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Introduction
Elimination of pathogens by phagocytosis is an essential com-

ponent of the innate immune response. Phagocytosis is a complex 

sequence of signaling and cytoskeletal remodeling events that 

culminates in the engulfment of microorganisms into a  vacuole. 

The process is initiated by recognition of ligands on the surface 

of the pathogen by specialized phagocytic receptors.  Progressive 

zippering of receptors to multiple ligands on the target particle 

drives the apposition of the host cell membrane to the surface of 

the pathogen. In this specialized area of contact, known as the 

phagosomal cup, receptor clustering unleashes a signaling cascade 

that ultimately promotes actin polymerization, pseudopod 

 extension, and particle internalization.

Phosphoinositides play a critical role in the initia-

tion of phagocytosis. Phosphatidylinositol-4,5-bisphosphate 

(PtdIns[4,5]P2) undergoes a biphasic change at the phagocytic 

cup: an initial, transient increase that is followed by its  virtual 

disappearance by the time phagosomal sealing is complete 

(Botelho et al., 2000). These changes appear to be essential 

for successful completion of phagocytosis, as interference 

with PtdIns(4,5)P2 biosynthesis or catabolism impairs  particle 

 engulfment (Azzoni et al., 1992; Liao et al., 1992; Araki et al., 

1996; Cox et al., 1999). Conversion to phosphatidylinositol-

3,4,5-trisphosphate (PtdIns[3,4,5]P3) is partly responsible 

for the disappearance of PtdIns(4,5)P2 from the phagosomal 

cup. Accordingly, formation of PtdIns(3,4,5)P3 can be  readily 

detected at the base of the nascent phagosome (Marshall 

et al., 2001), and inhibition of phosphatidylinositol-3-kinases, 

which are responsible for its synthesis, effectively blocks the 

uptake of phagocytic particles that are >3 μm (Cox et al., 

1999). Remarkably, the reported changes in PtdIns(4,5)P2 and 

PtdIns(3,4,5)P3 are confi ned to the phagocytic cup, without 

detectable alteration of the inositides in the unengaged (bulk) 

plasma membrane (PM).

Biological membranes are generally regarded as fl uid mo-

saics wherein lipids or clustered lipid microdomains can diffuse 

freely (Galbiati et al., 2001). At physiological temperatures, 
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hospholipids play a critical role in the recruitment and 

activation of several adaptors and effectors during 

phagocytosis. Changes in lipid metabolism during 

phagocytosis are restricted to the phagocytic cup, the area 

of the plasmalemma lining the target particle. It is unclear 

how specifi c lipids and lipid-associated molecules are 

 prevented from diffusing away from the cup during the 

course of phagocytosis, a process that often requires  several 

minutes. We studied the mobility of lipid-associated  proteins 

at the phagocytic cup by measuring fl uorescence recovery 

after photobleaching. Lipid-anchored (diacylated) fl uore-

scent proteins were freely mobile in the unstimulated 

 membrane, but their mobility was severely restricted at 

sites of phagocytosis. Only probes anchored to the inner 

monolayer displayed reduced mobility, whereas those 

 attached to the outer monolayer were unaffected. The 

 immobilization persisted after depletion of plasmal-

emmal cholesterol, ruling out a role of conventional “rafts.” 

Corralling of the probes by the actin cytoskeleton was 

similarly discounted. Instead, the change in mobility 

 required activation of tyrosine kinases. We suggest that 

signaling-dependent recruitment of adaptors and effec-

tors with lipid binding domains generates an annulus of 

lipids with  restricted mobility.
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such unrestricted lateral diffusion would result in rapid redistri-

bution and homogenization of phospholipids. It is therefore 

 unclear how gradients of inositides can be sustained for the time 

required for phagosome formation, which can exceed 3–4 min 

for large particles. Two possibilities can be envisaged: fi rst, the 

lipids may be continuously generated at sites of phagocytosis 

and, although able to diffuse, they may be rapidly hydrolyzed as 

they leave the cup. Thus, a dynamic steady-state gradient could 

be achieved. Alternatively, the diffusion of lipids at sites of 

phagocytosis may be restricted, differing from their mobility in 

the bulk of the plasmalemma. Mobility may be restricted within 

or across the boundary of the phagocytic cup.

Lipids are important determinants of the distribution 

of membrane proteins. Extrinsic proteins can associate with 

lipid headgroups, and transmembrane proteins segregate into 

microdomains according to the nature of the surrounding 

lipids.  Several important signal transduction proteins  associate 

with membranes by inserting their acyl and prenyl moieties 

into the hydrophobic domain of the bilayer. It can be  anticipated 

that changes in the lipidic composition of the membrane 

 during phagocytosis would have important consequences on 

the  distribution and hence the activity of signaling proteins. 

In fact, phosphoinositides are thought to contribute to signal 

transduction by recruiting adaptor and effector proteins to 

sites of phagocytosis (Stauffer and Meyer, 1997; Hinchliffe 

et al., 1998; Oancea et al., 1998; Varnai et al., 1999; Botelho 

et al., 2000).

Clearly, the distribution and mobility of lipids and lipid-

associated proteins is critical for vectorial transduction of 

 signals during phagocytosis. However, the mobility of specifi c 

lipids in native membranes is diffi cult to analyze. Introduction 

of fl uorescent moieties can alter the size, charge, and/or confor-

mation of their headgroup or tail, and defi ned labeled lipids are 

rapidly converted to other chemical species. An alternative 

method frequently used to study lipids in cells, namely, the 

 expression of fl uorescent chimeric proteins containing specifi c 

lipid binding domains, is of limited use to study mobility. 

The limitation stems from the fact that the complex formed 

 between the lipid and the chimera is in rapid dynamic equilibrium, 

with dissociation occurring much faster than the movement of 

the lipid in the plane of the membrane (Marshall et al., 2001). 

 Because of these limitations and because of their importance in 

signal transduction, we decided to analyze instead the mobility 

of lipid-linked proteins at the phagosomal cup. FRAP was used 

for this purpose. Various constructs were used that targeted 

 either the inner or outer monolayer of the plasmalemma and 

that resided preferentially or, alternatively, were excluded from 

areas rich in saturated lipids. Using large phagocytic targets and 

a combination of bright-fi eld and confocal fl uorescence micro-

scopy, we were able to establish that the mobility of saturated 

lipids is drastically reduced at the phagocytic cup by a process 

that requires receptor-induced tyrosine phosphorylation.

