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Minimal inhibitory concentration (MIC) is defined as the lowest concentration of an
antimicrobial agent that can inhibit the visible growth of a particular microorganism after
overnight incubation. Clinically, antibiotic doses for specific infections are determined
according to the fraction of MIC. Therefore, credible assessment of MICs will provide a
physician valuable information on the choice of therapeutic strategy. Early and precise
usage of antibiotics is the key to an infection therapy. Compared with the traditional
culture-based method, the approach of whole genome sequencing to identify MICs can
shorten the experimental time, thereby improving clinical efficacy. Klebsiella pneumoniae
is one of the most significant members of the genus Klebsiella in the Enterobacteriaceae
family and also a common non-social pathogen. Meropenem is a broad-spectrum
antibacterial agent of the carbapenem family, which can produce antibacterial effects
of most Gram-positive and -negative bacteria. In this study, we used single-nucleotide
polymorphism (SNP) information and nucleotide k-mers count based on metagenomic
data to predict MICs of meropenem against K. pneumoniae. Then, features of 110
sequenced K. pneumoniae genome data were combined and modeled with XGBoost
algorithm and deep neural network (DNN) algorithm to predict MICs. We first use the
XGBoost classification model and the XGBoost regression model. After five runs, the
average accuracy of the test set was calculated. The accuracy of using nucleotide
k-mers to predict MICs of the XGBoost classification model and XGBoost regression
model was 84.5 and 89.1%. The accuracy of SNP in predicting MIC was 80 and
81.8%, respectively. The results show that XGBoost regression is better than XGBoost
classification in both nucleotide k-mers and SNPs to predict MICs. We further selected
40 nucleotide k-mers and 40 SNPs with the highest correlation with MIC values as
features to retrain the XGBoost regression model and DNN regression model. After 100
and 1,000 runs, the results show that the accuracy of the two models was improved.
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The accuracy of the XGBoost regression model for k-mers, SNPs, and k-mers & SNPs
was 91.1, 85.2, and 91.3%, respectively. The accuracy of the DNN regression model
was 91.9, 87.1, and 91.8%, respectively. Through external verification, some of the
selected features were found to be related to drug resistance.

Keywords: Klebsiella pneumoniae, minimum inhibitory concentration, meropenem, XGBoost, deep neural
network

INTRODUCTION

Klebsiella pneumoniae is a member of thew enterobacter
Klebsiella; it is a Gram-negative bacterium that causes one-
third of all Gram-negative infections (Navon-Venezia et al.,
2017). Over the past two decades, K. pneumoniae has undergone
complex evolution, with the emergence of many high-risk, highly
infectious sequence types, resulting in the sustained global spread
of K. pneumoniae (Navon-Venezia et al., 2017). In addition
to widespread transmission, the increase in drug resistance in
K. pneumoniae is also an important issue. Many studies and
reports indicate that antimicrobial resistance (AMR) strains of
K. pneumoniae have increased at an alarming rate in recent years
(Long et al., 2017; Navon-Venezia et al., 2017).

Carbapenem antibiotics play an important role in
the treatment of severe infections of drug-resistant
Enterobacteriaceae, and the increase of drug resistance of
K. pneumoniae and the emergence and spread of drug-resistant
strains pose a serious threat to public health (Spagnolo et al.,
2014). In fact, carbapenem antibiotic resistance in K. pneumoniae
has emerged many years ago and has spread widely around the
world (Spagnolo et al., 2014). Recent studies have shown
that the resistance rates of K. pneumoniae to aztreonam,
ceftazidime, ciprofloxacin, cefotaxime, cefepime and imipenem
are more than 50% (Effah et al., 2020). Meropenem has good
in vitro anti-K. pneumoniae properties and is likely to have
optimal bactericidal efficacy for the treatment of K. pneumoniae
(Baldwin et al., 2008).

