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Leveraging existing data sets 
to generate new insights into 
Alzheimer’s disease biology in 
specific patient subsets
Kevin D. Fowler1,*, Jason M. Funt1,*, Maxim N. Artyomov1,2, Benjamin Zeskind1, 
Sarah E. Kolitz1,* & Fadi Towfic1,*

To generate new insights into the biology of Alzheimer’s Disease (AD), we developed methods 
to combine and reuse a wide variety of existing data sets in new ways. We first identified genes 
consistently associated with AD in each of four separate expression studies, and confirmed this 
result using a fifth study. We next developed algorithms to search hundreds of thousands of Gene 
Expression Omnibus (GEO) data sets, identifying a link between an AD-associated gene (NEUROD6) 
and gender. We therefore stratified patients by gender along with APOE4 status, and analyzed 
multiple SNP data sets to identify variants associated with AD. SNPs in either the region of 
NEUROD6 or SNAP25 were significantly associated with AD, in APOE4+ females and APOE4+ males, 
respectively. We developed algorithms to search Connectivity Map (CMAP) data for medicines that 
modulate AD-associated genes, identifying hypotheses that warrant further investigation for treating 
specific AD patient subsets. In contrast to other methods, this approach focused on integrating 
multiple gene expression datasets across platforms in order to achieve a robust intersection of 
disease-affected genes, and then leveraging these results in combination with genetic studies in 
order to prioritize potential genes for targeted therapy.

In recent years, many investigators have thoughtfully applied genetics and genomics approaches to inves-
tigate the biology of Alzheimer’s Disease (AD)1–3. These efforts have yielded a rich collection of gene 
expression and single-nucleotide polymorphism (SNP) data sets, along with extensive analyses of par-
ticular data sets. The availability of such studies provides the opportunity to generate fresh insights into 
the biology of AD, independently of prevailing hypotheses, by integrating existing data sets in novel and 
innovative ways.

A number of studies have examined ways to do this. For example, Krauthammer et al. used seed genes 
of known importance in AD to identify additional candidate genes using genetic linkage and text-mined 
protein-protein interaction data via a graph-theoretic method4. Chen et al. reported a method to rank 
AD-related genes by importance based on database protein-protein interaction data5. Liu and colleagues 
interpreted genomic and proteomic data using a Bayesian statistical framework with the aim of prior-
itizing candidate genes, and found that this approach was able to identify known candidate genes for 
Alzheimer’s6. Soler-López et al. utilized an initial list of known AD genes to identify additional genes of 
interest based on combining protein-protein interaction data with criteria of AD- associated genomic 
locations or changes in gene expression7. Caberlotto et al. obtained a list of seed genes from a gene 
expression dataset, SNP data, as well as genes previously identified as potential AD drug targets, and 
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used database protein-protein interaction data to investigate potential underlying biology represented 
among these genes8.

These methods all utilized protein-protein interaction data to help predict which genes might be 
important in disease. By contrast, the approach reported here uses intersections across multiple datasets 
to filter for more robust candidate genes, obtaining an intersection of genes from expression datasets that 
enables targeted mining of SNP data to identify those candidate genes more likely to be causal.

Methodologies for combining heterogeneous data sets to identify robust biological signals are not well 
established, particularly in the area of integrating gene expression and SNP data from separate cohorts. 
Differentially expressed genes alone are of limited utility, since they include both downstream signals 
resulting from disease pathology and upstream signals that may be more causative. Incorporating SNP 
signals into an analysis can help identify causative signals that may represent more direct targets for new 
medicines.

In conducting such integrative analyses, it is also critical to consider patient stratification. Today, 
studies of many different diseases are increasingly finding subsets of patients with distinct patterns of 
biology9,10. It is plausible that not all AD patients have identical mechanisms driving their common 
symptoms and manifestations of the disease. To the extent that AD patients may differ in certain aspects 
of the biology underlying their disease, it stands to reason that certain medicines may be more, or less, 
effective in particular subsets of patients.

Therefore, we sought to integrate publicly available gene expression and SNP data sets as a means to 
generate new insights into the biology of AD, stratify these patients, and generate hypotheses for new 
subset-specific medicines.

Results
Differential expression analysis between AD patients and healthy controls. We first per-
formed an integrated analysis of existing Alzheimer’s gene expression data sets. We identified genes with 
significantly differing expression levels between healthy controls and AD patients (as defined by overall 
diagnosis or NFT score) in each of four data sets. Taking the intersection, 25 genes were downregulated 
significantly with disease in all four data sets. We subsequently obtained a fifth data set (Zhang et al.), 
and observed that in this study 24 out of these 25 genes were also downregulated significantly with 
disease. We thus identified 24 genes that were significantly downregulated with disease in each of 5 data 
sets (Fig. 1a and Table 1). Box plots of NEUROD6 (Fig. 1b) and SNAP25 (Supplementary Fig. 1) illus-
trate the consistent downregulation of Table 1 genes across each of the 5 data sets. Additional details on 
fold changes and p-values for the 24 genes appear in Supplementary Table 1 (lists of genes differentially 
expressed in 4 out of the 5 datasets are also provided, in Supplementary Table 8). While establishing such 
a stringent criterion may eliminate some relevant genes, we reasoned that the resulting genes would be 
unambiguously associated with AD. The intent of taking the intersection between multiple data sets, each 