Results
Mobility of PM-GFP in resting cells
The mobility of membrane-associated molecules in activated 

macrophages was studied earlier by sedimentation of suspended 

cells onto IgG-coated surfaces (Marshall et al., 2001). This sys-

tem has distinct optical advantages, as the membrane becomes 

activated at a fi xed, predictable focal plane. However, this model 

of abortive phagocytosis does not recapitulate all aspects of the 

engulfment process and may involve components of cell spread-

ing onto the substratum. On the other hand, phagocytosis of 

small particles is not amenable to the study of lipid mobility 

 because of the rapidity of the internalization event and the small 

cup size (Fig. S1, available at http://www.jcb.org/cgi/content/

full/jcb.200605044/DC1). As an alternative, we used large 

(8.3-μm diameter) particles as phagocytic targets. The size of 

these particles is similar to that of apoptotic cells that are 

 commonly ingested by macrophages (Fadok et al., 1992).

The distribution of PM-GFP in macrophages is shown 

in Fig. 1. PM-GFP is a chimeric construct of the N-terminal 

10 amino acids from Lyn with GFP. The N-terminal sequence of 

Figure 1. Distribution and photobleaching 
of PM-GFP in macrophages. RAW264.7 cells 
were transfected with PM-GFP and analyzed 
by confocal laser-scanning microscopy. 
(A) Transverse (x vs. y) optical slice acquired 
near the middle of an otherwise untreated cell. 
Bar, 5 μm. (B) Sagittal (x vs. z) reconstruction. 
(C) Transverse slice of the same cell after 
 photobleaching of the area indicated by the 
circle. (D) Three-dimensional rendering of 
the photobleached cell. Note that only the front 
(bleached) half of the cell is illustrated, to facili-
tate visualization of the bleached area. Bars, 
2 μm. Images in A–D are representative of 
>20 experiments. (E) Course of FRAP. An 
 absolute intensity trace showing a typical 
bleach of �90% is illustrated. (F) Normalized 
recovery after photobleaching. Shown are 
 recovery of PM-GFP, BODIPY-labeled phospha-
tidylethanolamine (PE), and NBD-labeled phos-
phatidylserine (PS). Bleaching was performed 
at the arrow. Data are means ± SEM of eight 
individual experiments. Where absent, error 
bars were smaller than the symbol.
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Lyn directs myristoylation and palmitoylation of the chimera, 

which targets the fl uorescent protein to the inner monolayer 

of the plasmalemma (Teruel et al., 1999). Transverse (x vs. y; 

Fig. 1 A) and sagittal (x vs. z; Fig. 1 B) sections of the cells 

confi rm that PM-GFP is largely plasmalemmal, although vary-

ing amounts of endomembrane staining can be seen, depending 

on the expression level. The mobility of PM-GFP was initially 

 assessed by FRAP in unstimulated cells. As shown in Fig. 1 C 

and particularly in the three-dimensional reconstruction of 

Fig. 1 D, the optical setup used bleached a nearly circular area 

of �2 μm in diameter within 1–2 s. Under the conditions of our 

 experiments, �10–20% of the original intensity remained after 

bleaching (Fig. 1 E). In otherwise untreated cells, the fl uorescence 

recovered almost completely (Fig. 1 F, squares; and Table I); 

in eight determinations, the mobile fraction (MF) averaged 

1.10 ± 0.04 (these and all subsequent data are presented as means 

± 1 SEM of the indicated number of determinations). Recovery 

was half maximal (t1/2) after 15 ± 2 s, indicative of a diffusion 

coeffi cient of 1.5 × 10−10 cm2/s. This value is very similar to 

that we fi nd for phospholipids in these cells. As shown in Fig. 1 F 

and Table I, fl uorescently labeled phosphatidylserine and 

 phosphatidylethanolamine recover from photobleaching with 

comparable kinetics, yielding diffusion coeffi cients 2.4 × 10−10 

and 2.2 × 10−10 cm2/s, respectively. Together, these fi ndings 

imply that the mobility of PM-GFP in the membrane is limited 

by association of its acyl chains with other constituents of the 

bilayer and not by drag imposed by the GFP itself.  Accordingly, 

the diffusion coeffi cient of free GFP in the cytosol has been es-

timated at 2.5 − 3.0 × 10−7 cm2/s (Swaminathan et al., 1996), 

much faster than that of the diacylated construct.

Mobility of PM-GFP at the phagocytic cup
RAW cells were exposed to IgG-opsonized latex beads to assess 

the mobility of PM-GFP at the phagocytic cup (Fig. 2). The 

considerable time required for complete engulfment of the large 

beads (≥6 min; Fig. S1) enabled us to perform photobleaching 

and measure the recovery of fl uorescence before phagocytosis 

was completed. Fig. 2 (A–C) shows that the area of the mem-

brane engaged in particle recognition and engulfment (the cup) 

was readily identifi able and suffi ciently large to accommodate 

the �2-μm bleaching zone that was used. To normalize the 

 recovery for changes in focal plane, photobleaching, or de novo 

delivery of probe, recovery was also measured at an area of 

 unengaged membrane of the same cell. Although theoretically 

the MF cannot exceed 100%, membrane convolution at sites of 

ingestion can occasionally cause the MF to exceed this value. 

Typical results are shown in Fig. 2 D. Although the unengaged 

area of the membrane behaved as described for the membrane 

of resting cells (MF = 0.8–1), the fraction of mobile PM-GFP 

at the cup was markedly decreased (MF = 0.36 ± 0.01; n = 8). 

The diffusion rate of the remaining MF was indistinguishable 

from the PM-GFP in the bulk membrane. These fi ndings  suggest 

that the mobility of acylated proteins is diminished in the 

 vicinity of the Fcγ receptors associated with and activated by 

the phagocytic particle.

Phagosomes undergo membrane remodeling after sealing, 

a consequence of active fusion and fi ssion events (Vieira et al., 

2002). We found that for large beads such as those used in the 

present study, remodeling starts even before phagocytosis is 

completed (Fig. S2, available at http://www.jcb.org/cgi/content/

full/jcb.200605044/DC1). It was therefore important to  ascertain 

that the failure of PM-GFP fl uorescence to recover was a re-

fl ection of immobility and not its removal from the membrane. 