Meropenem belongs to the carbapenem class of antibiotics
and is one of the widely used antibiotics for the treatment
of K. pneumoniae infections, with broad-spectrum in vitro
resistance to both Gram-positive and Gram-negative pathogens
(Navon-Venezia et al., 2017). It readily penetrates the cell
walls of most Gram-negative and -positive bacteria to reach its
target penicillin-binding protein (PBPS) and exhibits stability
to hydrolysis by most β-lactamases, including penicillinases
and cephalosporinases produced by Gram-positive and Gram-
negative bacteria (Navon-Venezia et al., 2017).

In addition to the selection of antimicrobial agents, the
timing and dosage of effective antimicrobial agents are also
very important. In general, treatment is most effective when
effective antibiotics are administered early. In a study of patients
with infectious shock, there was a strong relationship between
time to effective antimicrobial drug onset and in-hospital
mortality (corrected ratio 1.119 per hour delay) (Pesesky et al.,
2016). Neither too high nor too low a dose of antibiotics
is the optimal treatment regimen: too high may result in
increased resistance to K. pneumoniae, and too low will

not achieve the desired effect of treatment with antibiotics.
The minimum inhibitory concentration (MIC) indicates the
appropriate dosage of antibiotics. MIC is an important index
to measure both the effectiveness of antimicrobial agents and
bacterial resistance to drugs.

Treatment with the optimal dose of effective antibiotics
as soon as possible after the infection is the key to curing
K. pneumoniae infection. Therefore, the time required to
determine the MIC is an important factor to determine whether
antibiotics can be used in the early stage of infection. There
are many traditional methods of MIC determination, such
as spatial gas chromatography methods for antimicrobial
screening, electronic testing methods, and traditional petri
dish measurement methods. However, traditional methods
often take 18 to 24 h or even more. In order to meet the
demand for antibiotic therapy, we need to find newer,
faster, and more accurate techniques for detecting the
MIC of antibiotics.

In recent years, many researchers used machine learning
methods to build models that can predict MIC value more
quickly and accurately (Li et al., 2016, 2017; Eyre et al.,
2017; Nguyen et al., 2018; Pataki et al., 2020). These papers
presented the methods and models that were used to
predict the MICs of K. pneumoniae (Nguyen et al., 2018),
antibiotic moldus of Neisseria gonorrhoeae (Eyre et al.,
2017), Streptococcus pneumoniae (Li et al., 2016), non-
typhoid Salmonella (Nguyen et al., 2019), and Escherichia
coli (Pataki et al., 2020).

A previous study has built XGBoost machine learning
models to predict MICs for a comprehensive population-
based collection of clinical isolates of K. pneumoniae,
which was able to rapidly predict MICs for 20 antibiotics
with an average accuracy of 92% (Nguyen et al., 2018).
According to this, our study is dedicated to constructing
models that can predict MICs for Meropenem treatment of
K. pneumoniae more accurately and analyzing features that
are highly correlated with MIC prediction and externally
validating these features.

In this study, we first obtained single-nucleotide
polymorphism (SNP) information and nucleotide k-mers
(k = 6, 8, 10) counting information based on metagenomic data
of K. pneumoniae sequence analysis and then trained the dataset
with three machine learning and deep learning methods –
XGBoost classification method, XGBoost regression method,
and deep neural network (DNN) regression method – and finally
compare the prediction results of the three methods and select
the features that are highly related to MIC to construct a new
prediction model to achieve higher prediction accuracy.
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MATERIALS AND METHODS

Data Collection
Two types of data were included in our study: K. pneumoniae
metagenomic sequences, and the related MIC values of the
antibiotic meropenem. The metagenomic data were pre-
processed as tables of k-mers and SNPs for further model
construction and prediction. Sequenced K. pneumoniae genome
data used in this study can be downloaded via BioProject
with access numbers PRJNA376414, PRJNA386693, and
PRJNA396774. We collected data related to the antibiotic
meropenem with complete sequence information and correct
scaffold assembly, and finally, the 110 genome was involved in
the study. The SRA access number for each genome is shown in
the supplementary table.

HS112861 was selected to be our reference genome for
SNP calling. The table file with SRA ID and MIC values for
meropenem was downloaded from the supplementary materials
attached from Nguyen et al. (2018).

