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We develop a hyperparameter inference method for image reconstruction from Radon transform which often appears in the
computed tomography, in the manner of Bayesian inference. Hyperparameters are often introduced in Bayesian inference to
control the strength ratio between prior information and the fidelity to the observation. Since the quality of the reconstructed
image is controlled by the estimation accuracy of these hyperparameters, we apply Bayesian inference into the filtered back-
projection (FBP) reconstruction method with hyperparameters inference and demonstrate that the estimated hyperparameters
can adapt to the noise level in the observation automatically. In the computer simulation, at first, we show that our algorithm
works well in the model framework environment, that is, observation noise is an additive white Gaussian noise case. Then, we also
show that our algorithm works well in the more realistic environment, that is, observation noise is Poissonian noise case. After
that, we demonstrate an application for the real chest CT image reconstruction under the Gaussian and Poissonian observation
noises.

1. Introduction

In the field of medical imaging and noninvasive measure-
ment, computed tomography (CT) plays an important role
in diagnosis. The tomography image is reconstructed from
a series of projection data, which are transmitted signals
throughout an object, such as X-rays, in multiple directions.
A lot of algorithms have been proposed to reconstruct
tomography images [1–4]. Radon transform is usually used
in mathematical formulations to describe the generating
process of the observation data, and inverse of the Radon
transform is considered as one of the frameworks for the
image reconstruction from observation data; unfortunately,
this reconstruction formulation does not care about noisy
observations.

In order to improve image quality occurred by noisy ob-
servation, several image restoration methods based on the

Bayesian inference are discussed in the field of image process-
ing [5, 6]. The purpose of image restoration lends itself nat-
urally to the Bayesian formulation, which infers a posterior
probability for the original image using the prior probability
of an assumed model for the original image and the corrup-
tion process. One well-known strategy for Bayesian image
restoration is to adopt the image that maximizes the poste-
rior probability; this is called the maximum a posteriori (pos-
terior) probability (MAP) inference. In MAP inference, the
quality of a restoration image is controlled by the strengths
ratio between fidelity of the observation process and the
prior strength of the model. Hyperparameters are often
introduced to describe these strengths of the ratio; however,
these hyperparameters inference is a hard problem in the
MAP framework. In order to estimate hyperparameters in
the MAP framework, the cross-validation method is consid-
ered as effective; however, we consider that there exists several
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problems. The first point is computational cost. In general,
the cross-validation requires high computational cost. And
the second point is to determine the cost function for the
hyperparameters. In the field of image restoration, several
types of methods are compared [7]; however, it is difficult
to choose a cost function that is suitable for our problem.

In contrast, from the viewpoint of the Bayesian inference,
the hyperparameter inference problem can be expressed
naturally. For example, in the field of the image restoration,
Molina et al. demonstrated several hyperparameter inference
methods in the Bayesian manner in the manner of a hier-
archical Bayes inference [8]. Pryce and Bruce and MacKay et
al. proposed marginal likelihood maximization to infer those
hyperparameters, which is called “evidence” framework or
type 2 marginal likelihood maximization [6, 9–13].

In typical conventional methods, which use MAP infer-
ence for the computed tomography, a cost function that con-
sists of data-fitting terms and several smoothness constraints
has been introduced, and a minimization of the cost function
is carried out in order to obtain the reconstructed image
from the noisy observation data. Unfortunately, there have
been few discussions related to the inference of a proper ratio
between the data fitting and the constraints within the MAP
framework. On the contrary, from the Bayesian inference
point of view, it is natural to discuss the hyperparameter
inference for image restoration using an evidence framework
[14–16].

In our previous work, we proposed a CT image recon-
struction in the manner of Bayes inference with a hyper-
parameter inference method from the noisy Radon-trans-
formed observation by the evidence framework [12, 13]. In
the previous work [12], however, we only showed that the
Bayesian inference framework works well in the specific envi-
ronment, that is, we assumed the additive white Gaussian
noise for the 2-dimensional object observation. Gaussian
noise is one of the tractable models for a mathematical
formulation; however, in the X-ray CT or positron emission
tomography (PET) image observation, we should assume
Poissonian noise for the observation. Thus, in this study,
we show that our reconstruction algorithm also works well
under the Poissonian noise as well as under the Gauss
noise case. Considering the Poissonian noise case for the
observation which is different from our assuming model, we
show a kind of robustness of our reconstruction model.