To this end, we performed careful quantitation of the rate of 

disappearance of PM-GFP and of another membrane marker, 

glycosylphosphatidylinositol (GPI)-anchored YFP during 

phagocytosis of large beads. Up to 40% of the fl uorescence is 

lost from the base of the cup in 3 min (Fig. S2). We therefore 

limited our FRAP experiments to the initial 100 s, when the loss 

by remodeling is modest.

Mobility of other GFP constructs anchored 
to the inner monolayer
Stimulatory Fcγ receptors bearing an immunoreceptor tyrosine-

based activation motif associate with and become  phosphorylated 

by Src-family kinases, including Lyn. Because the N-terminal 

sequence used to target PM-GFP to the membrane was derived 

from Lyn, we considered the possibility that a specifi c, direct 

interaction with the receptor complex might account for the 

 reduced mobility of the fl uorescent probe. As an alternative 

strategy to target GFP to the inner aspect of the PM, we attached 

the C-terminal 9 amino acids of H-Ras to GFP. In addition to 

Table I. Summary of FRAP results at the unengaged PM versus phagosomal cup

PM Phagosomal cup

Fluorescent moiety Recovery t1/2 for recovery R2 Recovery t1/2 for recovery R2

% %

PM-GFP 110 15 0.995 36 8 0.990

PM-GFP + MβCD 127 23 0.996 44 10 0.988

PM-GFP + PP1 96 12 0.996 76 10 0.988

H-Ras-GFP 78 10 0.998 35 4 0.995

K-Ras-GFP 113 9 0.997 90 8 0.992

LAT-GFP 96 6 0.995 99 6 0.997

GPI-YFP 97 8 0.994 99 7 0.987

GPI-YFP + PP1 93 6 0.995 85 8 0.995

PS-NBD 75 9 0.980 — — —

PE-BODIPY 93 10 0.975 — — —
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the prenylation that is characteristic of all Ras  isoforms, the 

C terminus of H-Ras is doubly acylated, and the chimeric GFP 

comprising the 9 amino acids of H-Ras (GFP-tH) undergoes the 

same posttranslational modifi cations (Apolloni et al., 2000). As 

a result, GFP-tH targets almost exclusively to the plasmalemma 

in BHK cells (Apolloni et al., 2000), as well as in RAW macro-

phages (Fig. 3 A). As shown in Fig. 3 B (solid squares) and Table I, 

when photobleached in resting  macrophages or in the unengaged 

region of cells engulfi ng beads, GFP-tH recovered rapidly 

(t1/2 = 10 ± 0.5 s; n = 8) and  extensively (MF = 0.78 ± 0.01). 

In contrast, at the phagosomal cup, a sizable fraction of GFP-tH 

was immobile during the period analyzed (MF = 0.37 ± 0.01; 

n = 8). The diffusion of the MF was  similar to that of the un-

engaged control membrane (Table I). Therefore, two different 

acylated GFP probes displayed reduced mobility in nascent 

phagosomes. Because the C terminus of H-Ras is not antici-

pated to interact with Fc receptors, it is unlikely that direct 

 association with the receptor complex is responsible for the 

immobilization of either probe.

Role of the actin cytoskeleton in lipid 
mobility in nascent phagosomes
The preceding data indicate that two different probes anchored to

the cytosolic aspect of the membrane exhibit reduced mobility 

at sites of phagosome formation. One possible obstacle to the move-

ment of inner membrane–associated GFP is the actin cytoskeleton. 

Accumulation of actin and other cytoskeletal  proteins is a 

well-established feature of phagosome generation (Tse et al., 

2003). We therefore considered whether the partial immobi-

lization of PM-GFP and GFP-tH at the cup resulted from ste-

ric hindrance by actin-associated proteins. It has been shown 

that preventing actin polymerization with cytochalasin D 

does not abrogate bead engagement or the subsequent tyro-

sine phosphorylation of Fc receptors (Greenberg et al., 1994). 

In  accordance with these fi ndings, we found that when large 

opsonized beads were added to cytochalasin-treated cells, cup 

formation was evident (Fig. 4, A and B), enabling us to perform 

FRAP with minimal actin polymerization. In cells treated with 

cytochalasin D, the mobility of PM-GFP in the bulk membrane 

was unaffected (MF = 0.84; Table I). However, the area of 

the membrane engaged in phagocytosis still showed reduced 

 mobility (Fig. 4 C). To further study this phenomenon, we 

took advantage of the observation that under normal condi-

tions  actin dissociates from the membrane as the phagosome 

seals. The accumulation of F-actin at the base of the cup and 

its dissociation from the membrane of recently formed phago-

somes is documented dynamically in Video 1 (available at 

http://www.jcb.org/cgi/content/full/jcb.200605044/DC1). Note 

that the amount of residual F-actin associated with formed 

phagosomes is minute, much lower than that of the unengaged 

PM.  Because of the premature membrane remodeling observed 

during engulfment of large beads, smaller particles (3.1 μm) were

used to ensure suffi cient retention of the probe in sealed phago-

somes (Fig. 4 E). We were thus able to compare the lateral mobility 

of PM-GFP in actin-depleted sealed phagosomal and PMs. 

As shown in Fig. 4 F, the MF of the probe in the sealed  vacuole 

Figure 2. Photobleaching of PM-GFP at the phagosomal cup. RAW264.7 
cells were transfected with PM-GFP, and phagocytosis was initiated by 
 addition of IgG-opsonized beads (8.3-μm diameter) while the cells were 
being analyzed by differential interference contrast (DIC) and LSM. (A) DIC 
image. (B) Corresponding LSM transverse optical slice acquired before 
bleaching near the middle of the phagocytic cup. Bar, 5 μm. (C) LSM 
transverse optical slice acquired shortly after bleaching the area indicated 
by the circle. (D) Course of FRAP. Bleaching was performed at the arrow. 
Two areas were bleached: one near the middle of the cup (open circles) 
and the other in an unengaged, contralateral area of the cell membrane 
(closed circles). Data are means ± SEM of eight individual experiments. 
Where absent, error bars were smaller than the symbol.

