  sample (Figure 3g) are structurally similar to that of 5F–Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> multilayered powders (Figure 3e). Theoretically, the Ti<sub>3</sub>C<sub>2</sub>Tx fulfill the prerequisite requirement condition for applications as catalysts for HER. It has been reported that the O and F terminated  $Ti_3C_2$  are metallic based semiconductors with a conductivity up to 9880 S·cm<sup>-1</sup>, which is higher than that of graphene [47]. This indicates that the charge transfer between  $Ti_3C_2$  to the active site is superior to most of the reported semiconducting catalysts. Furthermore, the H\* adsorption energy on the surface of  $Ti_3C_2$  is close to 0, making it the best among noble metal free catalysts for application in HER [48]. However, most MXenes including  $Ti_3C_2T_x$  are semiconductors with indirect bandgaps [49]. To apply as photocatalysts,  $T_3C_2T_x$  needs to pair with other photoactive materials such as TiO<sub>2</sub>, CdS,  $g-C_3N_4$  and metal organic frameworks (MOFs). Although, the development of MX enes for wide-range application in recent years have been thoroughly summarized and discussed [34–36,49–51], a review that focuses on  $Ti_3C_2T_x$  for photocatalytic HER has not been reported yet.



**Figure 2.** The general applications and properties of MXenes. The center pie chart explored the applications and properties of MXenes. The starting year in the middle pie chart ring indicates the exploration time of each application/property. The outer ring shows the ratio of publications, which were taken from 2011 to 2019 on the Web of Science, with the term of  $Ti_3C_2T_x$  versus the publications deal with all MXene compositions ( $M_2XT_x$ ,  $M_3X_2T_x$ , and  $M_4X_3T_x$ ). Reproduced with permission from [40]. Copyright Springer Nature, 2019.



# (a) General map for synthesis of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene

**Figure 3.** (a) The schematic diagram representing the process to prepare  $Ti_3C_2T_x$  by using different etchants (HF and in situ HF) and delamination methods and (**b**–**g**) their corresponded scanning electron microscopy (SEM) images. Reproduced with permission from [37]. Copyright Royal Society of Chemistry, 2019.

In this review, we present the use of  $Ti_3C_2T_x$  as the most potential and promising cocatalysts toward photocatalytic hydrogen production. Based on the recent research works, the influence on different morphology (nanotubes, nanoscrolls, quantum dots, etc.), surface termination groups (–F, –OH, and –O), and photocatalyst systems (titania (TiO<sub>2</sub>), graphitic carbon nitride (*g*–C<sub>3</sub>N<sub>4</sub>) coupled  $Ti_3C_2$  photocatalysts, etc.) are reviewed and intensified. Additionally, attention and outlook on critical challenges, prospects, and potential applications for  $Ti_3C_2T_x$  cocatalysts toward sustainable solar hydrogen production are also highlighted.

# 2. Coupled Morphological and Structural Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> Cocatalysts

Since the morphology of photocatalysts could directly influence the photocatalytic process, active sites, and charge transfer, various nanostructures of  $Ti_3C_2T_x$  photocatalysts have been explored to improve the efficiency of H<sub>2</sub> production. However, it has not been shown yet, which types of morphology and structure of  $Ti_3C_2T_x$  cocatalysts perform the best photocatalytic H<sub>2</sub> production rate. In this section, the photocatalytic activity over different morphological and structural  $Ti_3C_2T_x$  cocatalysts was adequately highlighted and critically evaluated in terms of the H<sub>2</sub> production rate (µmol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>) for convenient comparative purposes.

Su et al. prepared a series of  $Ti_3C_2T_x/TiO_2$  composite photocatalysts with a monolayer and multilayers  $Ti_3C_2T_x$  as the cocatalyst (as shown in Figure 4a) [52]. The result showed that a monolayer  $Ti_3C_2T_x/TiO_2$  composite exhibited the superior  $H_2$  production rate (2650  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>) under a 200 W Hg lamp integrated with a cutoff filter of 285-325 nm, which had more than nine-fold and two-fold higher, compared to the pure TiO<sub>2</sub> (290  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>) and multilayer counterpart (920  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>), respectively. The enhancement of performance is possible due to the advanced electrical conductivity of a monolayer  $Ti_3C_2T_x$  and the effective charge-carrier separation at the  $Ti_3C_2T_x/TiO_2$  interface. To propose a new morphology, Li et al. designed  $Ti_3C_2T_x/TiO_2$ nanoflowers, which performed an outstanding H<sub>2</sub> production rate, compared with that of pure TiO<sub>2</sub> (as shown in Figure 4b) [53]. In detail, the  $Ti_3C_2T_x/TiO_2$  nanoflower could reach to 526  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup> in the H<sub>2</sub> production rate under a 300 W Xe arc lamp, which was more than four-fold higher than that of the TiO<sub>2</sub> nanobelts (121.82  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>). It notes that under the same experimental conditions, the H<sub>2</sub> production rate was 371.17  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup> over the Pt/TiO<sub>2</sub> nanosheet. It suggests that the noble metal-free  $Ti_3C_2T_x$  was considered as an alternative cocatalyst to replace the expensive and precious noble metals, such as Pt, Au, etc. To further boost the H<sub>2</sub> production activity, Yuan et al. prepared the  $Ti_3C_2T_x$  nanofibers (NFs) structure by hydrolyzation and selective etching of  $Ti_3AlC_2$ MAX ceramics (Figure 4c) [54]. Compared with traditional  $Ti_3C_2$  flakes, the  $Ti_3C_2$  NFs could provide a much higher BET (Brunauer-Emmett-Teller) surface area and expose more catalytic active sites, leading to enhanced H<sub>2</sub> production activity, high cycling stability, and long-term viability. Very recently, Li et al. had successfully designed  $Ti_3C_2T_x$  quantum dots (QDs) by a self-assembly method, which their schematic synthesis of g–C<sub>3</sub>N<sub>4</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> QDs composites was shown in Figure 4d [55]. As expected,  $g-C_3N_4$ @Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> QDs composites performed the best photocatalytic activity (5111.8  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>) under artificial sunlight (300 W Xe arc lamp integrated with an AM-1.5 filter), which was nearly ten-fold higher than that of  $g-C_3N_4/Ti_3C_2T_x$  sheets (524.3  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>). Compared to the traditional  $Ti_3C_2T_x$  sheets,  $Ti_3C_2T_x$  QDs offered more abundant active edge sites, and excellent electronic conductivity. Additionally, the photoexcited carriers in  $g-C_3N_4@Ti_3C_2T_x$  QDs composites could be effectively separated to rapidly take part in photocatalytic  $H_2$  production activity, leading to enhanced photocatalytic performance efficiently. Therefore, owing to excellent physical properties,  $g-C_3N_4$ @Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> QDs composites performed a remarkable enhancement in the photocatalytic H<sub>2</sub> production rate of 5111.8  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>, indicating its high potential to scale up and accelerate the H<sub>2</sub> production via the green photocatalysis approach.

The synthesis of different morphologies of  $Ti_3C_2T_x$  cocatalysts was successfully proposed. Based on the recent studies, morphologies of  $Ti_3C_2T_x$  (nanotubes, nanoscrolls, quantum dots, etc.), which might provide more BET surface area to enrich the active adsorption sites, and inhibit the recombination of  $e^--h^+$  pairs, resulting in effective influence to the photocatalytic activity, high cycling stability, and long-term viability.





**Figure 4.** (a) Monolayer and multilayers  $Ti_3C_2T_x$  as the cocatalysts. Reproduced with permission from reference [52]. Copyright American Chemical Society, 2019; (b) the preparation of  $Ti_3C_2T_x/TiO_2$  nanoflowers and their corresponding SEM images. Reproduced with permission from ref. [53]. Copyright Nature Publishing Group, 2018; (c) the preparation of  $Ti_3C_2T_x$  nanofibers and their corresponding SEM, TEM images. Reproduced with permission from ref. [54]. Copyright American Chemical Society, 2018; and (d) Schematic diagram for preparing of  $g-C_3N_4@Ti_3C_2T_x$  quantum dots composites. Reproduced with permission from ref. [55]. Copyright American Chemical Society, 2019.

# 3. Modified $Ti_3C_2T_x$ Cocatalysts with Surface Termination Groups

In general, surface termination groups (–F, –OH, and –O) of  $Ti_3C_2T_x$ , which are predominantly dependent on the synthesis methods, have profoundly altered their physicochemical properties [56]. Based on theoretical calculations, many studies suggested that surface termination groups strongly influence the stability, electronic, optical, and transport properties of  $Ti_3C_2T_x$  [57–60]. Due to improving the photocatalytic activity toward sustainable solar hydrogen production, there has been motivation to enhance and control the physicochemical properties of  $Ti_3C_2T_x$  through surface termination groups. Li et al. found that the  $Ti_3C_2T_x/TiO_2$  hybrids, which synthesized through simple calcination of  $F-Ti_3C_2T_x$ , exhibited potential photocatalytic activity. Its performance was two-fold higher than that of the  $Ti_3C_2T_x/TiO_2$  hybrids with calcining OH- $Ti_3C_2T_x$  [37]. On the other hand, Ran et al. used density functional theory (DFT) calculations for designing and exploring the potential of novel Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanoparticles as a promising  $H_2$  production cocatalyst [61]. They replaced the (-F) terminations by (-O)/(-OH) terminations by the hydrothermal treatment, and found that (-O)/(-OH) terminations play a notable role for photocatalytic activity. This result was consistent with the previous finding by Sun et al. [56], who observed significant enhancement of H<sub>2</sub> production (88  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>) over  $O-Ti_3C_2T_x$ , compared to control samples. To further modify the surface termination groups of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, Yang et al. successfully prepared O-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/CdS hybrids through the radiofrequency oxygen plasma method (O<sub>2</sub>/N<sub>2</sub>, 2.2 Pa, 500 °C, 1400 W, 2.45 GHz, and 30 min), providing (a) sufficient catching water molecules and hydrogen ions on the surface of the catalyst, and (b) stable transfer channel for electrons to repress the recombination of  $e^--h^+$  pairs [62]. In another approach, Xu et al. carried out a plasma treatment (N<sub>2</sub>/H<sub>2</sub>, atmosphere, 500 °C, 1400 W, and 30 min) for preparing layered *g*–C<sub>3</sub>N<sub>4</sub>/plasma-treated Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> photocatalyst [63]. Based on analyzed results by Raman, FTIR, and XPS, Xu et al. observed an increase of Ti–O with a decrease of Ti–C, Ti–F, and Ti–OH. Additionally, the plasma-treated Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> photocatalyst worked as an excellent acceptor of photogenerated electrons, leading to substantially reinforce the photocatalytic activity. Though the surface termination groups could be modified by several methods, such as hydrothermal treatment, simple calcination, plasma treatment, etc., more studies that elucidate the modification mechanism of surface termination groups need to be paid attention in the future.