Figure 1. Genes downregulated in AD consistently across 5 data sets. (a) Venn diagram illustrating the 
intersection of significantly downregulated genes across multiple data sets. (b) Box plots of NEUROD6 
expression in each of the 5 data sets. (c) Heat map of the 24 consistently downregulated genes showing 
specificity for brain tissue.
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imperfect and bearing its own peculiarities, is to compensate for shortcomings in any single data set. 
Indeed, the observed overlap in gene expression effects is striking, especially given that the analysis inte-
grates data across multiple brain compartments and disease timepoints, as well as microarray platforms.

Pathway analysis was performed using DAVID11 on the list of 24 genes. These genes are enriched 
significantly in 19 GO CC pathways, including those related to mitochondria, membrane, and vesi-
cles, specifically synaptic vesicle membrane, and 11 GO MF pathways, relating mainly to ATPase activ-
ity (Supplementary Table 6). Eight out of the 24 genes are annotated in GO CC as “mitochondrion” 
(GO:0005739): ATP5B, ATP6V1E1, BNIP3, C14orf2, GOT2, MRPS11, SLC25A11, and UQCRC1. Several 
additional genes are related to mitochondria, as will be discussed below. Four genes are annotated in 
GO MF as “ATPase activity, coupled to transmembrane movement of ions, phosphorylative mechanism” 
(GO:0015662): ATP5B, ATP6V1G2, ATP6V1E1, and ATP1A3. Three genes are annotated as “synaptic 
vesicle membrane” (GO:0030672): ATP6V1G2, SLC17A7, and SYP. Several genes on the list also have 
ties to glutamate (including CACNG3, which regulates AMPA-sensitive glutamate receptors; SLC17A7, 
which mediates glutamate uptake into synaptic vesicles; SLC25A11, a mitochondrial oxoglutarate car-
rier; and GOT2, mitochondrial glutamic-oxaloacetic transaminase 2), which is interesting because both 
impairments in glutamatergic transmission and excitotoxicity are thought to play a role in AD12.

Degree of brain-specific expression of identified genes using BioGPS database. To determine 
the degree to which these genes were expressed preferentially in the brain, we utilized publicly available 
tissue-specific array data, as described in Methods. Overall, for the 24 genes identified, we found a high 
degree of specificity for expression in brain tissue (Fig. 1c).

Searching the Gene Expression Omnibus detects gender differences in identified genes. To 
generate further insight into the list of expression-identified genes, we developed a method for identify-
ing patterns in the Gene Expression Omnibus (GEO), a large database of publicly available gene expres-
sion data sets including over 500,000 human samples. We developed a Wilcoxon-test-based algorithm for 
comprehensively searching GEO to identify those samples in which each of the 24 genes was significantly 
modulated relative to other genes.

The most striking finding was related to gender, a factor that is suggested to play a role in AD13. As 
shown in Supplementary Table 2, the CACNG3, GNG3, and NEUROD6 genes showed a gender-based 
pattern. For example, we observed in a dataset from healthy brain, GSE11882 (“Gene expression changes 
in the course of normal brain aging are sexually dimorphic”) that 38 samples were significantly enriched 
(FDR adjusted p-value <  0.05) for high expression of NEUROD6 (Supplementary Table 3). Strikingly, 
30 of the 38 samples with enriched NEUROD6 expression were from males (Fig.  2a). This difference 
was highly significant, with hypergeometric p-value 1.71 ×  10−4. In contrast, the entire GSE11882 data 
set was well-balanced by gender (173 samples with 82 female and 91 male) (Supplementary Fig. 2). We 
analyzed the pattern of NEUROD6 expression across the full data set to search for expression differences 
by gender in NEUROD6, and found that NEUROD6 expression was significantly higher in males than 
females with a nominal p-value of 0.014 (Fig. 2b). By dividing the data set into individual compartments, 
we found that NEUROD6 was significantly differentially expressed in two of the four compartments 
(with nominal p-values 0.0052 and 0.007; Supplementary Fig. 3). The finding that NEUROD6 differs in 
expression level between healthy men and women is particularly intriguing given that (a) NEUROD6 
expression is downregulated with disease, and (b) gender may play a role in AD13.

Examining the GSE11882 data set with regard to the SNAP25 gene, two out of three expression 
probesets representing this gene were significantly lower in women than in men, in an individual 
compartment in the GSE11882 data set (nominal p-values 0.018 and 0.032; Supplementary Table 4). 
Note that GSE11882 was analyzed for differential gene expression between genders, but provided no 
Alzheimer-specific information.