Figure 3. Photobleaching of GFP-tH. RAW264.7 cells were transfected 
with GFP-tH, and phagocytosis was initiated by addition of IgG-opsonized 
beads while the cells were being analyzed by DIC and LSM. (A) Confocal 
LSM image taken before bleaching, showing the distribution of GFP-tH. 
(B) Time course of FRAP of GFP-tH; bleaching was performed at the arrow. 
Two areas of the cell were bleached: one near the middle of the cup (open 
squares) and the other in an unengaged, contralateral area of the cell 
membrane (closed squares). Data in B are means ± SEM of eight individ-
ual experiments. Where absent, error bars were smaller than the symbol.
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 remained considerably lower than that of the bulk plasmalemma 

(MF = 0.26 ± 0.02 and 0.9 ± 0.02, respectively; n = 8). 

 Qualitatively similar results were obtained using 8.3-μm beads, 

but the results were less reliable because of the small amount 

of fl uorescence remaining after sealing (unpublished data). 

Given the small amount of actin that remains associated with 

the formed phagosome, it is unlikely that the reduced mobility 

of lipid-associated probes is attributable to physical hindrance 

by the cytoskeleton.

Mobility of GFP constructs anchored 
to the outer monolayer
Lipids containing saturated acyl chains are thought to  localize 

preferentially in sphingolipid and cholesterol-enriched mi-

crodomains often called “rafts” (Simons and Ikonen, 1997). 

Cross-linked Fcγ receptors are thought to cluster in similar 

microdomains (Kwiatkowska and Sobota, 2001). It therefore 

seemed likely that the reduced mobility of PM-GFP and GFP-

tH could result from trapping in poorly mobile raft aggregates 

at the phagocytic cup. To test this hypothesis, we measured the 

lateral mobility of GPI-GFP and -YFP, as GPI-linked proteins 

partition selectively in rafts (Nichols, 2003). When expressed in 

macrophages, GPI-GFP is present largely in the plasmalemma 

(Fig. 5 A). That the protein is anchored to the outer monolayer 

was verifi ed by its accessibility to anti-GFP antibodies added 

extracellularly to intact cells (unpublished data). Most of the 

GPI-anchored probe was mobile in resting cells (MF = 0.81 ± 

0.04; n = 8) and in the unengaged regions of the membrane of 

cells performing phagocytosis (Table I). The diffusion rate was 

similar to that of PM-GFP (Fig. 5 D). More important, the MF 

and rate of diffusion of GPI-GFP or -YFP were virtually identical 

at the phagocytic cup and elsewhere in the unengaged membrane 

(Table I). Therefore, the behavior of GPI-anchored probes is 

distinctly different from that of PM-GFP and GFP-tH.

Role of microdomains in lipid mobility 
at the cup
It has recently become apparent that different types of lipid 

 microdomains (rafts) can coexist in cells (Kusumi et al., 2004). 

Therefore, the differential behavior of GPI- and PM-GFP does 

not necessarily rule out raft involvement in reducing the  mobility 

of PM-GFP. To further explore the role of lipid microdomains, 

we transfected cells with a lipid-anchored construct that is 

largely excluded from the rafts. GFP-tK was constructed by 

adding the C-terminal 17 residues of K-Ras to GFP. This  portion 

of the hypervariable domain of K-Ras includes the prenylation 

CAAX box plus a polycationic sequence that directs the 

 resulting chimera to anionic lipids of the cytosolic face of the 

plasmalemma (Apolloni et al., 2000). As anticipated, GFP-tK 

was predominantly found at the cell membrane (unpublished 

data). In unstimulated cells, as well as in unengaged regions 

of the membrane of cells performing phagocytosis, GFP-tK 

was highly mobile (Table I; MF = 1.13 ± 0.03; t1/2 = 9 ± 1 s; 

n = 6). Its mobility was only marginally lower at the phagocytic 

cup (MF = 0.90 ± 0.03; t1/2 = 7.8 ± 1.4 s; n = 6). The 

 differential behavior of the various lipid-associated proteins 

tested suggests that individual microdomains have distinct 

 mobility within nascent phagosomes.

To further test the role of lipid microdomains, we used 

methyl-β-cyclodextrin (MβCD) to remove cholesterol from the 

membrane (Klein et al., 1995). Cholesterol is essential for the 

formation of most lipid rafts, and its removal consistently leads 

to their destabilization (Kwiatkowska et al., 2003). Treatment of 

RAW cells with MβCD as described in Materials and methods 

resulted in sizable removal of plasmalemmal cholesterol, which 

could be readily visualized by staining the cells with fi lipin 

(Fig. 6, A and B). The total cellular content of cholesterol, 

Figure 4. Role of actin on the MF of PM-GFP in early and formed 
 phagosomes. (A and B) DIC and LSM images of PM-GFP, respectively, 
showing the extent of development of phagocytic cups in RAW cells treated 
with  cytochalasin D. Phagocytosis was initiated by the addition of IgG-
opsonized beads (8.3-μm diameter). (C) Recovery of PM-GFP fl uorescence 
after photobleaching performed at the cup and an unengaged area of the 
membrane. (D–F) Photobleaching of PM-GFP in formed phagosomes. Phago-
cytosis was initiated by addition of IgG-opsonized latex beads (3.1-μm 
 diameter), and after 6 min the cells were fi xed and stained with labeled 
phalloidin to visualize F-actin by LSM (D). (E) Fluorescence of PM-GFP 
in the same cell stained for actin in D. Arrowheads in D and E indicate 
the  location of three internalized beads. A typical area designated for 
 bleaching is indicated by the circle. (F) Course of FRAP. Bleaching was 
performed at the arrow. Two areas of each cell were bleached: one in the 
phagosomal membrane (phago) and the other in the cell membrane (bulk). 
Data are means ± SEM of seven individual experiments. Error bars were 
smaller than the symbol.
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 determined using a cholesterol oxidase-based spectroscopic 

 assay, was reduced by 50% after treatment with MβCD. Of note, 

extraction of cholesterol did not affect the mobility of PM-GFP 

in otherwise untreated cells. The MF (1.27 ± 0.1; n = 7) and 

the diffusion rate (t1/2 = 23 ± 4 s) were altered only marginally 

by pretreatment with MβCD (Fig. 6 D and Table I).