Moreover, we apply our reconstruction model into the
real CT image data. Shepp and Logan phantom, which is
usually used for evaluation of CT/PET image reconstruction,
is a simple model of the axial cross-section human body. The
internal organ of human body is not so much simple, so we
use a real CT image data for reconstruction.

2. Formulation

In order to explain our Bayesian inference method, we show
the conventional CT reconstruction method using filtered
backprojection (FBP) under the formulation of the Radon
transform. After that, we introduce Bayesian inference into
the reconstruction process.
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Projection: τ(s, θ)

Object: ξ(x, y)

Figure 1: Schematic diagram of the Radon transform. Detectors are
aligned on the s axis, which has an angle described as θ.

2.1. Radon Transform. Briefly, the Radon transform assumes
that the observed signals are transmitted through the
target object. Figure 1 shows the schematic diagram of the
Radon transform. We describe the target object density as
the function of the (x, y) coordinate and assume that the
detectors are aligned along the s axis that is rotated in θ. We
can thus denote the relationship between the (x, y) and (s, t)
coordinates as a rotation

⎛
⎝s
t

⎞
⎠ =

⎛
⎝ cos θ sin θ

− sin θ cos θ

⎞
⎠
⎛
⎝x
y

⎞
⎠. (1)

We describe the density of the target as ξ(x, y, z), that is,
ξ(x, y, z) represents the absorption coefficients of the X-ray
in the case of X-ray CT observation. The detectors are aligned
on the s axis, so we describe the observation τ(s, θ, z) as the
following formulation, called Radon transform:

τ(s, θ, z) =
∫
dtξ

(
x, y, z

) =
∫
dtξ

(
x(s, t), y(s, t), z

)
. (2)

2.2. FBP Reconstruction. Before introducing the Bayes infer-
ence, we formulate the conventional filtered backprojection
(FBP) method. This reconstruction method is mainly for-
mulated on the frequency domain, so we introduce the 2-
dimensional Fourier transform of the reconstruction image
σ(x, y) and its inverse transform pair as

σ̃
(
x̃, ỹ

) =
∫∫∫

dx dy σ
(
x, y

)
e−2π j(xx̃+y ỹ), (3)

σ
(
x, y

) =
∫∫

dx̃ d ỹ σ̃
(
x̃, ỹ

)
e2π j(xx̃+y ỹ), (4)

where the (x̃, ỹ) represents the frequency space coordinate.
Meanwhile, we can apply a 1-dimensional Fourier trans-

form for the s of the observed data τ(s, θ) as τ̃(s̃, θ). The
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τ̃(s̃, θ) satisfies the following relationship, which is called a
projection theorem:

τ̃(s̃, θ, z̃) = ξ̃(s̃ cos θ, s̃ sin θ, z̃). (5)

The FBP method is derived as a coordinate transfor-
mation from Cartesian coordinate (x̃, ỹ) into the polar
coordinate (s̃, θ) in the inverse Fourier transform (4)

σ
(
x, y, z

) =
∫ π

0
dθ
∫∞
−∞

ds̃
∣∣s̃
∣∣σ̃(s̃ cos θ, s̃ sin θ)e2π jss̃ (6)

=
∫ π

0
dθg(s, θ), (7)

where
g(s, θ) =

∫
ds̃
∣∣s̃
∣∣τ̃(s̃, θ) e2π jss̃, (8)

since we can assume that the reconstruction image σ(x, y)
should be identical to the original image ξ(x, y) without the
observation noise, and we can apply the projection theorem
in (5).

Thus, the reconstructed image σ(x, y) can be obtained by
substituting the coordinate relationship s = x cos θ + y sin θ,
that is derived from the rotation coordinate in (1) into (7).
We call this reconstruction method the FBP method [1, 2].