# 4. The Design of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> Composite Photocatalysts

# 4.1. Couple with Transition Metal Oxide (TMOs)

Transition metal oxide, such as titanium dioxide (TiO<sub>2</sub>), coupled photocatalysts have attracted dramatically increasing interest in the area of photocatalytic hydrogen generation [64–66]. Their photocatalytic activities have been markedly improved through the efforts of many research groups. However, its large bandgap and fast charge recombination limit its efficiency. To overcome this limitation,  $Ti_3C_2T_x$  has been considered as promising cocatalysts for hydrogen production with TiO<sub>2</sub> as the photocatalyst. Zhuang has successfully prepared TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanocomposites by the electrostatic self-assembly technique (Figure 5) [67]. Owing to the highly efficient separation of photogenerated carriers, which derived from the intense interfacial contact between TiO<sub>2</sub> nanofibers and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanosheets, the photocatalytic performance over TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanocomposites was significantly improved. The H<sub>2</sub> production rate was up to 6979  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup> using a 10% methanol solution as the sacrificial electron donors under a 300 W Xe lamp, which was 3.8 times higher than that of pure TiO<sub>2</sub> nanofibers. There was no hydrogen production capacity over Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanosheets due to its metallic character.



**Figure 5.** Schematic illustration displaying procedure for fabrication of  $TiO_2/Ti_3C_2T_x$  composite. Reproduced with permission from reference [67]. Copyright Elsevier B.V., 2019.

To simplify the synthesis method, simple calcination was first proposed by Li et al. to prepare truncated octahedral bipyramidal TiO<sub>2</sub> (TOB-T)/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> hybrids [37]. The resultant TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> hybrids retained the multilayer structure, and TiO<sub>2</sub> exhibited a truncated octahedral bipyramidal structure with exposed (001) and (101) facets. A surface heterojunction between (101) and (001) facets was established, and it could prevent the recombination of photogenerated carriers in TiO<sub>2</sub>. Moreover, the remaining Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> could act as a cocatalyst to accelerate the migration of photoinduced electrons because of its high electronic conductivity. Meanwhile, the concentration of fluorine sharply decreased during calcination, thereby reducing the toxicity and increasing the conductivity of the samples. They pointed out that  $Ti_3C_2T_x$  could enhance the photocatalytic activity of those composite photocatalysts due to the Schottky junction between  $Ti_3C_2T_x$  and  $TiO_2$  and its excellent electronic conductivity. Besides  $TiO_2$ , ZnO has also been investigated for hydrogen production [68]. It was experimentally demonstrated that the ZnO nanorods (NRs)/ $Ti_3C_2T_x$  hybrids exhibited the inferior photocatalytic H<sub>2</sub> production activity (456 µmol·h<sup>-1</sup>), while pure ZnO NRs displayed no performance [68]. However, the photocatalytic activity of the ZnO/ $Ti_3C_2T_x$  composite was still much lower compared to the  $TiO_2/Ti_3C_2T_x$ , thus, more investigation is necessary.

#### 4.2. Couple with Transient Metal Sulfides (TMSs)

Transition metal surface such as CdS [69–71], CdSe [72], MoS<sub>2</sub> [73–75], and WS<sub>2</sub> [76–78] has been demonstrated as potential catalysts for electrocatalytic and photocatalytic HER. Therefore, the coupling of these materials with  $Ti_3C_2T_x$  might produce the composite with unprecedented performance in photocatalytic HER. As expected, Ran et al. coupled  $O-Ti_3C_2T_x$  with cadmium sulfide (CdS) via a hydrothermal method to yield a composite catalyst for HER with very high performance [61]. In specific, the catalysts with the optimized composition (2.5 wt %  $Ti_3C_2T_x$ ) can produce up to 14,342  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>, which was higher than that of Pt-CdS (10,978  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>). The HR-TEM and SEM images of the O–Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> coupled CdS nanoparticles are shown in Figure 6a–b. The high photocatalytic HER performance of the O-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/CdS composite attributed to very low free energy for atomic H adsorption on the surface of  $O-Ti_3C_2T_x$  (Figure 6c) and efficient charge generation and separation upon light at the interface of the composites (Figure 6d-e). Similarly, Xiao et al. coupled  $Ti_3C_2T_x$  with CdS nanorod to construct a Schottky heterojunction for photocatalytic HER [79]. As a result, the CdS nanorod/ $Ti_3C_2T_x$  nanosheet exhibited a performance 7-fold higher than that of pristine CdS [79]. The improvement was postulated to originate from the synergistic effect between the CdS nanorod and  $Ti_3C_2T_x$  nanosheets that improves light absorption, charge separation, and conductivity of the composite catalysts. Tie et al. decorated ZnS nanoparticles with  $Ti_3C_2T_x$  nanosheets to yield photocatalytic HER with a production rate of 502.6  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup> under optimal conditions, is almost 4-fold higher than pure ZnS (124.6  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>) [80]. Besides, the alloy transition metal sulfide/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> was also investigated. For example, Cheng et al. demonstrated a high-performance composite for photocatalytic HER composed of CdLa<sub>2</sub>S<sub>4</sub> and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanocomposite [81]. In specific, these composite nanomaterials yield photocatalytic HER with the H<sub>2</sub> production rate of 11,182.4  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>, and apparent quantum efficiency reached 15.6% at 420 nm. The performance of  $CdLa_2S_4/Ti_3C_2T_x$  nanocomposite, therefore, improves the production rate up to 13.4 times compared to that of pristine  $CdLa_2S_4$  and even higher than that of  $Pt/CdLa_2S_4$ . To sum up,  $Ti_3C_2T_x$  couple with TMSs could reach to a desirable level. In detail, 2.5 wt % Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/CdS and ZnS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanosheets exhibited very attractive photocatalytic activity, making them good candidates for photocatalytic HER.



**Figure 6.** (**a**,**b**), TEM and SEM images of  $Ti_3C_2T_x/CdS$  composite structure; (**c**) the calculated free-energy band diagram of HER with different catalysts including MoS<sub>2</sub>, WS<sub>2</sub>, and O-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>; (**d**) band diagram of  $Ti_3C_2T_x/CdS$  showing the charge separation and transferring from CdS to  $Ti_3C_2T_x$  for HER; and (**e**) the proposed mechanism of HER over  $Ti_3C_2T_x/CdS$  composite. Reproduced with permission from reference [61]. Copyright Nature Publishing Group, 2017.

#### 4.3. Couple with the Metal–Organic Framework

MOFs and their derivative have been emerging as efficient catalysts for photo electrocatalytic HER. The first combination of  $Ti_3C_2T_x/MOFs$  composite was reported by Tian et al. in 2019 [82]. The TEM images in Figure 7a,b indicated that the MOFs were well connected with the MOFs. As a result, the  $Ti_3C_2T_x/MOFs$  composite displays photocatalytic activity better than the Pt decorated MOFs (2 wt % Pt/UiO-66-NH<sub>2</sub>). The performance of  $Ti_3C_2T_x/MOFs$  can be observed in Figure 7c. The schematic illustration of energy band alignment between  $Ti_3C_2T_x$  and MOFs is shown in Figure 7d. Under sunlight irradiation, the electron-hole pairs were generated in MOFs. Owing to the good contact and conductivity, the photo-induced electron can be easily transferred to the  $Ti_3C_2T_x$  surface to participate in the HER, thus, improving the overall performance of the composite catalysts.



**Figure 7.** (**a**,**b**)TEM images presented the formation of  $Ti_3C_2T_x$  and Zr-MOFs heterostructure; (**c**) Hydrogen production rates of  $Ti_3C_2T_x/Zr$ -MOF with different concentrations of  $Ti_3C_2T_x$ ; (**d**) Energy band diagram of  $Ti_3C_2T_x/Zr$ -MOF for photocatalytic HER. Reproduced with permission from reference [82]. Copyright Elsevier B.V., 2019.