Cholesterol depletion had no discernible effect on the 

ability of RAW cells to ingest opsonized beads, consistent with 

earlier fi ndings (Peyron et al., 2000); note, however, that inhibi-

tory effects of MβCD on some types of phagocytosis have also 

been reported (Peyron et al., 2000; Kwiatkowska and Sobota, 

2001). More important, the immobilization of a large fraction of 

PM-GFP at the phagocytic cup persisted in cholesterol-depleted 

cells (Fig. 6, C and E; MF = 0.44 ± 0.02; n = 7). These fi nd-

ings imply that normal cholesterol content is not essential for 

the preservation of the microdomains that experience reduced 

mobility at sites of phagocytosis.

Further evidence that sphingolipid and cholesterol-rich 

microdomains do not mediate the immobilization of diacylated 

proteins was obtained by studying the behavior of LAT (linker 

for activation of T cells). This adaptor is a transmembrane pro-

tein known to associate preferentially with such microdomains. 

As shown in Fig. 6 F, GFP-tagged LAT localized to the PM, as 

reported for the native protein and for the fl uorescent chimera in 

lymphoid cells (Bonello et al., 2004). Of note, the mobility of 

LAT at the phagocytic cup was not different from that measured 

elsewhere in the cell (Fig. 6 G and Table I). These observations 

suggest that cholesterol-enriched rafts are not noticeably immo-

bilized in the vicinity of engaged Fcγ receptors.

Tyrosine phosphorylation is required 
to reduce lipid mobility
We next investigated whether the alteration in the mobility 

of lipid-associated proteins during phagocytosis is a passive 

 consequence of receptor clustering at the cup or requires ac-

tive signaling. Tyrosine phosphorylation of the Fcγ receptors 

by Src-family kinases is one of the earliest events in the sig-

naling cascade and is essential for progression of phagocytosis.

Inhibition of Src-family kinases with inhibitors such as PP1 

and PP2 precludes particle internalization (Majeed et al., 

2001; Song et al., 2004), yet does not prevent receptor–ligand 

 association and formation of a well-defi ned phagocytic cup 

(Fig. S3, B and E, available at http://www.jcb.org/cgi/content/

full/jcb.200605044/DC1). We were therefore able to assess the 

mobility of both PM-GFP and GPI-YFP at the cup of PP1-

inhibited cells. The effectiveness of the kinase inhibitor was 

verifi ed by its ability to prevent the PLC-mediated hydrolysis of 

PtdIns(4,5)P2 (measured using a specifi c pleckstrin homo logy 

[PH] domain; Fig. S3, B and E), a tyrosine  phosphorylation–

dependent event, and by the virtually complete inhibition of 

particle engulfment despite the formation of stable incipient cups. 

As illustrated in Fig. 7, the mobility of the lipid-associated 

probe was only marginally reduced at the cup, compared with 

the bulk, unengaged membrane. In eight experiments  using 

PM-GFP, the MF was 0.76 ± 0.03 in the former and 0.96 ± 

0.03 in the latter. Similarly, the fraction and half-time of GPI-

YFP recovery in the presence of PP1 were not signifi cantly 

altered (Fig. 7 and Table I).

The possible role of phosphatidylinositol 3-kinase in 

 con trolling lipid mobility was also investigated. We initially con-

fi rmed that under the conditions used, the inhibitor LY294002 

impaired phosphatidylinositol 3-kinase activity, as it prevented 

the accumulation of 3′-phosphorylated polyphosphoinositides 

normally observed at the cup during the early stages of phago-

cytosis (Fig. S3, C and F). As reported earlier (Araki et al., 

1996; Cox et al., 1999), treatment with inhibitors of this kinase 

arrested the development of phagosomes at an intermediate 

stage, where cup formation is evident but sealing is impaired, 

Figure 5. Photobleaching of GPI-GFP at the 
phagosomal cup. RAW264.7 cells were trans-
fected with GPI-GFP, and phagocytosis was 
initiated by addition of IgG-opsonized beads 
(8.3-μm diameter) while the cells were being 
analyzed by differential interference contrast 
(DIC) and LSM. (A) LSM transverse optical slice 
acquired before bleaching near the middle 
of the phagocytic cup. Bar, 5 μm. (B) LSM 
transverse optical slice acquired shortly after 
bleaching the area indicated by the circle. 
(C) Corresponding DIC image. (D)  Comparison 
of the course of FRAP in otherwise unstimulated 
cells transfected with either GPI- or PM-GFP. 
(E) Comparison of the course of FRAP of 
GPI-GFP at the cup (open circles) and in an 
 unengaged region of the PM (closed circles). 
In D and E, bleaching was performed at the 
arrow and data are means ± SEM of eight 
experiments of each type. Where absent, error 
bars were smaller than the symbol.
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particularly in the case of large beads such as those used in this 

study (Fig. S3, C and F). As expected, LY294002 had no dis-

cernible effect on the mobility of the exofacial marker GPI-YFP. 

Interestingly, the immobilization of PM-GFP normally seen 

in untreated cells persisted in the presence of the inhibitor 

(MF = 0.46), as illustrated in Fig. 7 and quantifi ed in Table I. 

These fi ndings imply that generation of 3′-phosphorylated ino-

sitides is not essential to retain acylated molecules in the  inner 

aspect of the phagocytic cup.

Discussion
Suitability of the probes used
The objective of our experiments was to assess the mobility of 

lipid-associated proteins in the phagosome and to defi ne its 

 determinants. The fl uorescent proteins used in this study, such 

as PM-GFP and GFP-tH, are suitable probes to measure the 

contribution of the hydrophobic moiety of lipid-anchored 

 molecules such as diacylated Src-family kinases and small 

GTPases, which are critical for the onset and development of 

phagocytosis. The molecular weight, acyl chain composition, 

and membrane disposition of the probes is very similar to that 

of the endogenous signaling molecules, yet they greatly  simplify 

the analysis by obviating protein–protein interactions. In addi-

tion, acylated fl uorescent proteins are arguably good models to 

analyze the mobility of lipids in the plane of the bilayer. At fi rst 

glance, it may appear that attachment of the comparatively large 

protein moiety to the acyl chains would greatly reduce the lat-

eral mobility of the complex, compared with that of endogenous 

phospholipids. However, hydrophobic interactions within the 

bilayer appear to be, by far, the main impediment to the lateral 

displacement of lipids and lipid-anchored proteins. We calcu-

lated diffusion coeffi cients of �2.3 × 10−10 cm2/s for labeled 

phospholipids and 1.5 × 10−10 cm2/s for diacylated GFP in 

RAW cells. Such coeffi cients are nearly three orders of magni-

tude lower than that reported for GFP in water (9 × 10−7 cm2/s), 

which is reduced only three- to fourfold when the protein is 

 expressed in intracellular compartments, including the cytosol 

(Partikian et al., 1998; Chen et al., 2002). Therefore, attachment 

of a GFP moiety would be expected to contribute minimally to 

the mobility of the acyl chains in the plane of the membrane.