2.3. Stochastic Model. In this section, we introduce a stochas-
tic observation process into the FBP method. Of course, it
is natural to consider Poissonian noise for observation in
a realistic model; however, introducing Poissonian process
makes it hard to solve the reconstruction in analytic form.
We consider that a solvable model is important for under-
standing the reconstruction process. So in our theoretical
framework, we introduced additive white Gaussian noise for
observation on the signal ξ(x, y). When we consider the
Gaussian noise np(x, y) on the image ξ(x, y), the observation
through the Radon transform τ(s, θ) can be described as

τ(s, θ) =
∫
dt
(
σ
(
x, y

)
+ np

(
x, y

)) =
∫
dtσ

(
x, y

)
+ Np(s, θ),

(9)

where Np(s, θ) = ∫
dt np(x, y), and we also treat it as

Gaussian noise. In the manner of the conventional image
restoration method proposed by Tanaka and Inoue, we also
introduce the energy function Hn(τ | σ) as follows [14, 16]:

Hn(τ | σ) = 4π2
∫ π

0
dθ
∫
ds
(
τ(s, θ)−

∫
dtσ

(
x, y

))2

.

(10)

The important point of (10) is that the energy function
Hn(τ | σ) is defined as a kind of quadrature form of
the difference between observation τ(s, θ) and the Radon
transform of the reconstruction image

∫
dtσ(x, y). We can

thus denote the observation process as

p(τ | σ) = 1
Zn
(
γ
) exp

(−γHn(τ | σ)
)
, (11)

Zn
(
γ
) =

∑
τ

exp
(−γHn(τ | σ)

)
, (12)

where Zn(γ) is to normalize a factor called the partition
function. The hyperparameter γ represents a precision
parameter that is proportionate to the inverse of the variance
of the Gaussian noise Np(s, θ), that is, the large γ indicates
a good S/N ratio in the observation. Moreover, introducing
both a polar coordinate for the frequency domain and
Planchrel’s theorem, we can drive the following expression:

p(τ | σ) = 1
Zn
(
γ
) exp

(
−4π2γ

∫
dθ
∫
ds̃
∣∣τ̃s̃,θ − σ̃s̃,θ

∣∣2
)

,

(13)

where τ̃s̃,θ = τ̃(s̃, θ) and σ̃s̃,θ = σ̃(s̃ cos θ, s̃ sin θ). In the
following formulation, we adopt these expressions for the
polar coordinate in the frequency domain description for the
sake of convenience.

To reconstruct an image from noisy data, using Bayes
inference, we also denote the prior distribution. At first,
we introduce the following energy function HMRF(σ) for
smoothness of the image:

HMRF(σ) =
∫∫

dx dy
∥∥∇σ(x, y)

∥∥2, (14)

where ∇ means gradient operator ∇ = (∂/∂x, ∂/∂y). This
energy plays a role in the Markov random field (MRF) like
a constraint since the gradient operation in the discretized
space can be regarded as the difference between the neigh-
boring pixels. So, this constraint controls neighboring pixel
values to become similar to the target pixel. Then, we also
introduce the following energy constraint to avoid taking
large absolute pixel values:

HL2(σ) =
∫∫

dx dy
∥∥σ(x, y

)∥∥2, (15)

which are sometimes called “L2 constraint.” Hence, we treat
the prior as Gibbs-Boltzmann distribution of the linear
combination of energies HMRF(σ) and HL2(σ)

p(σ) = 1
Zpri

(
β,h

) exp
(−βHMRF(σ)− 4π2hHL2(σ)

)
, (16)

Zpri
(
β,h

) =
∑
σ

exp
(−βHMRF(σ)− 4π2hHL2(σ)

)
. (17)

The hyperparameters β and h control the strength of each
constraint. The prior probability can thus be described as
follows when we adopt the polar coordinate in the frequency
domain:

p(σ) = 1
Zpri

(
β,h

) exp
(
−4π2

∫
dθ
∫
ds̃
(
βs̃2 + h

)∣∣s̃
∣∣∣∣σ̃s̃,θ

∣∣2
)
.