For sequence data, the fastq-dump tool SRA Toolkit was used
(with -I –split-files parameters). SPAdes (Bankevich et al., 2012)
was then used to (with −1, −2 and -o parameters) assemble the
pair the end sequence for each sample. Finally, the assembled
scaffold.fasta files were mapped to the reference genome to obtain
k-mers and SNP information.

Data Pre-processing
Nucleotide k-mers
In the study, 110 assembled genome scaffold files were processed
to produce matrices of k-mers features. For each genome, we
cut the scaffold sequences starting from the first nucleotide with
6-, 8-, and 10-nucleotide window lengths, respectively. For the
following cuts, starting points of the windows move forward
with one nucleotide each time until the sequence ends. Finally, a
matrix with 110 rows and 559,494 columns of 6, 8, and 10 length
nucleotide fragments were created for model training.

Calling SNPs
According to studies by Yang et al. (2018, 2019), SNPs resistant to
Mycobacterium tuberculosis were used as features for prediction.

We extracted SNPs from the whole gene to find the resistant
SNPs. For SNP calling, the raw 110 K. pneumoniae metagenomic
samples were mapped to the HS11286 (“see text footnote 1”)
reference genome with single end reads mode, and then reads of
the 110 genome samples were mapped to the reference genome
using samtoolsv1.9 (Bonfield et al., 2021) and resulting in 110.vcf
files. Further filtering was conducted using bcftools v1.10 (Li,
2011) (with parameters %QUAL ≥ 50 & DP ≥ 20). Finally,
a combined matrix of the combined SNPs with 110 rows and
164,138 columns was obtained. The columns of the matrix
represent the concatenation of the SNP positions compared
to the reference genome, where a sample with a mutation at
that position was marked as 1 and those without mutations
were marked as 0.

1https://www.ncbi.nlm.nih.gov/assembly/GCF_000240185.1

EXtreme Gradient Boosting (XGBoost)
Model Development
XGBoost
EXtreme Gradient Boosting (XGBoost) algorithm is an optimized
distributed implementation of gradient boosted decision trees,
designed for computational speed and higher performance. Since
its initial release in 2014 (Chen and Guestrin, 2016), in the
past few years, XGBoost has been applied to a number of
biomedical problems.

As an implement machine learning algorithm under the
gradient boosting framework, the starting point of XGBoost is
decision trees. However, here, each tree is fitted to the residuals
(prediction errors) of the previous tree in order to gradually
minimize the deviations between the model and the observed
target data. This is done by giving more weight to the poorly
modeled cases. In contrast to the Random Forest model, the trees
are thus not independent of each other. Besides the different
random samples, this is additionally achieved by the fact that
not all predictors are available for selection at each branching,
but only a randomly chosen subset, and get exceptionally
high performance for regression as well as classification tasks.
Classification trees are used to identify the class/category within
which the input variables would most likely fall, while regression
algorithms are suitable for continuous variables, and the tree is
used to predict the value.

XGBoost algorithm has gradient boosting at its core. However,
unlike simple gradient boosting algorithms, the XGboost model
takes a parallelization approach in the process of sequential
addition of the weak learners, whereby proper utilization of the
CPU core of the machine is utilized, leading to greater speed and
performance (Santhanam, 2016). Moreover, it is a distributed and
scalable computing method that is available for large datasets.

Moreover, one benefit of the gradient boosting model is that
for different loss functions, new algorithms are not required to be
derived; it is enough that a suitable loss function be chosen and
then incorporated with the gradient boosting framework.

Model Training
We used XGBoost to train both classification and regression
models, respectively; several predict models were built
depending on data type.

For k-mers data, the occurrence times of each k-mer in each
sample were counted, and we used all possible segments as
features and mapped the number of k-mers to [0, 1] with Min–
Max normalization. For SNPs data, features were characterized by
binary number as zeros and ones of all mutation sites. The data
were divided into training and test set as 8:2.