Reduced mobility of lipid-associated 
proteins at the phagocytic cup
The main observation reported in this paper is that the mobility 

of lipid-attached probes differs in the phagocytic cup from that 

in the bulk of the unengaged membrane. We considered whether 

fi ssion of endocytic vesicles, too small to be detected by the opti-

cal microscope, accounted for the failure of the fl uorescence to 

recover at the cup. Indeed, remodeling of the cup formed during 

ingestion of large beads commenced before sealing (Fig. S2). 

To minimize the confounding effect of this remodeling, all our 

experiments were performed at the onset of phagocytosis and 

limited to the fi rst 100 s after bead engagement. More impor-

tant, although all the lipids analyzed underwent parallel remod-

eling (Fig. S2), only PM-GFP and GFP-tH displayed  reduced 

mobility. GPI-anchored probes, which are remodeled at a simi-

lar rate, recovered to a much greater extent, as did GFP-tK. 

Jointly, these considerations rule out endocytosis as a viable ex-

planation for the incomplete fl uorescence recovery.

The differential behavior of GPI-YFP, a probe located 

on the outer monolayer of the plasmalemma, and PM-GFP, 

Figure 6. Effect of cholesterol depletion on the mobility of PM-GFP. (A and B) 
Effect of MβCD on cholesterol content. RAW264.7 cells were incubated in 
the presence (B) or absence (A) of 10 mM MβCD for 30 min, and their 
cholesterol content was observed by fl uorescence microscopy after stain-
ing with fi lipin. (C) RAW264.7 cells transfected with PM-GFP were treated 
with or without MβCD as in A and B and then exposed to IgG-opsonized 
beads to initiate phagocytosis. The course of FRAP of PM-GFP is illustrated. 
Two areas were bleached: one near the middle of the cup (open squares) 
and the other in an unengaged area of the cell membrane (closed squares). 
(D) Comparison of the half-time for recovery of PM-GFP after bleaching in 
otherwise untreated (open bar) and in MβCD-extracted cells (solid bar). 
(E) Comparison of the fractional recovery of PM-GFP after bleaching at the 
phagocytic cup (open bars) and in unengaged regions of the membrane 
(solid bars) in cells undergoing phagocytosis. The cells had been either 
 untreated or extracted with MβCD as specifi ed. Data in D and E are means 
± SEM of seven determinations. (F) LSM transverse optical slice acquired 
before bleaching of RAW cells transfected LAT-GFP. (G) Course of FRAP 
 after bleaching at the phagocytic cup (open symbols) and in unengaged 
regions of the membrane (closed symbols) in cells undergoing the phago-
cytosis of 8.3-μm beads. Bleaching occurred at the arrow, and data are 
means ± SEM of six experiments of each type. Where absent, error bars 
were smaller than the symbol.
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an inner monolayer probe, could be attributed to a unique steric 

hindrance on the cytosolic face of the membrane. The actin cyto-

skeleton would be an obvious candidate for such a physical 

 obstacle. Cytoskeletal proteins may restrict the motion of the 

GFP moiety and in extreme cases, corral it within domains that 

are fenced in. Several lines of evidence argue against this. First, 

although actin and its associated proteins do indeed accumulate 

at the base of the cup during the initial stages of phagocytosis, 

they subsequently detach (Video 1). In fact, in the case of large 

beads such as those used in our experiments, the density of actin 

below the forming phagosome drops below the levels of the un-

engaged membrane, where the mobility of the lipid-associated 

probe remains high. Moreover, lipid immobilization persisted 

in the region subtending the particle in cells treated with cyto-

chalasin D to preclude actin polymerization. Moreover, in the 

absence of the inhibitor, an extreme situation is reached after 

the phagosome seals, when actin is no longer detectable on its 

membrane, yet the reduction in lipid mobility persisted (Fig. 4). 

Second, the mobility of GFP-tK was altered much less than that 

of GFP-tH or PM-GFP (Table I). Because the size and disposi-

tion of the protein moiety of the probes with respect to the 

membrane are similar in all cases, fencing in by cytoskeletal el-

ements is an unlikely explanation for the altered mobility. Still, 

a contribution of the actin network to the mobility of the probes 

cannot be entirely ruled out. If it exists, such a steric hindrance 

would contribute little to the mobility of free lipids but would 

nevertheless affect lipid-associated proteins, whether the asso-

ciation is covalent, as in the case of Src-family kinases, or electro-

static, as in the case of proteins bearing PH domains.

We believe that immobilization of lipid microdomains in 

the vicinity of clustered Fcγ receptors is the most likely expla-

nation for our observations. Lipid rafts, cholesterol-rich micro-

domains that also contain glycosphingolipids, are often invoked 

in the context of signal transduction by immunoreceptors 

 (Magee et al., 2002). Both PM-GFP and GFP-tH would be ex-

pected to partition into such rafts, and coalescence of the latter 

around activated receptors may have contributed to immobilization 

of the probes. However, our observations do not fi t the conven-

tional model of the raft on two accounts. First, the mobility of 

GPI-YFP, which is predicted to reside in rafts, was similar in the 

cup and elsewhere in the membrane. Second, extraction of 50% 

of the total cellular cholesterol and likely an even greater frac-

tion of the plasmalemmal cholesterol had little effect on the im-

mobilization of PM-GFP at the cup. Two explanations can be 

considered: (1) that coalescence of lipid microdomains is not 

the mechanism underlying the change in lipid mobility and 

(2) that unique microdomains that do not conform to the con-

ventional sphingolipid and cholesterol-rich raft are responsible. 