(18)

From (13) and (18), we can derive the posterior proba-
bility with Bayes theorem p(τ | σ) = p(τ | σ)p(σ)/

∑
σ p(τ |

σ)p(σ). Then, we can describe the posterior as

p(τ | σ) ∝ exp

(
−4π2

∫ π

0
dθ
∫
ds̃ Fs̃

∣∣∣∣σ̃s̃,θ −
γ

Fs̃
τ̃s̃,θ

∣∣∣∣
2
)

,

(19)

where Fs̃ = (βs̃2 + h)|s̃| + γ.
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In order to calculate the denominator value called
partition function, we discretize the integral description in
the partition function over polar coordinate in frequency
domain. When we denote the sampling width for radial
direction and polar angle as Δs̃ and Δθ , respectively, the
discretized sampling point (s̃k̃, θl) can be described as s̃k̃ =
k̃Δs̃ and θl = lΔθ , respectively, where k̃ and l represent
the indexes of the radial direction and the polar angle. The
angle θl corresponds to the detectors array angle in the
observation. Therefore, we assume that the observation is
carried out Nθ times in the angle [0,π], that is, Δθ = π/Nθ .
The coordinate value s̃k̃ represents the position in the radial
direction, which means the spatial frequency described in
the Fourier transform. From the Nyquist frequency, we can
denoteΔs̃ = 1/NsΔs, whereΔs is an interspace of the detectors
in the array. We assume the length of detectors array as L,
and Ns detectors are assigned with the same interspace in the
array, so Δs = L/Ns.

When we discretize the integral
∫
ds̃ in the posterior

as
∑Ns−1

k̃
Δs̃, we can derive the marginalized posterior

probability as a Gaussian distribution

p
(
σ̃k̃,l | τ

)
= N

(
σ̃k̃,l |

γ

Fk̃
τ̃k̃,l,

Ns

8π2ΔθΔsFk̃

)
, (20)

where the descriptions σ̃k̃,l, τ̃k̃,l, and Fk̃ represent σ̃k̃,l =
σ̃(s̃k̃ cos θl, s̃k̃ sin θl), τ̃k̃,l = τ̃(s̃k̃, θl), and Fk̃ = Fs̃k̃ = (βs̃2

k̃
+

h)|s̃k̃| + γ, respectively.

2.4. Image Reconstruction. We adopt the marginalized pos-
terior mean 〈σ(x, y)〉 for the image reconstruction solution.
The posterior mean can be denoted as

〈
σ
(
x, y

)〉 =
∫ π

0
dθ
∫∞
−∞

ds̃
∣∣s̃
∣∣〈σ̃s̃,θ

〉
e2π j s̃(x cos θ+y sin θ). (21)

Thus, {〈σ̃s̃,θ〉}, which represents an average set of Fourier
expressions, is required to obtain the mean pixel value over
the posterior 〈σ(x, y)〉. We can evaluate 〈σ̃s̃,θ〉 by discretizing
the coordinate as in the previous section, thereby obtaining

〈
σ̃k̃,l

〉
= γ

Fk̃
τ̃k̃,l . (22)

This solution, called the posterior mean (PM) solution,
provides identical result as the MAP does, that is, energy
function Hn(σ) minimization with the constraint of the
smoothness of HMRF(σ) and HL2(σ),

σMAP = argmaxσ ln p(τ | σ)p(σ)

= argminσ
(
4π2γHn(τ | σ)

+βHMRF(σ) + 4π2hHL2(σ)
)
.

(23)

Of course, PM solution is not identical to MAP solution in
general; however, in this case, the PM solution and the MAP
solution are identical, because the posterior distribution is
denoted as a Gaussian distribution.

2.5. Hyperparameter Inference. To reconstruct an appropri-
ate tomography image with our Bayesian inference, we need
to assign proper values to the hyperparameters β, h, and
γ. These hyperparameters β and h control the strength of
constraints, while γ controls the fidelity of the observation.
We infer these hyperparameters by using maximization of
marginal log likelihood, which is sometimes called evidence
framework [9–11]. The marginal log-likelihood is denoted as
the linear combination of log partition functions,

ln p
(
τ | β,h, γ

) = lnZpost
(
β,h, γ

)− lnZn
(
γ
)− lnZpri

(
β,h

)
,

(24)

where Zn(γ) is also denoted as (12), Zpri(β,h) is denoted as
(17), and, for the posterior, we introduce Zpost(β,h, γ);

Zpost
(
β,h, γ

) =
∑
σ

exp
(−4π2γHn(τ | σ)

−βHMRF(σ)− 4π2hHL2(σ)
)
.