To see whether these gender-related differences could have been recovered immediately from the 
original gene expression datasets, we also performed differential expression directly on each of these 
five AD datasets to examine differences in expression between genders (see Supplementary Table 9). We 
were not able to recover differences (beyond nominal p-values) between expression of NEUROD6 and 

Downregulated in AD vs control in all 5 data sets

AP3B2 C14orf132 MRPS11 SLC25A11

ATP1A3 C14orf2 NEUROD6 SNAP25

ATP5B CACNG3 PPP1R11 SYP

ATP6V1E1 GNG3 PTPRN2 TPI1

ATP6V1G2 GOT2 RGS7 UQCRC1

BNIP3 MAGED1 SLC17A7 YWHAB

Table 1.  List of 24 genes downregulated in AD consistently across 5 data sets.
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SNAP25 in males and females in all five datasets (stratified by Alzheimer’s status, see Supplementary 
Table 11). In the largest dataset (GSE15222), we observed nominally significant differences in SNAP25 
expression between females and males among AD patients but not among controls. In the second larg-
est dataset (GSE44772), SNAP25 differed at least nominally by gender among AD patients and among 
controls. In one other dataset, GSE1297, SNAP25 differed at least nominally between M and F among 
controls. Fisher’s exact tests comparing the counts of samples originating from males and females, strati-
fying by disease status, determined that 4 out of the 5 datasets do not show a significant gender bias (see 
Supplementary Table 12). These results examining this more subtle effect are not surprising given the 
study sizes and different platforms across studies, and underscore the higher sensitivity of the pipeline 
described in this work as compared to traditional approaches for analysis.

We chose to focus on NEUROD6 and SNAP25 on the basis of these gender-related patterns and the 
genetic analyses described below.

Utilizing SNP studies to identify putatively causative genes. To distinguish between down-
stream signals resulting from disease pathology, and upstream signals that may be more causative and 
therefore better targets for therapy, we utilized single-nucleotide polymorphism (SNP) data in conjunc-
tion with the gene expression data. The established method for combining these two types of data, 
expression quantitative trait locus (eQTL) analysis14, requires both gene expression and SNP data from 
the same cohort of patients. Since most of the available gene expression and SNP data came from sepa-
rate cohorts, we developed another approach to identify converging lines of evidence for disease-causing 
genes from these disparate but complementary types of genomic data.

We examined the regions in and around (details as described below and in Methods) the 24 genes 
identified as downregulated in AD (Table 1) for disease-associated SNPs in three data sets: the ADNI1 

Figure 2. Possible link between NEUROD6 and gender. (a) Gender distribution of NEUROD6-high 
samples in a data set of healthy controls. (b) Comparison of NEUROD6 expression by gender across the 
entire data set of healthy controls.
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cohort, the National Institute on Aging Late-Onset alzheimer’s Disease Family Study (“LOAD study”)15, 
and a recent study by Zhang et al. (“Cell study”)3. Limiting the SNPs of interest to targeted regions 
reduces the risk of false positives. This narrow focus supports the use of a more lenient p-value thresh-
old greater than the typical threshold applied for GWAS studies (often p <    5 ×  10−8). In order to relax 
the threshold from an overly conservative genomewide significance cutoff, yet maintain a desired level 
of stringency, we chose to use a p-value threshold of p <  5 ×  10−4. The size of the region surrounding 
each gene was taken to be 200 kb up- and downstream, as many enhancer regions for transcriptional 
start sites, in general, are known to extend to such distances16. Indeed, in some cases, such elements are 
located as far as 1 Mb away from the affected gene; for example, in the case of the genes SHH17 and 
POU3F418. For this reason, we performed an additional analysis using less stringent distance and p-value 
parameters of 1 Mb and p <  10−2, respectively. For both the strict and less stringent analyses, we defined 
a result to be of particular interest if a significant SNP from the GWAS studies comparing AD versus 
healthy control was located in the region of one of the AD-downregulated genes, in at least two out of 
three SNP studies.

In the case of the least stringent distance and p-value parameters (1 Mb and p <  10−2), for 15 out of 
24 genes, significant SNPs were located within the region of interest in all three studies, as shown in 
Supplementary Table 7a, and the regions surrounding all but three of the expression-identified genes 
contained significant SNPs in at least two out of three studies. For further investigation, we utilized the 
results of the stringent filtering (p <  5 ×  10−4, 200 kb; shown in Supplementary Table 7b) to help prior-
itize genes, as discussed in further detail below.

GWAS studies to date have identified APOE as the gene most consistently associated with AD. 
Carriers of the APOE ε 4 (APOE4) allele have a significantly increased risk of AD19 for reasons that 
are incompletely understood, and several clinical studies have found putative differences in response to 
therapy based on APOE4 status20,21. In addition, recent work suggests that APOE4 imparts an increased 
risk of conversion to AD in women22. Given this information as well as the gender differences discussed 
above, in addition to examining the regions of interest in all patients, we also performed subset-specific 
analyses, based on both gender and apolipoprotein E (APOE) status. We reasoned that different subsets 
of AD patients might have differences in the biological factors driving their disease.