In this regard, it is noteworthy that unlike the situation reported for 

immunoreceptors in lymphoid and basophilic cells (Vereb et al., 

2000; Surviladze et al., 2001), extraction of cholesterol does not 

impair Fcγ receptor signaling, leading to phagocytosis (Gatfi eld 

and Pieters, 2000; Peyron et al., 2000).

Passive coalescence of lipid microdomains cannot explain 

the sensitivity of the immobilization to inhibitors of Src- family 

kinases, which provide the earliest signal in the phagocytic 

 cascade. We propose that events that follow tyrosine phosphor-

ylation contribute to the assembly of lipid microdomains. It is 

Figure 7. Effect of kinase inhibitors on the 
mobility of inner and outer membrane leafl et 
probes. RAW cells transfected with PM-GFP 
(A and C) or GPI-GFP (B and D) were  pretreated 
with either 10 μM PP1 for 1 h (A and B) or 
100 μM LY294002 for 30 min (C and D) and 
then exposed to 8.3-μm IgG-opsonized beads 
to initiate phagocytosis. PP1 or LY294002 
were maintained in the medium during phago-
cytosis. The course of FRAP is illustrated. Two 
areas were bleached: one near the middle of 
the cup (open squares) and the other in an 
 unengaged area of the cell membrane (closed 
squares). Data are means ± SEM of eight 
 determinations. Where absent, error bars 
were smaller than the symbol.
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conceivable that the recruitment of adaptor molecules with 

lipid-interacting moieties facilitates the coalescence of specifi c 

lipids, thereby reducing their mobility. Two types of adaptors 

could fulfi ll this function by different mechanisms. Transmem-

brane molecules that preferentially associate with  saturated 

lipids such as LAT can be recruited to activated receptor 

 complexes (Ragab et al., 2003). The lipid annulus associated 

with LAT or similar adaptors could interact with and reduce 

the mobility of lipids with saturated chains in the immediate 

vicinity of the activated receptor complex. Of note, the mobility 

of LAT itself has been documented to be reduced when T cell 

receptors are stimulated (Tanimura et al., 2003). However, LAT 

is not an essential adaptor of Fc receptors in phagocytes, which 

use other adaptors such as Gab2, Grb2, and CrkII. Accordingly, 

we found that LAT is not recruited or immobilized at sites of 

phagocytosis. Other, unidentifi ed transmembrane adaptors may 

nevertheless cause the immobilization of selected lipids near 

the activated receptors, but soluble adaptors could similarly 

be involved. Adaptors bearing lipid binding domains would 

be recruited to the receptor complex by the former and would 

stabilize lipids in its vicinity. Several adaptors possessing PH, 

ENTH (epsin N-terminal homology), or VHS (Vps27, Hrs, and 

Stam) domains are known to exist, and some of these, such 

as Gab2, have been reported to associate with Fcγ receptors 

(Gu et al., 2003). Some signaling molecules, such as Vav or 

PLCγ, become part of the activated receptor complex and 

contain lipid binding PH domains. Together, the proteins that 

cluster around activated receptors can cause immobilization of 

defi ned lipids. Importantly, the acyl moieties of phosphoinosi-

tides would facilitate accumulation and immobilization of other 

lipids with saturated chains and of proteins like diacylated 

Src-family kinases or GTPases.

In summary, we propose a model whereby clustering and 

activation of Fcγ receptors may lead to the recruitment and 

 stabilization of specifi c lipids and/or lipid-associated proteins 

in the active zone. Adaptors or other signaling molecules that 

 become recruited to the signaling complex may induce the 

 formation of a defi ned lipid annulus, effectively a microdomain 

that need not be stabilized by cholesterol but by hydrophobic 

interactions between the saturated acyl chains of its  constituents. 

Such stabilization would have critical consequences for local-

ized signaling, restricting the diffusion of phosphoinositides 

and focally attracting adaptors and transducers.

Materials and methods
Reagents
Polystyrene beads (3.1 and 8.3 μm in diameter) were obtained from Bangs 
Laboratories. FuGene 6 was purchased from Roche Molecular Biochemicals. 
PP1 was obtained from BIOMOL Research Laboratories, Inc., LY294002 
from Calbiochem, and α-MEM from Wisent, Inc. Cy3-labeled secondary 
 antibodies were obtained from Jackson ImmunoResearch Laboratories. 
 Rhodamine-phalloidin and the Amplex red cholesterol assay kit were 
 obtained from Invitrogen. Human IgG, MβCD, fi lipin, and all other reagents 
were obtained from Sigma-Aldrich. The headgroup-labeled lipids nitroben-
zoxadiazole (NBD)-phosphatidylserine and boron dipyrromethene  difl uoride 
(BODIPY)–phosphatidylethanolamine were purchased from Avanti Polar 
 Lipids, Inc., and Invitrogen, respectively. The synthetic medium used for fl uores-
cence determinations consisted of 140 mM NaCl, 3 mM KCl, 10 mM glucose, 
20 mM Hepes, 1 mM MgCl2, and 1 mM CaCl2, pH 7.4 (290 ± 5 mosM).

cDNA constructs
PM-GFP encodes the 10 amino acid myristoylation/palmitoylation se-
quence from Lyn fused to enhanced GFP (Teruel et al., 1999). GFP-tH con-
sists of the C-terminal 9 amino acids of H-Ras fused to the C terminus of 
GFP. GFP-tK consists of the C-terminal 17 amino acids of K-Ras fused to the 
C terminus of GFP. These C-terminal regions comprise the complete tar-
geting domains of H- and K-Ras, respectively (Apolloni et al., 2000). GPI-GFP 
and -YFP encode the 26 amino acid signal sequence of insulin fused to 
 enhanced GFP or YFP, followed by the 43 amino acid GPI sequence motif 
of decay-accelerating factor (Kenworthy et al., 2004). Construction of the 
LAT-GFP plasmid was detailed in Bonello et al. (2004). For localization of 
PtdIns(4,5)P2 and PtdIns(3,4,5)P3, we used enhanced GFP fusions of the 
PH domains of PLCδ or Akt, respectively, both gifts from T. Meyer (Stanford 
University, Stanford, CA).