(25)

We use discretization to evaluate each partition function and
obtain

lnZpri
(
β,h

) = −Nθ

2

Ns−1∑

k̃=0

ln
(
βs̃2

k̃
+ h

)
,

lnZn
(
γ
) = −NθNs

2
ln γ,

lnZpost
(
β,h, γ

) = −4π2ΔθΔs

Ns

Ns−1∑

k̃=0

γ
(

1− γ

Fk

)

×
∣∣∣τk̃,l

∣∣∣2 − Nθ

2

Ns−1∑

k̃=0

lnFk̃.

(26)

To maximize the marginal log likelihood (24), we adopt
a naive gradient method corresponding to the hyperparame-
ters β, h, and γ, that is, we update hyperparameters using the
following rule:

⎛
⎜⎜⎝

lnβt+1

lnht+1

ln γt+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

lnβt

lnht

ln γt

⎞
⎟⎟⎠ + η

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ ln p
(
τ | βt,ht, γt)
∂ lnβ

βt

∂ ln p
(
τ | βt,ht, γt)
∂ lnh

ht

∂ ln p
(
τ | βt,ht, γt)
∂ lnh

γt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

where η is a sufficiently small value. Those update rules (27)
are denoted for lnβ, lnh, and ln γ, since β, h, and γ should be
nonnegative values.
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Figure 2: Comparison of the reconstructed tomography images derived using the Bayesian method and conventional FBP. The top row shows
the Bayesian FBP methods, and the bottom one shows the conventional one. Each column corresponds to the strength of the observation
Gaussian noise standard deviations. We show the magnification of a part of the reconstructed images around the edge of the phantom, whose
location is indicated by white rectangle in the true image.

3. Evaluation by a Computer Simulation

3.1. Phantom Image Reconstruction. In the computer
simulation, we created the Shepp and Logan phantom
image in Nx × Ny (pixels) and mapped the image into an
origin-centered square with an edge length set to L, that
is, the area is set to [−L/2,−L/2] × [L/2,L/2]. In the
square, the area, which takes distance from the origin larger
than L/2, is sometimes unobservable by the detectors from
several angles, and we therefore ignore this area during
our evaluation. For each angle θl, we assume the s axis as
Figure 1, and the origin in the (x, y) coordinate projects to
the point s = 0 in any angle. We set the sampling parameters
as Nx = Ny = Nθ = Ns = 256, and the length of the detectors
array as L = 1.

For hyperparameter inference, we adopt a gradient
method that requires initial state of these parameters. In the
following simulations, the initial state of β(0), h(0), and γ(0)

is set to be 1. And the number of iterations is limited to the
10000 times.

3.1.1. Gaussian Noise Case. In order to evaluate the perfor-
mance of the hyperparameter inference, we carry out the
simulation in the additive white Gaussian noise environment
at first. We assumed that the Gaussian noise np(x, y)
was added during the observation process (see (9)) and
controlled the noise standard deviation (SD) in the range
of 0 to 6. A small SD means the low noise level in the

observation process, and the larger SD becomes, the higher
additive Gaussian noise level becomes. On the other hand,
the large SD observation makes a lot of information loss
for reconstruction. The MRF like prior (16) plays a roll of
compensation for the information loss. In the simulation,
Gaussian noise value sometimes makes fluctuation to the
result, so we evaluated the average performance over 10 trials.

The computational cost is mainly consumed by hyper-
parameters inference. In this study, we adopted gradient
method for the hyperparameter inference, so the compu-
tational cost depends on the initial state of these hyperpa-
rameters and learning coefficients η. In typical cases, about
1000∼2000 iterations are required to converge for the η =
10−6. It takes 1∼2 minutes for Intel Xeon E5530 2.40 GHz
with 24 GiB memory.