SNPs in the region of NEUROD6 were associated with AD specifically in APOE4+  women in both 
the ADNI1 and LOAD cohorts (Supplementary Table 7b). These NEUROD6 SNPs are illustrated in 
Fig.  3a,c. We utilized a newly developed propensity plotting method to visualize the specific influence 
of these SNPs (Fig.  3b,d). Status at these SNPs was highly associated with disease propensity. In con-
trast, SNPs in the region of SNAP25 were associated with AD specifically in APOE4+  men in both the 
LOAD and Cell data sets (Supplementary Table 7b and Supplementary Fig. 4). SNPs were also identified 
near MRPS11 for APOE4+  women, and near GOT2 for women as well as for the whole cohort, for the 
chosen distance and p-value parameters. We narrowed our focus to NEUROD6 and SNAP25 since their 
respective identified SNPs were closer to these genes than to MRPS11 and GOT2, though all of these 
genes may have intriguing biological connections, as discussed below.

Identifying medicines to restore expression of causative genes, using CMAP data. We next 
sought to determine which medicinal drugs and compounds could restore expression of NEUROD6 or 
SNAP25 shown to be downregulated in AD. We developed an enrichment algorithm to identify spe-
cific drugs in the Connectivity Map (CMAP)23 databases that induced significantly higher expression of 
NEUROD6 or SNAP25 in culture. We identified 34 unique compounds that upregulate NEUROD6, and 
nine that upregulate SNAP25 (Table 2). Note that this hypothesis-generating analysis serves to identify 
drugs of interest for further examination, and these compounds are not expected to be highly specific for 
these genes. The full list of drugs with their known gene/pathway targets is available in Supplementary 
Table 10.

Discussion
A number of the genes identified in the expression analysis as downregulated with AD have striking 
common biology. The list of 24 genes enriched significantly for GO pathways including those related 
to mitochondria, membrane, and vesicles, specifically synaptic vesicle membrane, and ATPase activity 
(Supplementary Table 6). Several genes on the list also have ties to glutamate, which is of particular 
interest since both impairments in glutamatergic transmission and excitotoxicity are thought to play a 
role in AD12. To evaluate which genes on this list were likely to be causal in disease, we examined SNP 
data and determined that in particular patient cohorts, significant SNPs were found in multiple data sets 
in the regions around NEUROD6 and SNAP25.

NEUROD6 is a transcription factor involved in neuronal differentiation, and has been shown to 
increase mitochondrial mass and play a role in response to oxidative stress24. This is intriguing because 
the aging process has a negative impact on mitochondrial function25 and leads to an increase in mito-
chondrial DNA mutations26, and rates of Alzheimer’s increase dramatically with age27.

APOE also has ties to the mitochondria28. The APOE ε 4 isoform has been shown to cause mitochon-
drial damage specifically in neurons28. APOE ε 4 also has lower antioxidant capability than other iso-
forms, and amyloid beta induces oxidative stress to a greater extent when APOE ε 4 is present29. Oxidative 
stress may also induce hyperphosphorylation of tau30, another key factor in AD. Impairing the transport 
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of mitochondria into axons was shown to enhance tau phosphorylation and neurodegeneration31. Several 
studies in a variety of systems have shown that oxidative stress induces upregulation of BACE132, an 
enzyme critical for the production of amyloid beta. In other systems, oxidative stress has been shown 
to increase production of amyloid precursor protein33. Because NEUROD6 confers tolerance to oxida-
tive stress24, it has the potential to mitigate some of this damage. As NEUROD6 expression is lower in 
women, and APOE4+  individuals have lowered tolerance for ROS damage28,29, it stands to reason that 
a SNP associated with further impairment of NEUROD6 may put APOE4+  females at particular risk of 
damage due to oxidative stress.

Figure 3. NEUROD6-related SNPs are associated with AD specifically in APOE4+ female patients.  
(a) Plot showing a “cone” of disease associated SNPs around NEUROD6 in APOE4+  female patients, 
but not in APOE4+  male, APOE4- female, or APOE4- male patients. Top AD-associated SNPs related 
to NEUROD6 in APOE4+  female patients in ADNI1 were: rs1917011 (p <  3.82e-5 in female APOE4+  
patients, p <  0.692 in male APOE4+ , p <  0.844 in female APOE4-), rs2159766 (p <  3.82e-5 in female 
APOE4+ , p <  0.771 in male APOE4+ , p <  0.624 in female APOE4-), and rs12701070 (p <  3.82e-5 in 
female APOE4+ , p <  0.561 in male APOE4+ , p <  0.624 in female APOE4-). (b) Propensity plots showing 
the disease risk (positive values) or protection (negative values) in APOE4+  female patients as a function 
of a patient’s status for each of three top NEUROD6 SNPs. (c) Plot showing disease associated SNP near 
NEUROD6 in APOE4+  female patients, but not in APOE4+  male, APOE4- female, or APOE4- male 
patients from the LOAD data set. This SNP was rs6972352 (p <  0.00049 in female APOE4+ , p <  0.2247 in 
male APOE4+ , and p <  0.010 in female APOE4-). (d) Propensity plots showing the disease risk (positive 
values) or protection (negative values) in APOE4+  female patients as a function of a patient’s status for each 
of three top NEUROD6 SNPs.
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CMAP compound name p.val adj.p.val