Our XGBoost models were set as tree-based structure
(with booster = “gbtree”), and GridsearchCV was applied for
hyperparameter tuning. In order to prevent the XGBoost training
process from generating too many trees, which causes the
machine learning model to eventually overfit, we use fivefold
cross-validation to select the most appropriate number of
iterations; the value of booster_round is used as the num of
XGBoost booster_round parameter, which is brought into the
model training. Also, considering that our dataset is on the small
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side, using cross-validation also allows training with as much
data as possible.

We first trained the XGboost multi-classification model, with
the objective parameter Multi: Softmax. Input samples are fed
into the generated XGBoost tree, and the leaf to which the sample
belongs is found in each tree; the belonging weight is then added
to obtain the predictions. As it is a multiclass classification model,
we set 17 categories as classification labels to train the model,
with a minimum MIC value of 0 and a maximum MIC value of
16, equally divided into 17 intervals. The prediction results are
obtained by the softmax function, as probabilities of belonging to
a certain MIC interval. For the regression model, the objective
parameter of XGboost is Reg: Gamma, as MIC values can be
regarded as gamma-distributed. The MICs of each sample were
used as label of model training.

To prevent the XGBoost training process from generating
too many trees and causing the machine learning model
to be overfitted, we use fivefold cross-validation to
find the most appropriate number of iterations (num
_booster_round = “2000”) to the model training. In addition,
using cross-validation also allows us to use as much data as
possible for training, considering our small dataset. Also, the
maximum depth of the tree, max_depth, was set to 6, and the
proportion of random sampling, subsample, is 0.6.

The accuracy of the model was determined by the absolute
value of the difference between the log2-transform of the
predicted values and the true values.

DNN Model Development
DNN
Deep learning is a concept for an approach to artificial
intelligence called neural networks, and the DNN model is a basic
deep learning framework. As a particular class of artificial neural
networks with fully connected architecture, between the input
and the output layer, there is an arbitrary number of hidden layers
(Zador, 2019).

In principle, neural networks usually consist of four
components: The input layer, the hidden layer(s), the output
layer, and edges that connect the individual layers. More
precisely, the edges connect individual nodes within the layers,
whereby each transfer functions as a kind of container for a
numerical value. The edges between the nodes have weights that
define how the input is calculated across the edge to the next
node. The arrangement of these components depends on the type
and purpose of the network. Thus, the main difference between
DNN and classical machine learning methods is the ability to
process unstructured data through artificial neural networks
(Dargan et al., 2019).

Model Training
To further improve the performance of MIC prediction, we
assessed the importance of k-mers and SNPs, respectively, based
on the previous XGBoost model. We ranked all k-mers and SNP
features using f-score as standard, and we found that the f-score
values of k-mers and SNP features that were ranked in top 40
were greater than 1, while the others were not that significant.
Thus, for the DNN method, the top 40 most important k-mers

and SNPs were selected as features for the deep learning-based
modeling. We established the following three models to predict
MIC value: k-mers model, SNPs model, and k-mers & SNPs
model. Our overall work flow of MIC prediction modeling is
shown in Figure 1.

The DNN model with k-mers and SNP inputs uses a Dense
neural network framework, where the top 40 most important
features for predicting MIC values are fed into a 128-unit Dense
layer with a relu activation function to train the DNN model.
Similarly, on the test set, the absolute value of the difference
between the log2 transform of the predicted value and the true
value is used as the basis for assessing the accuracy of the model.

In particular, for the k-mers & SNPs input, we use a combined
Dense + LSTM model frame. More specifically, for the top
40 characteristic k-mers data selected by the previous model,
input the Dense layer and then input the selected top 40
feature data from the SNP site into the LSTM layer. The Dense
layer and the LSTM layer are combined as the model input to
train the DNN model.