Figure 2 shows typical results of the reconstruction
images. The most left image shows the “true” which means
a reconstruction image without any observation noise (SD =
0.0). The top part shows the result using our Bayesian
inference with inferred hyperparameters, and the bottom
one shows the result using the conventional FBP method
[1]. Each column corresponds to the SD of the additive
Gaussian noise np(x, y). In Figure 2, we show magnification
of each reconstructed image around the edge whose location
is located as the white rectangle in the “true” image. The
degradation of the image in the conventional FBP result
when the noise SD is large is clearly visible, whereas the
contrast of the image has been maintained in the Bayesian
reconstruction result.
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Figure 3: Qualities of reconstruction images measured by PSNR.
The horizontal axis shows the SD of the Gaussian noise. The vertical
axis shows the PSNR. The solid line shows the median of the 10
trials of our Bayesian inference results, and box plot shows quartile
deviation. The dashed line shows the results of the conventional FBP
method.

We used the peak signal-to-noise ratio (PSNR) to
evaluate the quality of the reconstructed image. The result
of this evaluation is shown in Figure 3. The horizontal axis
indicates the SD of the np(x, y), and the vertical shows the
PSNR between the reconstructed image for both a noised
and noiseless reconstruction images. The solid line shows the
median of the Bayesian inference reconstruction results for
10 trials, and each box plot shows the quartiles deviations.
The dashed one shows those of the conventional FBP results.
The Bayesian inference maintained high reconstruction
quality compared to the conventional FBP method. Even
when the SD of the noise was 4.0, the PSNR value remained
27.5 (dB). On the other hand, the PSNR of the conventional
FBP method was degraded and became 27.7 [dB] when the
SD is only 1.5. This demonstrated that the Bayesian inference
is more robust to the observation noise rather than the
conventional FBP method.

Figure 4 shows the reconstruction performance against
the hyperparameter β. The horizontal axis shows the value
of the hyperparameter β, and the vertical one shows the
PSNR. We fixed other hyperparameters, h and γ, to the
estimated value. Each image in the figure shows the recon-
struction result with corresponding hyperparameter setting.
The hyperparameter β controls the smoothness of the image
in the prior equation (16), so too much large β makes
excessive blurring. Our hyperparameter inference algorithm,
shown in the filled rectangle in the figure, looks to provide
optimal value.
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Figure 4: Reconstruction performance against hyperparameter β.
The horizontal axis shows the β, and the vertical one shows the
PSNR. Other hyperparameters, h and γ, are fixed to the estimated
value. The filled rectangle shows the result of our hyperparameter
inference for β.

3.1.2. Poissonian Noise Case. Gauss noise observation is
the assumed model in our formulation equation (9); how-
ever, the CT/PET observation process is usually described
as the Poissonian process. Thus, we should evaluate the
reconstruction quality for the Poissonian noise case for
the more realistic environment. Of course, our model is
designed for the Gaussian noise case, so the performance of
reconstruction for the Poissonian process observation might
become worse; however, quantitative evaluation is important
in the meaning of the approximation.

In the computer simulation, we used R PET package
for Poissonian noise sampling [17]. The Poissonian noise
value is generated by acceptance-rejection method [18,
19]. Hence, the number of the samplings determines the
noise strength property corresponding to the SDs in the
Gaussian case, that is, less number of the samplings make
low signal-to-noise ratio. The computational cost is also
consumed by hyperparameter inference, and it takes about
1000 times iterations for the η = 10−6, that is, it requires
∼1 minute for the convergence in our computational
environment.