### 4.4. Coupled with Graphitic Carbon Nitride $(g-C_3N_4)$

Graphitic carbon nitride (g–C<sub>3</sub>N<sub>4</sub>) coupled photocatalysts have attracted dramatically increasing interest in the area of visible-light-induced photocatalytic hydrogen generation due to the unique electronic band structure and high thermal and chemical stability of  $g-C_3N_4$  [83–85]. Besides, the work had been done by Li et al. in the previous section,  $g-C_3N_4@Ti_3C_2T_x$  QDs [55], another study that couples  $Ti_3C_2T_x/g$ – $C_3N_4$  has also been reported. Typically, Su et al. constructed a heterojunction using  $Ti_3C_2T_x$  and  $g-C_3N_4$  nanosheets via the electrostatic self-assembly method [86]. A small amount of  $Ti_3C_2T_x$  was loaded onto  $g-C_3N_4$ , with a concentration that ranged from 1% to 5%. Interestingly, the  $Ti_3C_2T_x/g-C_3N_4$  exhibits significantly improved photocatalytic activity towards HER compared to that of pristine g- $C_3N_4$  [86]. Instead of using pristine g- $C_3N_4$ , Lin et al. used O-doped  $g-C_3N_4$  to form the heterostructure with Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> to improve the H<sub>2</sub> production rate of catalysts two-fold [87]. The fabrication process for constructing  $Ti_3C_2T_x/O$ -doped g- $C_3N_4$  is shown in Figure 8a. The SEM and TEM images in Figure 8b-d indicates that well interspersed  $Ti_3C_2T_x/O$ -doped g- $C_3N_4$ heterostructure was obtained. As a result, the  $Ti_3C_2T_x/O$ -doped g- $C_3N_4$  yield H<sub>2</sub> with a production rate of 25,124  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>, whereas, pristine O-doped g–C<sub>3</sub>N<sub>4</sub> and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/pristine g–C<sub>3</sub>N<sub>4</sub> exhibit a lower H<sub>2</sub> generation rate of 13,745 and 15,573  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>, respectively. Figure 8e indicates that the electron from O-doped  $g-C_3N_4$  can be easily transferred to  $Ti_3C_2T_x$  for the HER. These results suggested that  $g-C_3N_4$  is a very good photoactive material to pair with  $Ti_3C_2T_x$  to yield efficient photocatalytic HER. However, the research related to this topic is still very limited, thus it needs more investigation in the near future.



**Figure 8.** (a) Fabrication process of the  $Ti_3C_2T_x/O$ -doped g- $C_3N_4$  heterostructure. (b-d) SEM images, TEM images, and EDS spectra of  $Ti_3C_2T_x/O$ -doped g- $C_3N_4$ . (e) The working mechanism of  $Ti_3C_2T_x/O$ -doped g- $C_3N_4$  photocatalyst. Reproduced with permission from reference [87]. Copyright Elsevier B.V., 2019.

# 4.5. Ternary Composites

Apart from binary composites, ternary composites of  $Ti_3C_2T_x$  have also been rationally developed. To obtain the ternary composite catalyst, Tial et al. first introduced  $TiO_2$  onto the surface of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> via thermal annealing at 600 °C under N<sub>2</sub> atmosphere [88]. After that, the Zr-MOF  $(UiO-66-NH_2)$  was growth on  $Ti_3C_2T_x/TiO_2$  using a facile hydrothermal approach. The schematic illustration of the synthesis procedure is shown in Figure 9a. The TEM displaying the ternary phase of the composite is presented in Figure 9b. It can be observed that the ternary structure was well established. As a consequence, the ternary composite  $(Ti_3C_2T_x/TiO_2/UIO-66-NH_2)$ exhibited a performance two times higher than that of the binary composite (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/UIO-66-NH<sub>2</sub>). The improvement in the catalytic activity of the  $Ti_3C_2T_x/TiO_2/UIO-66-NH_2$ ) not only comes from the improvement of the light absorption by using a double light absorber ( $TiO_2/UIO-66-NH_2$ ) but also the enhancement of the charge separation of collection efficiency. The working mechanism of the binary and ternary composite was clearly illustrated in Figure 9c. Additionally, by taking advantage of the ternary composites with the composition of Mo<sub>x</sub>S/TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, Li et al. improved the H<sub>2</sub> production rate up to 10,505.8  $\mu$ mol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>, which was 193 times compared to that of pristine  $TiO_2$  [46]. Similarly, many other ternary composites have been constructed with excellent photocatalytic activity towards HER such as Mo<sub>x</sub>S@TiO<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> [46], Cu/TiO<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> [89],  $1T-MoS_2/Ti_3C_2T_x/TiO_2$  [90],  $1T-WS_2@TiO_2@Ti_3C_2T_x$  [91],  $Cu_2O/(001)/TiO_2/Ti_3C_2T_x$  [92], Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> [93], g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/Pt [45], CdS/MoS<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> [94], and TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/CoS<sub>x</sub> [95]. However, it is noted that a multicomponent photocatalytic hybrid composed of MXene with other cocatalysts are still in an early stage and requires further efforts.



**Figure 9.** (a) Route for the synthesis of  $Ti_3C_2T_x/TiO_2/UiO-66-NH_2$  ternary composite, (b) TEM image of the  $Ti_3C_2T_x/TiO_2/UiO-66-NH_2$  ternary composite, and (c) working mechanism of ternary composite photocatalyst for HER. Reproduced with permission from reference [88]. Copyright Elsevier B.V., 2019.

# 5. Comparison of the Photocatalytic Hydrogen Production

To sum up, a detailed summary and comparison of recently reported  $Ti_3C_2T_x$  cocatalysts toward photocatalytic hydrogen production are given in Table 1. Although the experimental reaction conditions were different, we compared the photocatalytic activity in terms of the H<sub>2</sub> evolution rate. Then, all the evolution rate of H<sub>2</sub> were obtained and transformed into a logical unit (µmol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>) for acceptable comparative purposes. We found that  $Ti_3C_2T_x/O$ -doped *g*-C<sub>3</sub>N<sub>4</sub> achieved interest in the H<sub>2</sub> evolution rate (25,124 µmol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>). To further understand the photocatalytic activity of MXenes, a broad comparison was collected for different types of MXenes (as shown in Table 2). In addition to  $Ti_3C_2T_x$ , only a few studies using other types of MXenes cocatalysts, such as Nb<sub>2</sub>CT<sub>x</sub> [96] and Ti<sub>2</sub>C [97], for hydrogen production. Interestingly, the hybrid composite of  $Zn_{0.5}Cd_{0.5}S$  and  $Ti_2C/TiO_2$  exhibited an attractive H<sub>2</sub> production rate (32,560 µmol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>) [97]. This photocatalytic enhancement might be contributed by the effective light absorption and the efficient separation of electron-hole pairs.

| Table 1. Photocatal | lytic hydrogen | production over | $Ti_3C_2T_x$ c | cocatalysts. |
|---------------------|----------------|-----------------|----------------|--------------|
|---------------------|----------------|-----------------|----------------|--------------|