(A) NEUROD6-elevating compounds

sodium phenylbutyrate 8.03E-05 4.23E-02

arachidonic acid 8.22E-05 4.23E-02

2-deoxy-D-glucose 8.59E-05 4.23E-02

fasudil 8.76E-05 4.23E-02

nordihydroguaiaretic acid 1.04E-04 4.23E-02

monastrol 1.09E-04 4.23E-02

tacrolimus 1.12E-04 4.23E-02

quercetin 1.12E-04 4.23E-02

sulindac 1.14E-04 4.23E-02

troglitazone 1.17E-04 4.23E-02

staurosporine 1.17E-04 4.23E-02

troglitazone 1.22E-04 4.23E-02

thalidomide 1.26E-04 4.23E-02

CP-944629 1.35E-04 4.23E-02

mercaptopurine 1.40E-04 4.23E-02

haloperidol 1.49E-04 4.23E-02

exisulind 1.57E-04 4.23E-02

sirolimus 1.71E-04 4.23E-02

tanespimycin 1.71E-04 4.23E-02

suramin sodium 1.74E-04 4.23E-02

genistein 1.76E-04 4.23E-02

erastin 1.78E-04 4.23E-02

clofibrate 1.80E-04 4.23E-02

LY-294002 1.92E-04 4.23E-02

tanespimycin 1.93E-04 4.23E-02

LY-294002 1.97E-04 4.23E-02

prednisolone 1.99E-04 4.23E-02

fulvestrant 2.01E-04 4.23E-02

meteneprost 2.05E-04 4.23E-02

monorden 2.17E-04 4.23E-02

tretinoin 2.22E-04 4.23E-02

nifedipine 2.30E-04 4.23E-02

sulindac sulfide 2.32E-04 4.23E-02

wortmannin 2.36E-04 4.23E-02

MK-886 2.46E-04 4.29E-02

PF-01378883-00 2.59E-04 4.38E-02

monorden 2.82E-04 4.65E-02

iloprost 3.06E-04 4.91E-02

Note: 34 unique compounds. Repeats due to differing cell lines or repeated 
experiments.

(B) SNAP25-elevating compounds

valproic acid 2.20E-05 1.91E-02

guanabenz 9.14E-05 3.81E-02

karakoline 8.89E-05 3.81E-02

tetracycline 1.03E-04 4.01E-02

diloxanide 1.28E-04 4.45E-02

metoprolol 1.38E-04 4.52E-02

yohimbic acid 1.59E-04 4.75E-02

azapropazone 1.63E-04 4.75E-02

proguanil 1.93E-04 4.92E-02

Table 2.  Drug candidates determined based on patient subset analysis. (a) Compounds that induce 
enriched expression of NEUROD6. (b) Compounds that induce enriched expression of SNAP25.
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SNAP25 has an important role in synaptic function as part of the Soluble NSF Attachment Protein 
Receptor (SNARE) complex, which is involved in synaptic vesicle exocytosis, and has been tied to neu-
rodegeneration34,35. SNARE proteins are known to be sensitive to oxidative stress, with SNAP25 being 
the most sensitive, which has been proposed to relate mitochondrial dysfunction to reduced synaptic 
activity in neurodegeneration36. Indeed, in a mouse model of AD using male mice, lower SNAP25 levels 
were observed in the hippocampus, along with lowered levels of glutamate, ATP, and mitochondrial 
membrane potential; the authors attributed the observed deficiency in glutamatergic neurotransmission 
(which requires a high level of energy consumption) to dysfunction of mitochondrial bioenergetics37.

The other two genes identified for the chosen distance and p-value parameters for certain patient 
subsets (female APOE4+ , and female as well as whole cohort, respectively) were MRPS11 and GOT2. 
Intriguingly, both are mitochondrial genes. MRPS11 encodes a component of the small subunit of 
the mitochondrial ribosome. Mutations in other mitochondrial small subunit ribosomal proteins are 
known to cause severe disruption in the respiratory chain38. GOT2 encodes a mitochondrial kynurenine 
transaminase, which acts on kyurenine to produce kynurenic acid (KYNA), a neuroprotective NMDA 
and nicotinic receptor antagonist that may also have antioxidant properties39 and can affect glutama-
tergic neurotransmission in multiple ways12. Interestingly, lower KYNA levels have been observed in 
AD patients40, and raising KYNA levels via inhibition of kyurinine-3-monooxygenase (KMO; another 
enzyme that acts on kyurenine) ameliorates neurodegeneration in vivo41.

Several of the compounds identified via our CMAP search as upregulating NEUROD6 or SNAP25 
expression have shown promise in published mouse models of AD, as described below. The highest 
ranked compound for its ability to upregulate NEUROD6 is sodium phenylbutyrate, which has recently 
been proposed as a therapeutic for neurodegenerative diseases due to its ability to increase neurotrophic 
factors in brain cells, along with the fact that it is safe, orally delivered, and crosses the blood brain bar-
rier42. Another study using a mouse model of AD demonstrated that independent of Aβ  levels, sodium 
phenylbutyrate decreased spatial learning and memory impairment by upregulating markers for synap-
atic and dendritic growth43. The third most highly ranked compound is 2-Deoxy-D-Glucose, which has 
been shown to reduce pathology in a female mouse model of AD by inducing ketogenesis and enhancing 
mitochondrial capacity44. We propose that these drugs warrant additional investigation as AD therapeu-
tics, particularly in APOE4+  women.