Figure 5 shows the reconstructed image using our
Bayesian method and conventional FBP method. The top
part shows the result of our Bayesian reconstruction images,
and the bottom one shows the conventional FBP result. The
most left image shows also the “true” image that means a
reconstructed image without any Poissonian noise. In other
columns, we show the image with Poissonian noise whose
strength is controlled by sampling levels, that is, the S/N
ratio becomes worse when sampling level becomes low [20].
In the figure, the noise strength becomes large for the right
direction.
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Figure 5: Comparison of the reconstructed tomography images derived using the Bayesian method and conventional FBP under the
Poissonian noise. The top row shows the results of our method, and the bottom one shows the results of the conventional FBP method.
Each column corresponds to the strength of the observation noise which can be denoted as the number of sampling in the acceptance
rejection method. We show the magnification of a part of the reconstructed images around the edge of the phantom, whose location is
indicated by a white rectangle in the true image.
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Figure 6: Qualities of reconstruction images measured by PSNR.
The horizontal axis shows the SD of the sampling level, which
means the inverse of the Poissonian noise. The vertical axis shows
the PSNR. The solid line shows the median of the 10 trials of our
Bayesian inference results, and box plot shows quartile deviation.
The dashed line shows the results of the conventional FBP method.

Figure 6 shows the quantity evaluation result in the
meaning of the PSNR against the sampling level of the obser-
vation. The horizontal axis shows the sampling level, and
the vertical one shows the PSNR. The solid line shows the
median of 10 trials for our Bayesian reconstruction method,
and the box plots are quartiles for each sampling levels.
The dashed one shows the result of the conventional FBP
method. Roughly speaking, the Bayes reconstruction shows
better result in the meaning of the PSNR.

3.2. Real CT Image Reconstruction. In order to evaluate the
performance of our method for the CT/PET image, we
applied our method to a real CT image reconstruction.

We prepare several real CT images provided by
Tokushima University Hospital. The acquisition parameters
of those HRCT images are as follows: Toshiba “Aquilion 16”
is used for imaging device, and each slice image consists
of 512 × 512 pixels, and pixel size corresponds to 0.546∼
0.826 mm; slice thickness is 1 mm. Thus, we set the sampling
parameters as Nx = Ny = Nθ = Ns = 512.

In order to obtain noise-corrupted data τ, we simulate
Gaussian and Poissonian noised observation for these CT
images in the same manner with phantom images.

Figure 7 shows a reconstruction result for the real chest
CT image with Gaussian noise. The top row shows our
Bayesian method, and the bottom one shows the conven-
tional FBP results. Each column corresponds to the additive
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Figure 7: Comparison of the reconstructed images using real CT data with Gaussian noise between Bayes method and conventional FBP
method. The top row shows the results of our method, and the bottom one shows the conventional FBP results. Each column corresponds
to the strength of the observation noise that can be denoted as standard deviation (SD) of adding noise. We also show the magnification of
a part around the bronchus, whose location is indicated by black rectangle in the true image.

Smpl. lv. = 5120 Smpl. lv. = 2560 Smpl. lv. = 1280 Smpl. lv. = 640

Bayes reconstruction for Poissonian noise

FBP reconstruction for Poissonian noise

True Smpl. lv. = 320

Smpl. lv. = 5120 Smpl. lv. = 2560 Smpl. lv. = 1280 Smpl. lv. = 640 Smpl. lv. = 320

Figure 8: Comparison of the reconstructed images using real CT data with Poissonian noise between Bayes method and conventional FBP
method. The top row shows the results of our method, and the bottom one shows the conventional FBP results. Each column corresponds
to the strength of the observation noise that can be denoted as the number of sampling in the acceptance-rejection method. We also show
the magnification of around bronchus indicated by black rectangle in the true image.

Gaussian noise strength for pseudo-observation. In each
image, we show a magnification part around bronchus,
whose location is described as a black rectangle in the
true image. In the Bayesian reconstruction, our MRF prior
makes a blurring effect for edge components on the image.
The hyperparameter inference mechanism would try to
compensate for the information loss, which is caused by the

observation noise, by use of the MRF prior. As a result, the
large SD makes strong blurring effect to the image. In the
magnification image of the Bayesian inference, the bronchus
parts are hard to identify around SD > 4.0, however, vessels
along the bronchus are able to identify for these SDs. In
contrast, in the conventional FBP results, both of those
parts are just difficult to identify for these SDs. Figure 8
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Figure 9: Qualities of reconstruction images measured by PSNR
for real CT image reconstruction under the Gaussian noise. The
horizontal axis shows the observation SD of Gaussian noise, and
the vertical axis shows the PSNR. The solid line shows the result
of our Bayesian method, and the dashed one shows that of the
conventional FBP method.

also shows a Poissonian noise case for the chest CT image.
We can see the similar tendency to the Gaussian case. In
the magnification images, we can identify the bronchus over
1280 sampling levels. In contrast, low sampling level makes
large blurring effect by the MRF prior. As a result, bronchus
part is hard to identify at fewer than 640 sampling levels.
However, the reconstruction result looks better than those of
the conventional FBP method.