RESULTS

We first used the XGBoost classification model and made five
predictions using KMER (110 samples ∗ 559,494 k-mers features)
and SNPs (110 samples ∗ 164,138 SNPs features) data. For each
experiment, we set different random states from 1 to 5. Similarly,
the XGBoost regression model was used to make five times
predictions for both k-mers and SNPs data. The random states
parameter was taken from 1 to 5 in order to maintain consistency

FIGURE 1 | Work flow of MIC prediction modeling.
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FIGURE 2 | Boxplots with jittered data points of XGBoost prediction accuracies for all features. It can be seen that the results of XGBoost regression are better than
the classification and that XGBoost performed better with the k-mers characteristics than it with SNPs.

in the splitting of the dataset for comparative analysis of the
results. A comparison of the prediction accuracies of the models
was then performed. The Boxplot grouping in Figure 2 shows
the accuracy values for each of the five predictions, and Table 1
shows their mean accuracy. From these results, it is clear that the
XGBoost regression model predicts better than the classification
model, for both k-mers and SNPs data. In addition, in terms
of the input feature type, XGBoost predicted k-mers data with
better accuracy than SNPs, possibly related to the fact that SNPs
is a binary input of 0 and 1. The mean predictive accuracy of
the XGBoost classification model for SNPs was 0.8, while the
mean accuracy of the XGBoost regression model for k-mers
reached 0.8909091.

The top 10 important features of the classification and
regression models with k-mers and SNPs data were statistically
analyzed, respectively, and presented in the bar chart in Figure 3.
As can be seen from the figure, the top 10 features of the five
attempts did not completely coincide, but some common features
can be found. For example, for k-mers’ classification model,
CGACAGTCTC appears in all five runs, GACTCCTAGC appears
four times in k-mers’ regression model, and A2872728 and
G17357 also appear four times each in SNPs’ regression model.

To further optimize the model, the k-mers and SNPs top
40 feature datasets were taken for modeling and prediction by
XGBoost regression and DNN regression, respectively. In order

TABLE 1 | Mean prediction accuracies of the XGBoost algorithm using all features
of k-mers or SNPs (five times).

XGBoost k-mers SNPs

Classification 0.845 0.800

Regression 0.891 0.818

to enhance the reliability of the results, we used the XGBoost
regression algorithm to model and predict all the features of
k-mers and SNPs for another five times (the random_state
parameter of the train_test_split function was taken from 6 to 10),
and we also took their top 40 feature datasets for the XGBoost
regression and DNN regression modeling. The top 40 feature
datasets were also taken for the XGBoost regression and DNN
regression modeling predictions.

Next, we ran the XGBoost regression model 10 times, and
for the top 40 feature dataset for each experiment, we ran the
XGBoost regression prediction 10 times (random states from 1 to
10). The Boxplot grouping in Figure 4 shows the accuracy values
for each of the 100 predictions, and Table 2 tallies their mean
values. The XGBoost regressions for k-mers, SNPs, and k-mers &
SNPs data had prediction accuracies of 0.9113636, 0.8522727, and
0.9127273, with the lowest predictive accuracy for SNPs and the
best for k-mers & SNPs. Overall, the XGBoost regression model
predicted the top 40 feature dataset better than the predictions
for all feature datasets, for both k-mers and SNPs (Tables 1, 2).
We show the y-test and y predicted values for all 100 predictions
and see that the predicted values largely fluctuate around the true
values (Figure 5).

Similarly, for the DNN model, the top 10 important features
selected by XGBoost were trained for a total of 100 times
of random resolution, respectively. The Boxplot grouping in
Figure 6 shows the accuracy values of 1,000 times of prediction,
and their average values are calculated in Table 3, and the test and
predicted values for all 1,000 predictions are shown in Figure 7.
Regressions for k-mers, SNPs, and k-mers & SNPs had prediction
accuracies of 0.9189091, 0.8705455, and 0.9177273, respectively,
with the lowest prediction accuracy for SNPs and very similar
prediction accuracies for k-mers and k-mers & SNPs, all of which
were relatively high.
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FIGURE 3 | Horizontal barplots for the top 10 important features of XGBoost classification and regression models.