| No. | Photocatalysts                                                                                                | Light Source                                                                                           | Reaction Temp. | Scavenger                                      | Reactant Medium                                                                     | $\begin{array}{l} H_2 \ Production \ Rate \\ (\mu mol \cdot g_{cat}^{-1} \cdot h^{-1}) \end{array}$ | Ref/(Year)               |
|-----|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|
| 1   | TiO <sub>2</sub> nanofibers/ Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>nanosheets (3 wt %)             | 300 W Xe lamp                                                                                          | Room           |                                                | CH <sub>3</sub> OH/H <sub>2</sub> O                                                 | 6979                                                                                                | [67]/2019                |
| 2   | TiO <sub>2</sub> nanofibers                                                                                   |                                                                                                        | (RT)           | Methanol                                       | (l, 1:9)                                                                            | 1831                                                                                                |                          |
| 3   | $Ti_3C_2T_x$ nanosheets                                                                                       |                                                                                                        |                |                                                |                                                                                     | ND                                                                                                  |                          |
| 4   | F-Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /TiO <sub>2</sub> hybrids                                     |                                                                                                        |                |                                                |                                                                                     | 127.1                                                                                               |                          |
| 5   | OH-Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /TiO <sub>2</sub><br>hybrids                                 | 350 W Xe arc lamp                                                                                      | RT             | Glycerin                                       | C <sub>3</sub> H <sub>8</sub> O <sub>3</sub> /H <sub>2</sub> O<br>( <i>l</i> , 1:9) | 61.4                                                                                                | [37]/2019                |
| 6   | CdS (CT0)                                                                                                     |                                                                                                        |                |                                                |                                                                                     | 105                                                                                                 |                          |
| 7   | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> nanoparticles                                                   |                                                                                                        |                |                                                |                                                                                     | ND                                                                                                  |                          |
| 8   | 0.05 wt % Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>nanoparticles/CdS<br>(CT0.05)                      |                                                                                                        |                | Lactic acid                                    |                                                                                     | 993                                                                                                 | [61]/2017                |
| 9   | 0.1 wt % Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>nanoparticles/CdS<br>(CT0.1)                        | 300 W Xe arc lamp:                                                                                     | RT             |                                                | C <sub>3</sub> H <sub>6</sub> O <sub>3</sub> /H <sub>2</sub> O                      | 1278                                                                                                |                          |
| 10  | 2.5 wt % Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>nanoparticles/CdS<br>(CT2.5)                        | $\lambda \ge 420 \text{ nm}; 80 \text{ mW} \cdot \text{cm}^{-2}$                                       |                |                                                | (l, 17.6:62.4)                                                                      | 14,342                                                                                              |                          |
| 11  | 5 wt %Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>nanoparticles/CdS (CT5)                                |                                                                                                        |                |                                                |                                                                                     | 3377                                                                                                |                          |
| 12  | Pt/CdS                                                                                                        |                                                                                                        |                |                                                |                                                                                     | 10,978                                                                                              |                          |
| 13  | NiS/CdS                                                                                                       |                                                                                                        |                |                                                |                                                                                     | 12,953                                                                                              |                          |
| 14  | Ni/CdS                                                                                                        |                                                                                                        |                |                                                |                                                                                     | 8649                                                                                                |                          |
| 15  | MoS <sub>2</sub> /CdS                                                                                         |                                                                                                        |                |                                                |                                                                                     | 6183                                                                                                |                          |
| 16  | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> nanosheets<br>modified Zr–MOFs<br>(UiO-66-NH <sub>2</sub> )     | 250 M/ Valamp                                                                                          | DT             | c <sup>2</sup> =/cO <sup>2</sup> =             | 0.1 M Na <sub>2</sub> S and                                                         | 204                                                                                                 | - [82]/2019<br>-         |
| 17  | 2 wt % Pt/UiO-66-NH2                                                                                          | 550 W Xe lamp                                                                                          | KI             | 5- /503-                                       | 0.1 M Na <sub>2</sub> SO <sub>3</sub>                                               | 123                                                                                                 |                          |
| 18  | UiO-66-NH <sub>2</sub>                                                                                        |                                                                                                        |                |                                                |                                                                                     | 25.6                                                                                                |                          |
| 19  | Zn <sub>2</sub> In <sub>2</sub> S <sub>5</sub> /Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>hybrids      | 300 W Xe arc lamp:<br>$\lambda \ge 420 \text{ nm};$                                                    | RT             | S <sup>2-</sup> /SO <sub>3</sub> <sup>2-</sup> | 0.35 M Na <sub>2</sub> S and<br>0.25 M Na <sub>2</sub> SO <sub>3</sub>              | 2596.8                                                                                              | [92]/2019                |
| 20  | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /TiO <sub>2</sub> /UiO-66-NH <sub>2</sub><br>hybrid             | 300 W Xe lamp<br>(PerkinElmer):<br>. 350 < λ < 780 nm                                                  |                | S <sup>2-</sup> /SO <sub>3</sub> <sup>2-</sup> | 0.1 M Na <sub>2</sub> S and<br>0.1 M Na <sub>2</sub> SO <sub>3</sub>                | 1980                                                                                                | - [88]/2019<br>-         |
| 21  | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /UiO-66-NH <sub>2</sub>                                         |                                                                                                        | 5 C            |                                                |                                                                                     | 1320                                                                                                |                          |
| 22  | UiO-66-NH <sub>2</sub>                                                                                        |                                                                                                        |                |                                                |                                                                                     | 942.9                                                                                               |                          |
| 23  | MoxS@TiO2@Ti3C2Tx<br>composite                                                                                | 300 W Xe arc lamp:<br>an AM1.5 filter;<br>180 mW·cm <sup>-2</sup><br>within a range of<br>200–1200 nm. | 25 °C          | Triethanolamine<br>(TEOA)                      | TEOA in aqueous<br>acetone                                                          | 10505.8                                                                                             | [46]/2020                |
| 24  | Cu/TiO2@Ti3C2Tx                                                                                               | 300W Xe lamp                                                                                           | DT             | Mathanal                                       | CH <sub>3</sub> OH/H <sub>2</sub> O                                                 | 764                                                                                                 | [90]/ 2019               |
| 25  | TiO <sub>2</sub> @Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub>                                               | (CEL-HXF 300E)                                                                                         | KI             | Methanol                                       | (l, 1:14)                                                                           | 65                                                                                                  | [09]/ 2018               |
| 26  | 1T–MoS <sub>2</sub><br>nanopatch/Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /TiO <sub>2</sub><br>nanosheet | 300 W Xe arc lamp:<br>an AM1.5 filter;                                                                 | 25 °C          | TEOA                                           | TEOA/Acetone/H <sub>2</sub> O                                                       | 9738                                                                                                | [90]/2019                |
| 27  | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /TiO <sub>2</sub> nanosheet                                     | within a range of                                                                                      |                |                                                | (1) 110110)                                                                         | 898                                                                                                 | -                        |
| 28  | TiO <sub>2</sub> nanosheet                                                                                    | 200–1200 nm.                                                                                           |                |                                                |                                                                                     | 74                                                                                                  |                          |
| 29  | 1T–WS <sub>2</sub> @TiO <sub>2</sub> @ Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub>                          | 300 W Xe arc lamp:                                                                                     | 25 °C          | TEOA                                           | TEOA/Acetone/H2O                                                                    | 3409.8                                                                                              | [91]/2019                |
| 30  | TiO <sub>2</sub><br>ternary Cu <sub>2</sub> O/(001)                                                           | an AM-1.5 filter                                                                                       |                |                                                | ( <i>l</i> , 1:3:16)                                                                | 67.8                                                                                                |                          |
| 31  | TiO2@Ti3C2Tx                                                                                                  | (CEL-HXF 300E)                                                                                         | RT             | Methanol                                       | ( <i>l</i> , 1:14)                                                                  | 1496                                                                                                | [ <mark>92</mark> ]/2019 |
| 32  | (001) TiO2@ Ti3C2Tx                                                                                           | . ,                                                                                                    |                |                                                |                                                                                     | 165                                                                                                 |                          |
| 33  | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> @TiO <sub>2</sub> @MoS <sub>2</sub><br>composites               | 300 W Xe arc lamp<br>(CELHXF300):                                                                      | 25 °C          | TEOA                                           | TEOA in aqueous<br>acetone                                                          | 6425.3                                                                                              | [95]/2019                |
| 34  | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> @TiO <sub>2</sub>                                               | an AM1.5 filter                                                                                        |                |                                                |                                                                                     | 898.1                                                                                               |                          |
| 35  | TiO <sub>2</sub> /Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /CoS                                          |                                                                                                        |                |                                                |                                                                                     | 950                                                                                                 |                          |
| 36  | TiO <sub>2</sub>                                                                                              | 200 147 20 1                                                                                           |                | RT Methanol                                    | CH <sub>3</sub> OH/H <sub>2</sub> O<br>( <i>l</i> , 1:4)                            | 140                                                                                                 | -<br>[95]/2019<br>-      |
| 37  | CoS                                                                                                           | 300 W Xe arc lamp                                                                                      | RT             |                                                |                                                                                     | 10                                                                                                  |                          |
| 38  | TiO <sub>2</sub> /Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub>                                               |                                                                                                        |                |                                                |                                                                                     | 330                                                                                                 |                          |
| 39  | TiO <sub>2</sub> /CoS                                                                                         |                                                                                                        |                |                                                |                                                                                     | 540                                                                                                 |                          |
| 40  | g-C <sub>3</sub> N <sub>4</sub> /Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /Pt                            |                                                                                                        |                | TEOA                                           |                                                                                     | 5100                                                                                                | [45]/2018                |
| 41  | $g-C_3N_4/Ti_3C_2T_x$                                                                                         | 300 W Xe arc lamp                                                                                      | RT             |                                                | TEOA/H <sub>2</sub> O<br>(1, 1.9)                                                   | 1700                                                                                                |                          |
| 42  | g-C <sub>3</sub> N <sub>4</sub> /Pt                                                                           |                                                                                                        |                |                                                | (*/ *** )                                                                           | 1275                                                                                                |                          |
| 43  | $g-C_3N_4@Ti_3C_2T_x$<br>quantum dots                                                                         | 300 W Xe arc lamp                                                                                      |                |                                                | TEOA/H2O                                                                            | 5111.8                                                                                              |                          |
| 44  | g-C <sub>3</sub> N <sub>4</sub>                                                                               | (CELHXF300):<br>an AM-1.5 filter                                                                       | RT             | TEOA                                           | (l, 3:17)                                                                           | 196.8                                                                                               | [55]/2019                |
| 45  | Pt/g-C <sub>3</sub> N <sub>4</sub>                                                                            |                                                                                                        |                |                                                |                                                                                     | 1896.4                                                                                              |                          |