Why is NEUROD6 expression most significant in females? Estrogen signaling appears to stimulate the 
production of enzymes such as glutathione peroxidase that protect the mitochondria against oxidative 
stress13, so the loss of estrogen upon age could leave women more susceptible to mitochondrial damage 
associated with impairment of NEUROD6 production and the resultant loss of protective effects. In fact, 
among the list of compounds from CMAP2 that most significantly elevate expression of NEUROD6 
(Table 2) is genistein, which has been proposed as a means to replace the protective effect of estrogen 
on mitochondria in aging women13.

The top drug shown to significantly elevate SNAP25 expression, valproic acid, is known to have 
neuroprotective properties45. In recent studies in mouse models of AD, valproic acid was demonstrated 
to protect against loss of neurons46 and limit Aβ  production and behavioral deficits47. Karakoline is a 
nicotinic receptor agonist that was recently shown to improve cognitive function in a mouse model of 
AD48. Tetracycline was shown to protect from Aβ  toxicity in C elegans49, and its derivatives are actively 
being explored as potential therapeutics in mouse models of AD50. We hypothesize that these compounds 
warrant further investigation for treatment of AD, particularly in APOE4+  men.

We developed an innovative pipeline for extracting new insights from existing data sets, utilizing 
a breadth of separate, publicly available resources (as illustrated in Fig.  4). This pipeline is innovative 
in particular because of the focus on integrating multiple gene expression datasets across various plat-
forms in order to achieve a robust intersection of disease-affected genes, then leveraging these results 
in combination with genetic studies in order to identify those that are more likely causal. This approach 
has identified NEUROD6 and SNAP25 as important factors in AD, especially in APOE4+  women and 
men, respectively. Both of the genes identified have solid connections to the neuronal oxidative damage 
response. We have also identified subset-specific drug candidates for modulation of these genes. More 
broadly, our analyses suggest that further exploration of gender-specific biology could lead to effective 
new medicines for neurodegeneration, along with special considerations for corresponding clinical trials, 
and that patient stratification by gender, genetics or other factors could facilitate data-driven identifica-
tion of new therapeutic options for a variety of diseases.

Methods
Identification, Processing and Analysis of Expression Data Sets. All expression data sets used 
in this analysis were obtained from the Gene Expression Omnibus (GEO) site (http://www.ncbi.nlm.
nih.gov/geo/) and consisted of GEO project accession numbers: GSE528151, GSE129752, GSE3698053, 
GSE1522254, and GSE447723. A summary of these data sets, including all sample IDs used in the analy-
sis, array type, and the compartment of the brain that the samples were collected from can be found in 
Supplementary Table 5. Each data set was processed and analyzed independently. We identified genes 
differentially expressed between AD and control in each using LIMMA (Version 3.18.13)55, taking a 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Figure 4. For legend see next page.
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significance threshold of FDR-corrected p-value <  0.05. We further identified the genes significant in 
multiple data sets by taking the intersection of the individual differentially expressed gene lists across 
studies.

The general analysis method employed for expression data was as follows. CEL files were obtained 
from GEO (except where noted) and the data were RMA normalized56. The probesets determined to be 
significantly different between the two conditions of interest (in nearly all cases, AD vs control, except 
for GSE1297 where this condition was based on low versus high NFT score, as noted below) were cal-
culated using LIMMA. For chips with available MM/PM (mismatch/perfect match) probe data (Affy 
U133A or U133 Plus 2.0 chips), results were filtered according to Presence/Absence (P/A) calls computed 
in R using the “affy” package57, such that the average P/A call for all of the samples in the condition of 
interest with the higher average value (e.g., controls, for probesets downregulated in disease) was at least 
marginal.

LIMMA comparisons were used as a metric for assessing the signal to noise tradeoff in each brain 
compartment for data sets with multiple brain compartments (visual cortex excluded). The compart-
ment with the greatest number of significant probesets (FDR p-value <  0.05) was chosen for analysis. 
For Affymetrix chips, the presence of Affymetrix control probesets among the top significant differential 
expression results was considered a QC flag; compartments having Affymetrix control probesets as either 
> 0.25% of significant differential expression results, or in any of the top ten results, were discarded.

GSE5281 consists of samples collected from 6 compartments of the brains of AD patients along with 
controls and measured using the Affymetrix Human Genome U133 Plus 2.0 Array. We used the samples 
collected from the Entorhinal Cortex (EC), per the QC procedure described above.