FIGURE 4 | Boxplots with jittered data points of XGBoost prediction accuracies for top 40 features. Since 10 × 10 = 100 modeling predictions were made, the
results of 100 predictions in each box could be seen in XGBoost’s comparison with k-mers, SNPs, and k-mers & SNPs.

For regression models, the mean square root of the error
between the predicted and true values (RMSE) is usually used as
a model evaluation metric, and the coefficient of determination
(R2) is used to indicate how well the model predicts the true
value compared to the mean value model. We calculated the
RMSE and R2 values of our XGBoost and DNN models. For

our XGBoost models, the RMSE values were 1.734, 2.781, and
1.717, and R2 values were 0.860, 0.640, and 0.863, respectively
(Figure 5). The RMSEs of the DNN models were 1.955, 2.179,
and 2.045 and the R2 values of the DNN model were 0.836, 0.796,
and 0.820 (Figure 7). R2 is an indicator used in regression models
to evaluate the degree of agreement between the predicted value
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TABLE 2 | Mean prediction accuracies of the XGBoost algorithm using top 40
features of k-mers or/and SNPs (10 × 10 times).

XGBoost (Top 40) k-mers SNPs k-mers & SNPs

Regression 0.911 0.852 0.913

and the actual value, with a maximum value of 1. It can be seen
that, overall, our models fit well.

In summary, our analysis showed that the XGBoost
classification model reached over 80% prediction accuracy, and
the model with k-mers data gave better results than SNPs inputs.

Compared with the XGBoost classification model, the overall
performance of the XGBoost regression model is improved
(89.1 and 81.8% for k-mers and SNPs data, respectively). The
MIC value is continuously distributed, and the effect of the
regression model may be more realistic. DNN neural network

TABLE 3 | Mean prediction accuracies of the DNN algorithm using top 40 features
of k-mers or/and SNPs (100 × 10 times training).

DNN (Top 40) k-mers SNPs k-mers & SNPs

Regression 0.919 0.871 0.918

FIGURE 5 | Scatter plots of true test values and predicted values of MIC using XGBoost algorithm for top 40 features (left for k-mers, middle for SNPs, and right for
k-mers & SNPs). As the original y-value was discrete, several horizontal lines were presented in the figure. The predicted values were clustered around these lines’;
RMSE and R2 values were also calculated and shown at the top of the figure.

FIGURE 6 | Boxplots with jittered data points of DNN prediction accuracies for top 40 features (100 × 10 times training).
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FIGURE 7 | Scatter plots of true test y-values and predicted y-values using DNN algorithm for top 40 features (100 × 10 times training). The predicted values were
clustered around these lines; RMSE and R2 values were also calculated and shown at the top of the figure.

models perform better in predicting MIC values with improved
overall accuracy compared to XGBoost models. On the other
hand, the k-mers and SNPs top 40 feature dataset was sufficient
to obtain good prediction results (above 85% accuracy), with
k-mers and mixed k-mers & SNPs features performing well and
the DNN regression model performing better than the XGBoost
regression approach.

DISCUSSION

Based on metagenomic data, in this study, sequence analysis was
used to obtain SNPs information and nucleotide k-mers count
information queue data; machine learning and deep learning
methods were then applied to establish a prediction model for the
MIC value of K. pneumoniae. By feature selection, we proposed
a top 40 feature-based regression model, which had the best
predictive performance of 91%.

First, according to Naha et al. (2021) and Okanda et al.
(2020), we found that gene mutations may affect drug resistance
of Klebsiella; thus, we tried to find the relevant sites affecting
resistance by calling SNPs. After pre-processing the raw data
by using biogenetics tools BWA, BCFTools, and SamTools, we
obtained a matrix of mutation site and sample list. We took the
mutated gene site as the features and built the machine learning
model of classification and regression, respectively. We used 110
samples for prediction, and the prediction results above show that
the mean accuracy of the SNPs classification model was 80% and
the mean accuracy of the SNPs regression model was 81.81%,
which shows that the performance of the regression model is
better than the multi-classification model. Then, based on the
method previously described by Nguyen et al. (2019), we created
both XGBoost classification and regression models using k-mers
counts as input features, respectively, and made MIC predictions
for 110 samples. As described above, after five runs, we obtained
a mean accuracy of 84.54% for the k-mers classification model