| 46 | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /O-doped g-C <sub>3</sub> N <sub>4</sub>                             | -<br>300 W Xe lamp                                                      | RT    |                                                | TEOA (l)                                                                                 | 25,124   |           |
|----|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------|------------------------------------------------|------------------------------------------------------------------------------------------|----------|-----------|
| 47 | O-doped g-C <sub>3</sub> N <sub>4</sub>                                                                            |                                                                         |       | TEOA                                           |                                                                                          | 13,745   | [87]/2019 |
| 48 | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /g-C <sub>3</sub> N <sub>4</sub>                                     |                                                                         |       |                                                | -                                                                                        | 15,573   |           |
| 49 | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /TiO <sub>2</sub> /g–C <sub>3</sub> N <sub>4</sub><br>nanocomposites | 300 W Xe lamp:                                                          | 25 °C | TEOA                                           | TEOA/H <sub>2</sub> O                                                                    | 1620     | [93]/2018 |
| 50 | $g-C_3N_4$                                                                                                         |                                                                         |       |                                                | (,,,) =                                                                                  | 670      |           |
| 51 | CdLa <sub>2</sub> S <sub>4</sub> /Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>nanocomposite                   | 300 W Xe lamp                                                           |       |                                                | 0.35 M Na <sub>2</sub> S and                                                             | 11,182.4 |           |
| 52 | Pt/CdLa2S4                                                                                                         | a high-pass filter                                                      | RT    | S <sup>2-</sup> /SO <sub>3</sub> <sup>2-</sup> |                                                                                          | 1734.7   | [81]/2019 |
| 53 | CdLa <sub>2</sub> S <sub>4</sub>                                                                                   | $(\lambda > 420 \text{ nm})$                                            |       |                                                | 0120 111 142 <u>0</u> 003 –                                                              | 832      |           |
| 54 | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub>                                                                      |                                                                         |       |                                                | -                                                                                        | ND       | _         |
| 55 | CdS nanorod/ Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>nanosheet                                            | 300 W Xe lamp<br>(PerkinElmer): a cut-off                               | 6 °C  | Lactic acid                                    | $C_{3}H_{6}O_{3}/H_{2}O$                                                                 | 2407     | [79]/2019 |
| 56 | CdS nanorod                                                                                                        | filter ( $\lambda > 420 \text{ nm}$ )                                   |       |                                                | (1, 1.5)                                                                                 | 360      |           |
| 57 | ZnS<br>nanoparticles/Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>nanosheets                                   | 300 W Xe lamp                                                           | RT    | Lactic acid                                    | C <sub>3</sub> H <sub>6</sub> O <sub>3</sub> /H <sub>2</sub> O<br>( <i>l</i> , 1:4)      | 502.6    | [80]/2019 |
| 58 | ZnS nanoparticles                                                                                                  | •                                                                       |       |                                                | -                                                                                        | 124.6    | -         |
| 59 | ZnO nanorods /Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>hybrids                                             | 300  W Xe lamp:<br>- $\lambda > 420 \text{ nm}$                         | RT    | Ethanol                                        | C <sub>2</sub> H <sub>5</sub> OH/H <sub>2</sub> O<br>( <i>l</i> , 3:16)                  | 456      | [68]/2020 |
| 60 | ZnO nanorods                                                                                                       |                                                                         |       |                                                |                                                                                          | ND       |           |
| 61 | CdS/MoS <sub>2</sub> /Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>composites                                  | 300 W Xe lamp<br>(CELHXF300): a cut-off<br>filter ( $\lambda > 420$ nm) | RT    | S <sup>2-</sup> /SO <sub>3</sub> <sup>2-</sup> | 0.25 M Na <sub>2</sub> S and<br>0.35 M Na <sub>2</sub> SO <sub>3</sub>                   | 9679     | [94]/2019 |
| 62 | plasma-Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /CdS<br>hybrids                                               | 300 W arc Xe lamp<br>(PLSSXE300): a UV                                  | RT    | Lactic acid                                    | C <sub>3</sub> H <sub>6</sub> O <sub>3</sub> /H <sub>2</sub> O ( <i>l</i> , 1:9)         | 825      | [62]/2019 |
| 63 | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /CdS hybrids                                                         | cut-off filter ( $\lambda > 420$ nm);                                   |       |                                                | -                                                                                        | 473      | _         |
| 64 | g-C <sub>3</sub> N <sub>4</sub> /plasma-Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub>                              | 350 W Xe lamp: a UV                                                     | RT    | TEOA                                           | TEOA/H <sub>2</sub> O - ( <i>l</i> , 1:9)                                                | 17.8     | [63]/2020 |
| 65 | g-C <sub>3</sub> N <sub>4</sub> /Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub>                                     | cut-off filter ( $\lambda > 400$ nm);                                   |       |                                                |                                                                                          | 7.5      |           |
| 66 | g-C <sub>3</sub> N <sub>4</sub>                                                                                    | - 70 mW⋅cm <sup>-2</sup>                                                |       |                                                |                                                                                          | 0.7      |           |
| 67 | TiO <sub>2</sub> /Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> @AC-48 h<br>composite                              | 350 W Xe lamp (AHD<br>_ 350): a cut-off filter<br>(λ > 400 nm)          | RT    | Ascorbic acid                                  | 29 mg·mL <sup>-1</sup> AA with<br>the sensitization<br>of 1 mM EY<br>in aqueous solution | 33.4     | [98]/2019 |
| 68 | 1% Pt/TiO <sub>2</sub>                                                                                             |                                                                         |       | (2123)                                         |                                                                                          | 0.7      | _         |
| 69 | TiO <sub>2</sub> /Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> @AC-48 h<br>composite                              | -                                                                       |       |                                                | 29 mg·mL <sup>−1</sup> AA<br>in aqueous solution                                         | 0.3      |           |

Table 1. Cont.

| Table 2. | Photocatal | ytic hydro | gen produ                                    | ction over | selected M | Xenes cocat | alysts |
|----------|------------|------------|----------------------------------------------|------------|------------|-------------|--------|
|          |            | / /        | <i>,</i> , , , , , , , , , , , , , , , , , , |            |            |             |        |

| No. | Photocatalysts                                                                                   | Light Source                                                       | Reaction Temp. | Scavenger                                      | Reactant Medium                                                                           | H <sub>2</sub> Production Rate<br>(μmol·g <sub>cat</sub> <sup>-1</sup> ·h <sup>-1</sup> ) | Ref./(Year) |
|-----|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------|------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------|
| 1   | Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /O-doped g-C <sub>3</sub> N <sub>4</sub>           | 300 W Xe lamp                                                      | RT             | TEOA                                           | TEOA (l)                                                                                  | 25,124                                                                                    | [87]/2019   |
| 2   | CdLa <sub>2</sub> S <sub>4</sub> /Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>nanocomposite | 300 W Xe lamp: a high-pass filter ( $\lambda > 420 \text{ nm}$ )   | RT             | S <sup>2-</sup> /SO <sub>3</sub> <sup>2-</sup> | 0.35 M Na <sub>2</sub> S and<br>0.25 M Na <sub>2</sub> SO <sub>3</sub>                    | 11,182.4                                                                                  | [81]/2019   |
| 3   | 2.5 wt % Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>nanoparticles/CdS (CT2.5)              | 300 W Xe arc lamp: $\lambda \ge 420$<br>nm; 80 mW·cm <sup>-2</sup> | RT             | Lactic acid                                    | C <sub>3</sub> H <sub>6</sub> O <sub>3</sub> /H <sub>2</sub> O<br>( <i>l</i> , 17.6:62.4) | 14,342                                                                                    | [61]/2017   |
| 4   | Nb <sub>2</sub> O <sub>5</sub> /C/Nb <sub>2</sub> CT <sub>x</sub><br>Composites                  | 200 W Hg lamp: $\lambda =$ 285–325 nm; 120 mW·cm <sup>-2</sup>     | 25 °C          | Methanol                                       | CH <sub>3</sub> OH/H <sub>2</sub> O<br>( <i>l</i> , 1:3)                                  | 7.81                                                                                      | [96]/2018   |
| 5   | Zn <sub>0.5</sub> Cd <sub>0.5</sub> S/Ti <sub>2</sub> C/TiO <sub>2</sub>                         | 300 W Xe lamp: $\lambda \ge 400 \text{ nm}$ ;                      | RT             | S <sup>2-</sup> /SO <sub>3</sub> <sup>2-</sup> | 0.3 M Na <sub>2</sub> S and<br>0.3 M Na <sub>2</sub> SO <sub>3</sub>                      | 32,560                                                                                    | [97]/2020   |

#### 6. Summary and Perspectives

In conclusion,  $Ti_3C_2T_x$  exhibited excellent catalytic properties toward photocatalytic HER. However, the property of  $Ti_3C_2T_x$  was strongly affected by its surface functional groups and coupled materials. Specifically, the O terminated  $Ti_3C_2T_x$  offered the best catalytic activity. The performance of  $Ti_3C_3T_x$  could also be improved by paring with other photoactive materials such as  $TiO_2$ , ZnO,  $MoS_2$ ,  $WS_2$ , CdS, and graphitic carbon nitride. The composite materials not only improved light absorption but also enhanced the charge separation and active sites. Thus improving the overall performance  $Ti_3C_2T_x$  under UV-vis light irradiation. Nonetheless, there were still limitations that hinder the application of  $Ti_3C_2T_x$  for practical applications such as scalability and stability. The future development of  $Ti_3C_2T_x$  as photocatalysts can be extended into the following directions: (1) developing a novel method for production of  $Ti_3C_2T_x$  in large scale at a mild condition such as a lower temperature, less toxic etchant, and solution-processable; (2) constructing novel functional groups on the surface of  $Ti_3C_2T_x$  for improving the catalytic properties; (3) designing novel materials to couple with  $Ti_3C_2T_x$  for further enhancing the photocatalytic activity such as oxide perovskite and halide perovskite can be considered; and (4) improving the stability of  $Ti_3C_2T_x$  for improving the lifetime of catalysts under working through structural engineering or passivation.

**Author Contributions:** V.-H.N, S.Y.K, and Q.V.L conceived the idea and supervised the project. All authors wrote and approved the final version of the manuscript. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research was supported by the Creative Materials Discovery Program through the NRF funded by the Ministry of Science and ICT (grant number 2017M3D1A1039379) and the Basic Research Laboratory of the NRF funded by the Korean government (grant number 2018R1A4A1022647). The authors gratefully acknowledge Lac Hong University, Vietnam for the financial and equipment support under grant number LHU-RF-TE-18-01-09.