GSE1297 contains mini-mental state examination (MMSE) scores and neurofibrillary tangle (NFT) 
scores for all individuals in the study, with gene expression measurements from the hippocampus made 
using the Affymetrix Human Genome U133A Array. We found roughly 5 times as many significant 
probesets when comparing the individuals with the 9 highest NFT scores versus the individuals with 
the 9 lowest NFT scores than attained when comparing Severe AD patients (based on MMSE score) vs. 
controls. For this reason, we used samples with the top 9 NFT scores versus the lowest 9 NFT scores in 
this analysis. The lowest 9 NFT scores included both controls and patients labeled as having incipient AD. 
The highest 9 NFT scores included patients labeled as having severe AD, moderate AD, and incipient AD.

GSE36980 is comprised of samples from 3 compartments of the brains of AD patients and controls, 
measured using the Affymetrix Human Gene 1.0 ST Array. We used the data from the hippocampus as 
the compartment with the most probesets significantly differing in expression between AD patients and 
controls (as described above).

GSE15222 consists of samples collected from multiple cortical compartments of the brains of AD 
patients and controls, measured using the Sentrix HumanRef-8  Expression BeadChip. Raw data was 
not available from this data set, so we used the processed data available on the corresponding author’s 
laboratory website58. The authors rank-invariant normalized their data and then filtered it in two ways. 
First, transcripts were only considered if they were detected in at least 90% of AD patients or 90% of 
controls. Second, transcript expression intensities were only considered in analyses for a given sample if 
their Illumina detections scores were > 0.9958. Since these data had been normalized across all measured 
compartments of the brain, we considered all the samples together.

The net result of these analyses was a list of probesets significantly affected by Alzheimer’s disease 
for each data set. To obtain a robust list of affected genes, we determined the intersection of the gene 
names from all four lists. We performed separate intersections for genes upregulated in each study and 
genes downregulated in each study. After obtaining a list of 25 genes downregulated in disease relative 
to control across all four studies, we obtained a fifth data set (GSE44772).

GSE44772, which we obtained after analyzing the other four data sets, consists of samples collected 
from three compartments in the brains of both AD patients and controls, measured using a custom 
Rosetta/Merck Human 44k 1.1 microarray. Using the same QC procedure described above, we chose 
to utilize the data from the prefrontal cortex. Raw data was not available from this data set, so we used 

Figure 4. Schematic of analysis pipeline. (Art credit: Kate Mahan.) We developed an innovative pipeline 
for extracting new insights from existing publicly available resources, including five gene expression datasets, 
three SNP datasets, and multiple databases, in order to generate hypotheses for potential treatment strategies 
in subsets of AD patients. (1) We identified genes differentially expressed in AD in multiple gene expression 
data sets, leading to a list of 24 genes downregulated in AD. (2) We searched all of GEO to identify 
expression patterns for these genes in additional (not necessarily AD) datasets, revealing gender differences 
for some genes. (3) For patient subsets of interest (defined by gender and APOE4 status), we performed 
GWAS in each of three separate SNP data sets (AD vs healthy control) in regions up and downstream of 24 
genes, allowing prioritization of genes having nearby SNPs. (4) The genes thus identified provide insights 
that can help facilitate development of new therapeutics. For example, searching the CMAP database 
identified existing drugs warranting further investigation for specific subsets of AD patients. In addition, 
further elucidating the biology of these genes can allow identification of entirely new therapeutic targets.
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the processed data available in the Series Matrix File on GEO. The data was in the form of normalized 
log10 ratios between the test sample and a pooled reference sample. LIMMA was used to determine 
the probesets that were significantly different between the AD patients and the controls. 24 out of the 
25 downregulated genes from the four-data set intersection were also significantly downregulated with 
disease in this data set.

Brain specificity heat maps. For the 24 genes of interest, all probesets were mapped to tissue-specific 
arrays59, available via BioGPS60. The probesets were clustered hierarchically with a metric of Pearson cor-
relation, and displayed via subtracting by the median and dividing by the absolute deviation (both in 
GENE-E, http://www.broadinstitute.org/cancer/software/GENE-E/). Tissues were annotated by whether 
or not they were brain-associated, and sorted and grouped accordingly.

Stratified GWAS. We conducted targeted gene association testing from the SNP data sets listed in the 
text using PLINK61, with patient subsets defined by gender and APOE4 status. Results were visualized 
using the Integrative Genomics Viewer (IGV)62.

In order to obtain the strongest possible AD-relevant signals, we restricted the analysis of the LOAD 
data set to only those patients with an AD diagnosis confirmed by autopsy. Similarly, in analysis of the 
Zhang et al. data set we excluded controls and patients having a diagnosis of Huntington’s disease.

Of the 757 patients in ADNI1 who were genotyped via Illumina 610 Quad array SNP chip, 389 were 
categorized as either AD patients or healthy controls, and the rest (those with mild cognitive impairment, 
MCI) were excluded from further consideration. GWAS was also run on patient sub-cohorts, stratified by 
APOE4 status, gender, and the combination of both. Effect sizes for each group are as follows: unstrat-
ified =  175 AD, 214 healthy controls (HC); APOE4- =  58 AD, 156 HC; APOE4+  =  117 AD, 58 HC; 
Female APOE4- =  31 AD, 73 HC; Female APOE4+  =  51 AD, 26 HC; Male APOE4- =  27 AD, 88 HC; 
Male APOE4+  =  66 AD, 32 HC; Male all =  93 AD, 115 HC; Female all =  82 AD, 99 HC.