Moreover, we evaluate the quantitative reconstruction
performance by PSNR for the real CT image. Figure 9
shows the result for the Gaussian noise case, and Figure 10
shows the one for the Poissonian case. Each horizontal axis
means the noise strength control variable, and the vertical
shows the reconstruction performance by PSNR. In both of
these results, the Bayes reconstruction method shows better
performances in the strong noise area. In contrast, in the
weak noise area, the Bayes reconstruction result is just worse
than that of the conventional method. We can see that the
real CT image is more complex than the Shepp and Logan
phantom image like Figure 5, and simple MRF like prior
(16) prefers smooth image. Thus, in the weak noise area,
complex shape in the real image makes overestimate for the
prior strength β, which controls blurring effect by the prior.
As a result, our Bayesian reconstruction method prefers too
much smooth image in the weak noise area; however, the
PSNR value stays around 30 (db) for the SD = 2 in the
Gaussian case and around 28 (db) for the 2560 samplings in
the Poissonian case.
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Figure 10: Qualities of reconstruction images measured by PSNR
for real CT image reconstruction under the Poissonian noise. The
horizontal axis shows the sampling level, and the vertical axis shows
the PSNR. The solid line shows the result performance of Bayesian
method, and the dashed line shows the results of the conventional
FBP method.

4. Conclusion

We proposed a hyperparameter inference based on the
Bayesian inference in order to reconstruct tomography image
formulated by Radon transform. As a stochastic model, we
introduced a simple MRF-like distribution p(σ) for the prior
and formulated the observation process p(τ | σ) by assuming
the Gaussian noise channel.

We discretized the image signals in the frequency domain
expressed by the polar coordinate in order to evaluate the
posterior distribution analytically, resulting in the ability to
conduct posterior mean for the reconstructed image. Using
the marginal-likelihood maximization method, we show that
the hyperparameters introduced as β, h, and γ, which allows
us to maintain a balance between observation fidelity and
prior constraint, could be determined automatically. And
using those hyperparameters, we could obtain a higher-
quality reconstructed image than when using the conven-
tional FBP method.

In order to evaluate the performance of our method,
we simulated two observation noise cases, that is, Gaussian
and Poissonian noises. We controlled noise strength by
SD for Gaussian noise and sampling levels for Poissonian
noise. In the phantom simulation for the Gaussian noise,
we confirmed that our hyperparameter inference worked
well against the PSNR, and the performance for the recon-
struction was better than that of the conventional FBP. The
computational cost for the hyperparameter inference depend
on the initial state of them; however, about 1200∼2000 times
iterations made convergence to them for typical cases. In
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the Poissonian cases, the tendency of the reconstruction
performance is similar to the Gaussian case. Our Bayesian
method made better performance than the conventional FBP
in any noise strength area. However, in the strong Poissonian
noise case, that is, the noise could not approximate well
by Gaussian noise, we confirmed that the performance of
the reconstruction was not good enough for diagnosing.
Moreover, we evaluated the performance by a real chest CT
image. The real image has a little complex shape against the
phantom image. Thus, in the low-noise strength area for
both noise cases, the prior components worked too much for
the smoothness effect. As a result, the PSNR was just worse
than the conventional FBP in such area. However, detail
structure of the organ was easy to identify in the obtained
image of our model.

In this study, we demonstrate applying our algorithm to
the only 2-dimensional image reconstruction. We consider
the algorithm easy to extend for 3-dimensional case. Thus,
we would reformulate our algorithm for applying to the 3-
dimensional image reconstruction and confirm the perfor-
mance in the future work.
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