Conflicts of Interest: The authors declare no conflict of interest

# References

- 1. Bockris, J. Energy: The Solar-Hydrogen Alternative; Halsted Press: New York, NY, USA, 1975; 381p.
- Huang, C.-W.; Nguyen, B.-S.; Wu, J.C.S.; Nguyen, V.-H. A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water. *Int. J. Hydrog. Energy* 2019. [CrossRef]
- 3. Nguyen, T.P.; Nguyen, D.L.T.; Nguyen, V.-H.; Le, T.-H.; Ly, Q.V.; Vo, D.-V.N.; Nguyen, Q.V.; Le, H.S.; Jang, H.W.; Kim, S.Y.; et al. Facile synthesis of WS<sub>2</sub> hollow spheres and their hydrogen evolution reaction performance. *Appl. Surf. Sci.* **2020**, *505*, 144574. [CrossRef]
- Tekalgne, M.A.; Nguyen, K.V.; Nguyen, D.L.T.; Nguyen, V.-H.; Nguyen, T.P.; Vo, D.-V.N.; Trinh, Q.T.; Hasani, A.; Do, H.H.; Lee, T.H.; et al. Hierarchical molybdenum disulfide on carbon nanotube–reduced graphene oxide composite paper as efficient catalysts for hydrogen evolution reaction. *J. Alloys Compd.* 2020, *823*, 153897. [CrossRef]
- 5. Nguyen, T.P.; Kim, S.Y.; Lee, T.H.; Jang, H.W.; Le, Q.V.; Kim, I.T. Facile synthesis of W<sub>2</sub>C@WS<sub>2</sub> alloy nanoflowers and their hydrogen generation performance. *Appl. Surf. Sci.* **2020**, *504*, 144389. [CrossRef]
- Tekalgne, M.A.; Hasani, A.; Heo, D.Y.; Van Le, Q.; Nguyen, T.P.; Lee, T.H.; Ahn, S.H.; Jang, H.W.; Kim, S.Y. SnO<sub>2</sub>@WS<sub>2</sub>/p-Si Heterostructure Photocathode for Photoelectrochemical Hydrogen Production. *J. Phys. Chem. C* 2020, 124, 647–652. [CrossRef]
- Hasani, A.; Le, Q.V.; Tekalgne, M.; Choi, M.-J.; Lee, T.H.; Jang, H.W.; Kim, S.Y. Direct synthesis of two-dimensional MoS<sub>2</sub> on p-type Si and application to solar hydrogen production. *NPG Asia Mater.* 2019, 11, 47. [CrossRef]
- Hasani, A.; Van Le, Q.; Tekalgne, M.; Choi, M.-J.; Choi, S.; Lee, T.H.; Kim, H.; Ahn, S.H.; Jang, H.W.; Kim, S.Y. Fabrication of a WS<sub>2</sub>/p-Si Heterostructure Photocathode Using Direct Hybrid Thermolysis. *ACS Appl. Mater. Interfaces* 2019, *11*, 29910–29916. [CrossRef] [PubMed]
- Tekalgne, M.; Hasani, A.; Le, Q.V.; Nguyen, T.P.; Choi, K.S.; Lee, T.H.; Jang, H.W.; Luo, Z.; Kim, S.Y. CdSe Quantum Dots Doped WS<sub>2</sub> Nanoflowers for Enhanced Solar Hydrogen Production. *Phys. Status Solidi A Appl. Res.* 2019, 216, 1800853. [CrossRef]
- 10. Tekalgne, M.; Hasani, A.; Van Le, Q.; Kim, S.Y. Transition metal dichalcogenide-based composites for hydrogen production. *Funct. Compos. Struct.* **2019**, *1*, 012001. [CrossRef]
- 11. Guo, W.; Le, Q.V.; Do, H.H.; Hasani, A.; Tekalgne, M.; Bae, S.-R.; Lee, T.H.; Jang, H.W.; Ahn, S.H.; Kim, S.Y. Ni<sub>3</sub>Se<sub>4</sub>@MoSe<sub>2</sub> Composites for Hydrogen Evolution Reaction. *Appl. Sci.* **2019**, *9*, 5035. [CrossRef]
- 12. Hasani, A.; Tekalgne, M.; Le, Q.V.; Jang, H.W.; Kim, S.Y. Two-dimensional materials as catalysts for solar fuels: hydrogen evolution reaction and CO<sub>2</sub> reduction. *J. Mater. Chem. A* **2019**, *7*, 430–454. [CrossRef]
- 13. Guo, W.; Le, Q.V.; Hasani, A.; Lee, T.H.; Jang, H.W.; Luo, Z.; Kim, S.Y. MoSe<sub>2</sub>-GO/rGO Composite Catalyst for Hydrogen Evolution Reaction. *Polymers* **2018**, *10*, 1309. [CrossRef]
- Nguyen, T.P.; Le, Q.V.; Choi, S.; Lee, T.H.; Hong, S.-P.; Choi, K.S.; Jang, H.W.; Lee, M.H.; Park, T.J.; Kim, S.Y. Surface extension of MeS<sub>2</sub> (Me = Mo or W) nanosheets by embedding MeS<sub>x</sub> for hydrogen evolution reaction. *Electrochim. Acta* 2018, 292, 136–141. [CrossRef]
- Hasani, A.; Nguyen, T.P.; Tekalgne, M.; Van Le, Q.; Choi, K.S.; Lee, T.H.; Jung Park, T.; Jang, H.W.; Kim, S.Y. The role of metal dopants in WS<sub>2</sub> nanoflowers in enhancing the hydrogen evolution reaction. *Appl. Catal. A* 2018, 567, 73–79. [CrossRef]

- Do, H.H.; Nguyen, D.L.T.; Nguyen, X.C.; Le, T.-H.; Nguyen, T.P.; Trinh, Q.T.; Ahn, S.H.; Vo, D.-V.N.; Kim, S.Y.; Le, Q.V. Recent progress in TiO<sub>2</sub>-based photocatalysts for hydrogen evolution reaction: A review. *Arab. J. Chem.* 2020, *13*, 3653–3671. [CrossRef]
- 17. Qin, Y.; Li, H.; Lu, J.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Nitrogen-doped hydrogenated TiO<sub>2</sub> modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. *Chem. Eng. J.* **2020**, *384*, 123275. [CrossRef]
- 18. Shi, W.; Li, M.; Huang, X.; Ren, H.; Yan, C.; Guo, F. Facile synthesis of 2D/2D Co<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction for highly photocatalytic overall water splitting under visible light. *Chem. Eng. J.* **2020**, *382*, 122960. [CrossRef]
- 19. Mishra, A.; Mehta, A.; Basu, S.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Graphitic carbon nitride (g–C<sub>3</sub>N<sub>4</sub>)-based metal-free photocatalysts for water splitting: A review. *Carbon* **2019**, *149*, 693–721. [CrossRef]
- 20. Fang, X.; Gao, R.; Yang, Y.; Yan, D. A Cocrystal Precursor Strategy for Carbon-Rich Graphitic Carbon Nitride toward High-Efficiency Photocatalytic Overall Water Splitting. *iScience* **2019**, *16*, 22–30. [CrossRef]
- 21. Ehrmaier, J.; Karsili, T.N.V.; Sobolewski, A.L.; Domcke, W. Mechanism of Photocatalytic Water Splitting with Graphitic Carbon Nitride: Photochemistry of the Heptazine-Water Complex. *J. Phys. Chem. A* 2017, 121, 4754–4764. [CrossRef]
- 22. Srinivasu, K.; Ghosh, S.K. Photocatalytic splitting of water on s-triazine based graphitic carbon nitride: An ab initio investigation. *J. Mater. Chem. A* **2015**, *3*, 23011–23016. [CrossRef]
- Pan, Z.; Pan, N.; Chen, L.; He, J.; Zhang, M. Flower-like MOF-derived Co–N-doped carbon composite with remarkable activity and durability for electrochemical hydrogen evolution reaction. *Int. J. Hydrog. Energy* 2019, 44, 30075–30083. [CrossRef]
- 24. Duan, J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. *Nat. Commun.* **2017**, *8*, 15341. [CrossRef] [PubMed]
- 25. Chen, W.; Pei, J.; He, C.-T.; Wan, J.; Ren, H.; Wang, Y.; Dong, J.; Wu, K.; Cheong, W.-C.; Mao, J.; et al. Single Tungsten Atoms Supported on MOF-Derived N-Doped Carbon for Robust Electrochemical Hydrogen Evolution. *Adv. Mater.* **2018**, *30*, 1800396. [CrossRef] [PubMed]
- 26. Li, Y.; Peng, Y.-K.; Hu, L.; Zheng, J.; Prabhakaran, D.; Wu, S.; Puchtler, T.J.; Li, M.; Wong, K.-Y.; Taylor, R.A.; et al. Photocatalytic water splitting by N-TiO<sub>2</sub> on MgO (111) with exceptional quantum efficiencies at elevated temperatures. *Nat. Commun.* **2019**, *10*, 4421. [CrossRef]
- 27. Wang, Y.; Zhang, J. Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting. *Front. Chem. Sci. Eng.* **2018**, *12*, 838–854. [CrossRef]
- Cheng, Y.-W.; Dai, J.-H.; Zhang, Y.-M.; Song, Y. Two-Dimensional, Ordered, Double Transition Metal Carbides (MXenes): A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. *J. Phys. Chem. C* 2018, 122, 28113–28122. [CrossRef]
- 29. Esposito, D.V.; Hunt, S.T.; Kimmel, Y.C.; Chen, J.G. A New Class of Electrocatalysts for Hydrogen Production from Water Electrolysis: Metal Monolayers Supported on Low-Cost Transition Metal Carbides. *J. Am. Chem. Soc.* **2012**, *134*, 3025–3033. [CrossRef]
- 30. Miao, M.; Pan, J.; He, T.; Yan, Y.; Xia, B.Y.; Wang, X. Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction. *Chem. Eur.* **2017**, *23*, 10947–10961. [CrossRef]
- 31. Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. *Adv. Mater.* **2014**, *26*, 992–1005. [CrossRef]
- 32. Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Transition Metal Carbides. *ACS Nano* **2012**, *6*, 1322–1331. [CrossRef] [PubMed]
- 33. Barsoum, M.W. The M<sub>N+1</sub>AX<sub>N</sub> phases: A new class of solids: Thermodynamically stable nanolaminates. *Prog. Solid State Chem.* **2000**, *28*, 201–281. [CrossRef]
- Jun, B.-M.; Kim, S.; Heo, J.; Park, C.M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. *Nano Res.* 2019, 12, 471–487. [CrossRef]
- 35. Verger, L.; Natu, V.; Carey, M.; Barsoum, M.W. MXenes: An Introduction of Their Synthesis, Select Properties, and Applications. *Trends Chem.* **2019**, *1*, 656–669. [CrossRef]
- 36. Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. *Nat. Rev. Mater.* **2017**, *2*, 16098. [CrossRef]