The LOAD data set included 1985 patients and 2058 controls genotyped via Illumina Human 610 
Quad v1B SNP chip. Patients included in the analysis were limited to those who had an AD diagnosis 
confirmed by autopsy. Unstratified, subjects included in the analysis were 440 patients and 2058 con-
trols. Numbers of subjects within subsets were: APOE4- =  99 AD, 1256 HC; APOE4+  =  341 AD, 802 
HC; Female APOE4- =  74 AD, 773 HC; Female APOE4+  =  230 AD, 483 HC; Male APOE4- =  25 AD, 
483 HC; Male APOE4+  =  111 AD, 319 HC; Male all =  136 AD, 802 HC; Female all =  304 AD, 1256 HC.

The Zhang et al. (or “CELL”) data set included 374 patients and 366 controls genotyped via Illumina 
HumanHap650Y SNP chip. We excluded subjects with a diagnosis of Huntington’s disease from the 
analysis. Unstratified, 371 patients and 159 controls were included in the analysis. Numbers of subjects in 
subsets were as follows: APOE4- =  209 AD, 130 HC; APOE4+  =  162 AD, 29 HC; Female APOE4- =  129 
AD, 34 HC; Female APOE4+  =  90 AD, 5 HC; Male APOE4- =  80 AD, 96 HC; Male APOE4+  =  72 AD, 
24 HC; Male all =  152 AD, 120 HC; Female all =  219 AD, 39 HC. In this data set we removed from 
consideration patients and controls with a diagnosis of Huntington’s disease. Therefore, smaller numbers 
of controls were available, especially in the highly stratified subsets. Specifically, the female APOE+  
cohort contained only five controls, which may explain why SNPs calculated to be significant in female 
APOE4+  patients in the other two data sets did not achieve significance in this subset.

Propensity plotting. We adapt a measure of bias for identifying amino acids on the surface that are 
likely to be part of an interface domain from the proteomics field63–65 to measure the preference of a 
particular SNP genotype to case vs. control subsets of the data set. Briefly, we define SNP propensity to 
be the fraction of patients diagnosed with AD given a particular SNP variant to the control fraction with 
this SNP variant. Specifically, it is defined as:

( ) =
( )

=

_

+ _
+

log Propensity2
1

rsX i

CASE i
CASE

CASE CONTROL i
CASE CONTROL

i

Where CASEi is the fraction of patients diagnosed with AD and having SNP variant i. CONTROLi is the 
fraction of control individuals with SNP variant i. CASE is the total number of patients diagnosed with 
AD in the data set, and CONTROL is the total number of control individuals in the data set.

GEO-search analysis. We searched all human data sets across all platforms in GEO as of July 2013. 
We used a one-sample Wilcoxon test to measure the significance of differential expression for probe-
sets annotated to a gene of interest against all other probesets in the sample, correcting for FDR using 
Benjamini-Hochberg.

Supplementary Table 2 was constructed by counting the number of samples, m, from the GSE11882 
data set that passed our adjusted p-value threshold of 0.05 for the GEO search algorithm described 
above. Of the samples that passed our adjusted threshold of 0.05, we counted the number of samples, 
n, that came from males. We then calculated the significance of obtaining ≥  n male samples if we drew 
m samples randomly from a total of 173 samples (which is the total number of samples in GSE11882) 
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with 91 males (total number of male samples in GSE11882) based on the hypergeometric distribution. 
We omitted the significance calculation if the number of significant samples, m, was less than 15 (< 10% 
of the data set).

CMAP search. CMAP (Connectivity Map) is a large collection of microarray-based transcriptional 
signatures for 7000 expression profiles from cultured cells treated with 1,309 compounds. We obtained 
the full CMAP (builds 01 and 02)66,23 data sets and utilized a one-sample Wilcoxon test to identify 
expression profiles from compounds that significantly increased expression of a gene of interest in culture 
after treatment. We then adjusted for multiple hypothesis testing (FDR p-value <  0.05).

ADNI-data acquisition. The SNP data used in the preparation of this article were obtained from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was 
launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 
and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical com-
panies and non-profit organizations, as a $60 million, 5-year public- private partnership. The primary 
goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clinical and neuropsychological assessment can be 
combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease 
(AD). Determination of sensitive and specific markers of very early AD progression is intended to aid 
researchers and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 
the time and cost of clinical trials. The Principal Investigator of this initiative is Michael W. Weiner, MD, 
VA Medical Center and University of California – San Francisco. ADNI is the result of efforts of many 
co- investigators from a broad range of academic institutions and private corporations, and subjects have 
been recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 
800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. To date these three protocols 
have recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting of cognitively 
normal older individuals, people with early or late MCI, and people with early AD. The follow up dura-
tion of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally 
recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date infor-
mation, see www.adni-info.org.
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