and 89.09% accuracy for the k-mers regression model. This result
again shows that the multi-classification model does not perform
as well as the regression model. In addition, the prediction
of MIC values using SNPs loci was less effective than that of
k-mers prediction, which may be due to the fact that the input
to the SNPs is binary data with only mutated (labeled as 1)
and unmutated (labeled as 0) features, while the input to the
k-mers counting model are continuous variables, making it more
effective for regression model training.

To evaluate our model, we compared MIC prediction models
built by related studies. In the study by ValizadehAslani et al.
(2020), the authors used the XGBoost model with k-mers
features, and the result shows an accuracy of around 91% in
predicting the MIC value of meropenem against K. pneumoniae,
which was close to our results. Another study by Nguyen
et al. (2019) also used the XGBoost model to predict MICs for
non-typhoidal Salmonella, resulting in an average accuracy of
90% without a large number of samples. We decided to try
more advanced deep learning approach for prediction. As the
K-mers and SNPs had too many feature values, and the neural
network could not accept features with too high dimensions,
we selected some of important features as the training data to
avoid overfitting.

The XGBoost regression model gives a score of importance
for each feature during the training process. We selected
the top 40 highest scores from the k-mers and the SNPs
regression model, respectively, and then we used these total
80 important features as a new dataset, to predict MIC values
using both XGBoost and DNN algorithms. In consideration
of training time and server capacity, we only use regression
models for prediction.

Comparing the results in Tables 2, 3, the DNN model
performs better than the classical XGboost machine learning
approach in predicting MIC values, with a slight improvement
in both accuracy rates. However, the reason for the small
improvement may be due to the fact that only important features
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were selected for training and the overall amount of sample size
was relatively small. In addition, the prediction accuracy of the
model improved by combining the significant features of k-mers
and SNPs to produce a new dataset than training with a single
type of feature.

We found the annotated.gff file of the reference genome
from NCBI and the paper on the whole gene analysis of the
reference genome HS11286 by the team of Liu (Liu et al.,
2012); the K. pneumoniae resistance genes were found from
this paper and we identified loci belonging to these gene
fragments from important features in the SNPs model. The
pKPHS3 was mentioned in the study (Liu et al., 2012) as
possessing 13 important resistance determinants, such as tetG,
cat, sul1, dfra12, aac(3)-Ia, and aph. Genes were found among
the important features of our SNPs, such as site T37808,
which belongs to the tetG gene family, an important gene
family that influences tetracycline resistance. This demonstrates
that the important feature values obtained from our model
training may help us to understand the reasons for the
development of resistance, and why there are anti-tetracycline
resistance genes present due to the presence of tra isoconjugate
transfer genes in pKPHS2 and pKPHS3, which is the type
of gene that causes resistance to spread between genera (Liu
et al., 2012). Moreover, meropenem belongs to the class of
beta-lactam antibiotics, which are classified as carbapenems.
According to Reyes et al. (2019), the most common resistance
mechanism of K. pneumoniae to carbapenem antibiotics is
the production of enzymes with carbapenemase activity, which
hydrolyze beta-lactam antibiotics, while we also identified
mutations in the beta-lactamase gene from important features
in SNPs models, such as C1114518 and G1114674; i.e.,
mutations in the beta-lactamase gene may be responsible for the
high MIC values.

In summary, we found that there are still a lot of genes
in Klebsiella that belong to hypothetical proteins, and the
loci we derived from this study can help to annotate and
study these hypothetical proteins. Furthermore, in clinical
practice, deep learning-based modeling and prediction by
selecting important feature values can significantly improve
detection efficiency compared to experimental methods of
measuring MIC values, providing doctors with a faster access
to information on patient resistance for drug administration
and improving the effectiveness of antibiotic use, enabling
patients to receive medication promptly. It also reduces the cost
of the experiment.
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