- Pang, J.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M.H. Applications of 2D MXenes in energy conversion and storage systems. *Chem. Soc. Rev.* 2019, 48, 72–133. [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene). *Chem. Mater.* 2017, 29, 7633–7644. [CrossRef]
- 39. Eklund, P.; Beckers, M.; Jansson, U.; Högberg, H.; Hultman, L. The M<sub>n+1</sub>AX<sub>n</sub> phases: Materials science and thin-film processing. *Thin Solid Films* **2010**, *518*, 1851–1878. [CrossRef]
- 40. Anasori, B.; Gogotsi, Y. Introduction to 2D Transition Metal Carbides and Nitrides (MXenes). In 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications; Anasori, B., Gogotsi, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–12. [CrossRef]
- 41. Zhan, X.; Si, C.; Zhou, J.; Sun, Z. MXene and MXene-based composites: synthesis, properties and environment-related applications. *Nanoscale Horiz.* **2020**, *5*, 235–258. [CrossRef]
- Jiang, X.; Kuklin, A.V.; Baev, A.; Ge, Y.; Ågren, H.; Zhang, H.; Prasad, P.N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. *Phys. Rep.* 2020, 848, 1–58. [CrossRef]
- 43. Cheng, L.; Li, X.; Zhang, H.; Xiang, Q. Two-Dimensional Transition Metal MXene-Based Photocatalysts for Solar Fuel Generation. *J. Phys. Chem. Lett.* **2019**, *10*, 3488–3494. [CrossRef] [PubMed]
- 44. Ye, M.; Wang, X.; Liu, E.; Ye, J.; Wang, D. Boosting the Photocatalytic Activity of P25 for Carbon Dioxide Reduction by using a Surface-Alkalinized Titanium Carbide MXene as Cocatalyst. *ChemSusChem* **2018**, *11*, 1606–1611. [CrossRef] [PubMed]
- An, X.; Wang, W.; Wang, J.; Duan, H.; Shi, J.; Yu, X. The synergetic effects of Ti<sub>3</sub>C<sub>2</sub> MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C<sub>3</sub>N<sub>4</sub>. *Phys. Chem. Chem. Phys.* 2018, 20, 11405–11411. [CrossRef] [PubMed]
- Li, Y.; Ding, L.; Liang, Z.; Xue, Y.; Cui, H.; Tian, J. Synergetic effect of defects rich MoS<sub>2</sub> and Ti<sub>3</sub>C<sub>2</sub> MXene as cocatalysts for enhanced photocatalytic H<sub>2</sub> production activity of TiO<sub>2</sub>. *Chem. Eng. J.* 2020, *383*, 123178. [CrossRef]
- 47. Zhang, C.; Anasori, B.; Seral-Ascaso, A.; Park, S.-H.; McEvoy, N.; Shmeliov, A.; Duesberg, G.S.; Coleman, J.N.; Gogotsi, Y.; Nicolosi, V. Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. *Adv. Mater.* **2017**, *29*, 1702678. [CrossRef]
- 48. Gao, G.; O'Mullane, A.P.; Du, A. 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. *ACS Catal.* **2017**, *7*, 494–500. [CrossRef]
- Zhu, J.; Ha, E.; Zhao, G.; Zhou, Y.; Huang, D.; Yue, G.; Hu, L.; Sun, N.; Wang, Y.; Lee, L.Y.S.; et al. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. *Coord. Chem. Rev.* 2017, 352, 306–327. [CrossRef]
- Nguyen, T.P.; Tuan Nguyen, D.M.; Tran, D.L.; Le, H.K.; Vo, D.-V.N.; Lam, S.S.; Varma, R.S.; Shokouhimehr, M.; Nguyen, C.C.; Le, Q.V. MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO<sub>2</sub> reduction. *Mol. Catal.* 2020, 486, 110850. [CrossRef]
- 51. Jiang, Q.; Lei, Y.; Liang, H.; Xi, K.; Xia, C.; Alshareef, H.N. Review of MXene electrochemical microsupercapacitors. *Energy Storage Mater.* **2020**, *27*, 78–95. [CrossRef]
- Su, T.; Hood, Z.D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C.M.; Ivanov, I.N.; Ji, H.; Qin, Z.; Wu, Z. Monolayer Ti3C2Tx as an Effective Co-catalyst for Enhanced Photocatalytic Hydrogen Production over TiO<sub>2</sub>. ACS Appl. Energy Mater. 2019, 2, 4640–4651. [CrossRef]
- 53. Zhang, J.; Zhao, Y.; Guo, X.; Chen, C.; Dong, C.-L.; Liu, R.-S.; Han, C.-P.; Li, Y.; Gogotsi, Y.; Wang, G. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. *Nat. Catal.* **2018**, *1*, 985–992. [CrossRef]
- 54. Yuan, W.; Cheng, L.; An, Y.; Wu, H.; Yao, N.; Fan, X.; Guo, X. MXene Nanofibers as Highly Active Catalysts for Hydrogen Evolution Reaction. *ACS Sustain. Chem. Eng.* **2018**, *6*, 8976–8982. [CrossRef]
- Li, Y.; Ding, L.; Guo, Y.; Liang, Z.; Cui, H.; Tian, J. Boosting the Photocatalytic Ability of g-C<sub>3</sub>N<sub>4</sub> for Hydrogen Production by Ti<sub>3</sub>C<sub>2</sub> MXene Quantum Dots. *ACS Appl. Mater. Interfaces* 2019, *11*, 41440–41447. [CrossRef] [PubMed]

- Sun, Y.; Jin, D.; Sun, Y.; Meng, X.; Gao, Y.; Dall'Agnese, Y.; Chen, G.; Wang, X.-F. g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. *J. Mater. Chem. A* 2018, *6*, 9124–9131. [CrossRef]
- 57. Zhang, X.; Ma, Z.; Zhao, X.; Tang, Q.; Zhou, Z. Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes. *J. Mater. Chem. A* **2015**, *3*, 4960–4966. [CrossRef]
- 58. Xie, Y.; Kent, P.R.C. Hybrid density functional study of structural and electronic properties of functionalized  $Ti_{n+1}X_n$  (X = C, N) monolayers. *Phys. Rev. B* **2013**, *87*, 235441. [CrossRef]
- 59. Berdiyorov, G.R. Effect of surface functionalization on the electronic transport properties of Ti<sub>3</sub>C<sub>2</sub> MXene. *EPL (Europhys. Lett.)* **2015**, *111*, 67002. [CrossRef]
- 60. Berdiyorov, G.R. Optical properties of functionalized  $Ti_3C_2T_2$  (T = F, O, OH) MXene: First-principles calculations. *AIP Advances* **2016**, *6*, 055105. [CrossRef]
- 61. Ran, J.; Gao, G.; Li, F.-T.; Ma, T.-Y.; Du, A.; Qiao, S.-Z. Ti<sub>3</sub>C<sub>2</sub> MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. *Nat. Commun.* **2017**, *8*, 13907. [CrossRef]
- 62. Yang, Y.; Zhang, D.; Xiang, Q. Plasma-modified Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production. *Nanoscale* **2019**, *11*, 18797–18805. [CrossRef]
- Xu, F.; Zhang, D.; Liao, Y.; Wang, G.; Shi, X.; Zhang, H.; Xiang, Q. Synthesis and photocatalytic H<sub>2</sub>-production activity of plasma-treated Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene modified graphitic carbon nitride. *J. Am. Ceram. Soc.* 2020, 103, 849–858. [CrossRef]
- 64. Miyoshi, A.; Nishioka, S.; Maeda, K. Water Splitting on Rutile TiO<sub>2</sub>-Based Photocatalysts. *Chem. Eur.* **2018**, 24, 18204–18219. [CrossRef] [PubMed]
- 65. Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO<sub>2</sub> for hydrogen production. *Renew. Sustain. Energy Rev.* **2007**, *11*, 401–425. [CrossRef]
- 66. Li, R.; Weng, Y.; Zhou, X.; Wang, X.; Mi, Y.; Chong, R.; Han, H.; Li, C. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. *Energy Environ. Sci.* 2015, *8*, 2377–2382. [CrossRef]
- 67. Zhuang, Y.; Liu, Y.; Meng, X. Fabrication of TiO<sub>2</sub> nanofibers/MXene Ti<sub>3</sub>C<sub>2</sub> nanocomposites for photocatalytic H<sub>2</sub> evolution by electrostatic self-assembly. *Appl. Surf. Sci.* **2019**, *496*, 143647. [CrossRef]
- Liu, X.; Chen, C. Mxene enhanced the photocatalytic activity of ZnO nanorods under visible light. *Mater. Lett.* 2020, 261, 127127. [CrossRef]
- 69. Tso, S.; Li, W.-S.; Wu, B.-H.; Chen, L.-J. Enhanced H<sub>2</sub> production in water splitting with CdS-ZnO core-shell nanowires. *Nano Energy* **2018**, *43*, 270–277. [CrossRef]
- 70. Garg, P.; Bhauriyal, P.; Mahata, A.; Rawat, K.S.; Pathak, B. Role of Dimensionality for Photocatalytic Water Splitting: CdS Nanotube versus Bulk Structure. *Chemphyschem* **2019**, *20*, 383–391. [CrossRef]
- 71. Chen, X.; Shangguan, W. Hydrogen production from water splitting on CdS-based photocatalysts using solar light. *Front. Energy* **2013**, *7*, 111–118. [CrossRef]
- 72. Wang, Z.; Wang, J.; Li, L.; Zheng, J.; Jia, S.; Chen, J.; Liu, B.; Zhu, Z. Fabricating efficient CdSe–CdS photocatalyst systems by spatially resetting water splitting sites. *J. Mater. Chem. A* 2017, *5*, 20131–20135. [CrossRef]
- 73. Li, M.; Cui, Z.; Li, E. Silver-modified MoS<sub>2</sub> nanosheets as a high-efficiency visible-light photocatalyst for water splitting. *Ceram. Int.* **2019**, *45*, 14449–14456. [CrossRef]
- Lin, L.; Huang, S.; Zhu, Y.; Du, B.; Zhang, Z.; Chen, C.; Wang, X.; Zhang, N. Construction of CdS/MoS<sub>2</sub> heterojunction from core–shell MoS<sub>2</sub>@Cd-MOF for efficient photocatalytic hydrogen evolution. *Dalton Trans.* 2019, *48*, 2715–2721. [CrossRef] [PubMed]
- Han, B.; Hu, Y.H. MoS<sub>2</sub> as a co-catalyst for photocatalytic hydrogen production from water. *Energy Sci. Eng.* 2016, *4*, 285–304. [CrossRef]
- 76. Xiang, Q.; Cheng, F.; Lang, D. Hierarchical Layered WS<sub>2</sub>/Graphene-Modified CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution. *ChemSusChem* **2016**, *9*, 996–1002. [CrossRef]
- 77. Kumar, R.; Das, D.; Singh, A.K. C<sub>2</sub>N/WS<sub>2</sub> van der Waals type-II heterostructure as a promising water splitting photocatalyst. *J. Catal.* **2018**, *359*, 143–150. [CrossRef]
- Reddy, D.A.; Park, H.; Ma, R.; Kumar, D.P.; Lim, M.; Kim, T.K. Heterostructured WS<sub>2</sub>-MoS<sub>2</sub> Ultrathin Nanosheets Integrated on CdS Nanorods to Promote Charge Separation and Migration and Improve Solar-Driven Photocatalytic Hydrogen Evolution. *ChemSusChem* 2017, *10*, 1563–1570. [CrossRef]