Cell culture, transfection, and phagocytosis
The macrophage RAW264.7 cell line was obtained from American 
Type Culture Collection. These macrophages, referred to hereafter and 
throughout as RAW cells, were cultured in α-MEM supplemented with 
10% fetal calf serum at 37°C under a humidifi ed 5% CO2 atmosphere. 
Cells were trypsinized and seeded onto 2.5-cm glass coverslips at �30% 
confl uence. Cells were transiently transfected by lipofection using 
FuGene 6 or by electroporation with the Nucleofector system (Amaxa) 
according to the manufacturers’ directions and used within 16–24 h of 
transfection. Polystyrene beads were opsonized with 1 mg/ml human 
IgG by incubation for at least 1 h at 37°C, followed by three washes with 
PBS. To initiate phagocytosis, opsonized beads were allowed to sedi-
ment on RAW cells grown on coverslips and bathed in synthetic medium 
at 37°C.

Loading of fl uorescent lipids
RAW macrophages were grown on glass coverslips to �30% confl uence. 
50 μl of either lipid (dissolved in chloroform) were added to 9.5 ml of syn-
thetic medium supplemented with 1 ml bovine serum albumin and mixed 
vigorously. Cells were overlaid with the lipid suspension and incubated at 
4°C for 60 min. Cells were then washed and warmed with medium at 
37°C before measuring fl uorescence.

Fluorescence determinations
The distribution and mobility of the fl uorescent chimeras was analyzed by 
 confocal microscopy. Laser-scanning confocal microscopy was performed with 
a LSM510 system (Carl Zeiss MicroImaging, Inc.) using a 100× (1.4 NA)  
oil-immersion objective lens. The standard laser excitation line (488 nm) 
and emission fi lter (543 nm) were used to image GFP and YFP-tagged 
 chimeras. Coverslips bearing transfected cells were transferred to a thermo-
statted Leiden chamber holder on the microscope stage, where they were 
maintained at 37°C.

For measurements of FRAP, two areas of 2 μm in diameter, one at 
the phagosomal cup and a second one at an unengaged portion of the 
plasmalemma of the same cell were defi ned. After acquiring three basal 
readings, the selected regions were irreversibly photobleached by re-
peated exposure to the 488-nm laser line set at 100% power. Under the 
conditions of our experiments (18 mW power output), nearly complete 
bleaching required 60 iterations, a process that was completed in 1–2 s. 
The recovery of fl uorescence was then monitored over time by scanning the 
bleached area at the conventional (low) laser power to minimize photo-
bleaching during sampling.

To determine the size and shape of the bleached area, cells were 
fi xed with 4% paraformaldehyde for 1 h before mounting in the Leiden 
chamber, to prevent lateral mobility of the tagged proteins and recov-
ery of fl uorescence. Photobleaching was then performed as described 
in the previous paragraph, and fl uorescence images were obtained 
throughout the height of the cell by optical sectioning using the confocal 
microscope. Three-dimensional reconstruction of the stacked images 
 using the LSM510 software enabled us to reconstruct the pattern of the 
bleached area.

FRAP data analysis
To analyze the rate of recovery, we compared the fl uorescence of the 
bleached area to that of an adjacent unbleached area of the same cell 
with similar fl uorescence intensity. For each time point, the fl uorescence of 
the bleached area was normalized to that of the corresponding control 
(unbleached) area to correct for possible drift of the focal plane or photo-
bleaching incurred during the low-light sampling. For reference, images 
of the entire fi eld were acquired immediately before and at the end of the 
experiment. All FRAP measurements were performed at 37°C. Data were 
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fi t to a simple diffusion, zero fl ow model (Yguerabide et al., 1982) using 
the formula
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where the fl uorescence intensity (F) at a given time (t) is related to the maxi-
mal fl uorescence (F(t=∞)) and the half-time of maximal recovery (t1/2). Using 
this equation, recovery curves were fi t by least squares using Prism 4 
(GraphPad Software, Inc.). In all cases, this method provided highly signifi -
cant R2 values that were comparable to and generally larger than those 
obtained using other models for single or multiple components of diffusion 
or fl ow (Yguerabide et al., 1982; Lippincott-Schwartz et al., 1999). 
 Diffusion coeffi cients were calculated from the t1/2 of the recovery curves 
as previously described (eq. 19 in Axelrod et al., 1976).

Actin staining and manipulation
To label F-actin, cells were washed twice with PBS and fi xed with 4% 
paraformaldehyde for 1 h. The cells were next permeabilized in 0.1% 
 Triton X-100 and 100 mM glycine in PBS for 10 min and stained with a 
1:400 dilution of rhodamine-phalloidin for 1 h. Where specifi ed, actin 
polymerization was impaired by pretreating the cells with 2 μM cyto-
chalasin D for 10 min at 37°C as previously described (Greenberg et al. 
1994). The inhibitor was maintained in the medium throughout the fl uores-
cence determinations.

Cholesterol manipulation and determination
Where indicated, the cells were incubated with 10 mM MβCD for 30 min 
at 37°C to remove cholesterol. To verify the effectiveness of the treatment, 
cells were then fi xed with 4% paraformaldehyde and incubated with 
25 μg/ml of fi lipin, a cholesterol binding fl uorescent probe, in PBS containing 
1 mM MgCl2 and CaCl2 for 1 h at 4°C. Cells were then washed twice with 
PBS, and images were acquired with excitation at 488 nm and emission at 
500–550 nm. More quantitative estimates of cholesterol content were 
made using the Amplex red cholesterol assay kit, according to the manu-
facturer’s instructions.

Pharmacological inhibition of kinases
To inhibit phosphatidylinositol 3-kinases or Src-family kinases, RAW cells 
were exposed to either 100 μM LY294002 for 30 min or 10 μM PP1 for 1 h, 
respectively, at 37°C before the fl uorescence determinations. Inhibitors 
were maintained in the medium throughout the microscopy experiments.

Online supplemental material
Fig. S1 provides an estimation of the time required for the phagocytic 
internalization of beads of different sizes by RAW macrophages. Fig. S2 
shows the persistence of inner and outer leafl et membrane probes during
phagocytosis. Fig. S3 shows the distribution of phospholipid probes for 
PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in the presence of Src-family kinase
and PI3K inhibitors during phagocytosis. Video 1 shows the  transient
remodeling of actin during the phagocytosis of an 8-μm bead. Online 
supplemental material is available at http://www.jcb.org/cgi/content/
full/jcb.200605044/DC1.
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