- 79. Xiao, R.; Zhao, C.; Zou, Z.; Chen, Z.; Tian, L.; Xu, H.; Tang, H.; Liu, Q.; Lin, Z.; Yang, X. In situ fabrication of 1D CdS nanorod/2D Ti<sub>3</sub>C<sub>2</sub> MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. *Appl. Catal. B* 2019, *268*, 118382. [CrossRef]
- Tie, L.; Yang, S.; Yu, C.; Chen, H.; Liu, Y.; Dong, S.; Sun, J.; Sun, J. In situ decoration of ZnS nanoparticles with Ti<sub>3</sub>C<sub>2</sub> MXene nanosheets for efficient photocatalytic hydrogen evolution. *J. Colloid Interface Sci.* 2019, 545, 63–70. [CrossRef]
- 81. Cheng, L.; Chen, Q.; Li, J.; Liu, H. Boosting the photocatalytic activity of CdLa<sub>2</sub>S<sub>4</sub> for hydrogen production using Ti<sub>3</sub>C<sub>2</sub> MXene as a co-catalyst. *Appl. Catal. B* **2019**, *267*, 118379. [CrossRef]
- Tian, P.; He, X.; Zhao, L.; Li, W.; Fang, W.; Chen, H.; Zhang, F.; Huang, Z.; Wang, H. Ti<sub>3</sub>C<sub>2</sub> nanosheets modified Zr-MOFs with Schottky junction for boosting photocatalytic HER performance. *Sol. Energy* 2019, *188*, 750–759. [CrossRef]
- Dong, J.; Shi, Y.; Huang, C.; Wu, Q.; Zeng, T.; Yao, W. A New and stable Mo-Mo<sub>2</sub>C modified g-C<sub>3</sub>N<sub>4</sub> photocatalyst for efficient visible light photocatalytic H<sub>2</sub> production. *Appl. Catal. B* 2019, 243, 27–35. [CrossRef]
- 84. Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C<sub>3</sub>N<sub>4</sub>-based photocatalysts. *Appl. Surf. Sci.* **2017**, 391, 72–123. [CrossRef]
- 85. Zou, Y.; Ma, D.; Sun, D.; Mao, S.; He, C.; Wang, Z.; Ji, X.; Shi, J.-W. Carbon nanosheet facilitated charge separation and transfer between molybdenum carbide and graphitic carbon nitride toward efficient photocatalytic H<sub>2</sub> production. *Appl. Surf. Sci.* **2019**, *473*, 91–101. [CrossRef]
- Su, T.; Hood, Z.D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C.M.; Ivanov, I.N.; Ji, H.; Qin, Z.; Wu, Z. 2D/2D heterojunction of Ti<sub>3</sub>C<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> nanosheets for enhanced photocatalytic hydrogen evolution. *Nanoscale* 2019, *11*, 8138–8149. [CrossRef] [PubMed]
- Lin, P.; Shen, J.; Yu, X.; Liu, Q.; Li, D.; Tang, H. Construction of Ti<sub>3</sub>C<sub>2</sub> MXene/O-doped g-C<sub>3</sub>N<sub>4</sub> 2D-2D Schottky-junction for enhanced photocatalytic hydrogen evolution. *Ceram. Int.* 2019, 45, 24656–24663. [CrossRef]
- Tian, P.; He, X.; Zhao, L.; Li, W.; Fang, W.; Chen, H.; Zhang, F.; Huang, Z.; Wang, H. Enhanced charge transfer for efficient photocatalytic H<sub>2</sub> evolution over UiO-66-NH<sub>2</sub> with annealed Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXenes. *Int. J. Hydrog. Energy* 2019, 44, 788–800. [CrossRef]
- Peng, C.; Wei, P.; Li, X.; Liu, Y.; Cao, Y.; Wang, H.; Yu, H.; Peng, F.; Zhang, L.; Zhang, B.; et al. High efficiency photocatalytic hydrogen production over ternary Cu/TiO<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> enabled by low-work-function 2D titanium carbide. *Nano Energy* 2018, *53*, 97–107. [CrossRef]
- 90. Li, Y.; Yang, S.; Liang, Z.; Xue, Y.; Cui, H.; Tian, J. 1T-MoS<sub>2</sub> nanopatch/Ti<sub>3</sub>C<sub>2</sub> MXene/TiO<sub>2</sub> nanosheet hybrids for efficient photocatalytic hydrogen evolution. *Mater. Chem. Front.* **2019**, *3*, 2673–2680. [CrossRef]
- 91. Li, Y.; Ding, L.; Yin, S.; Liang, Z.; Xue, Y.; Wang, X.; Cui, H.; Tian, J. Photocatalytic H<sub>2</sub> Evolution on TiO<sub>2</sub> Assembled with Ti<sub>3</sub>C<sub>2</sub> MXene and Metallic 1T-WS<sub>2</sub> as Co-catalysts. *Nano-Micro Lett.* **2019**, *12*, 6. [CrossRef]
- Yu, M.; Wang, Z.; Liu, J.; Sun, F.; Yang, P.; Qiu, J. A hierarchically porous and hydrophilic 3D nickel–iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. *Nano Energy* 2019, 63, 103880. [CrossRef]
- Zhang, M.; Qin, J.; Rajendran, S.; Zhang, X.; Liu, R. Heterostructured d-Ti<sub>3</sub>C<sub>2</sub>/TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> Nanocomposites with Enhanced Visible-Light Photocatalytic Hydrogen Production Activity. *ChemSusChem* 2018, 11, 4226–4236. [CrossRef] [PubMed]
- 94. Ramalingam, V.; Varadhan, P.; Fu, H.-C.; Kim, H.; Zhang, D.; Chen, S.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H.N.; et al. Heteroatom-Mediated Interactions between Ruthenium Single Atoms and an MXene Support for Efficient Hydrogen Evolution. *Adv. Mater.* 2019, *31*, 1903841. [CrossRef] [PubMed]
- 95. Li, Y.; Yin, Z.; Ji, G.; Liang, Z.; Xue, Y.; Guo, Y.; Tian, J.; Wang, X.; Cui, H. 2D/2D/2D heterojunction of Ti<sub>3</sub>C<sub>2</sub> MXene/MoS<sub>2</sub> nanosheets/TiO<sub>2</sub> nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. *Appl. Catal. B* **2019**, *246*, 12–20. [CrossRef]
- Su, T.; Peng, R.; Hood, Z.D.; Naguib, M.; Ivanov, I.N.; Keum, J.K.; Qin, Z.; Guo, Z.; Wu, Z. One-Step Synthesis of Nb<sub>2</sub>O<sub>5</sub>/C/Nb<sub>2</sub>C (MXene) Composites and Their Use as Photocatalysts for Hydrogen Evolution. *ChemSusChem* 2018, 11, 688–699. [CrossRef]

- 97. Pan, L.; Mei, H.; Liu, H.; Pan, H.; Zhao, X.; Jin, Z.; Zhu, G. High-efficiency carrier separation heterostructure improve the photocatalytic hydrogen production of sulfide. *J. Alloys Compd.* **2020**, *817*, 153242. [CrossRef]
- Sun, Y.; Sun, Y.; Meng, X.; Gao, Y.; Dall'Agnese, Y.; Chen, G.; Dall'Agnese, C.; Wang, X.-F. Eosin Y-sensitized partially oxidized Ti<sub>3</sub>C<sub>2</sub> MXene for photocatalytic hydrogen evolution. *Catal. Sci. Technol.* 2019, *9*, 310–315. [CrossRef]



© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).