
The Adherence of Human Neutrophils and

Eosinophils to Schistosomula :

Evidence for Membrane Fusion between

Cells and Parasites

ABSTRACT Human neutrophils and eosinophils adhere to the surface of schistosomula of
Schistosoma mansoni that have been preincubated with antischistosomular sera with or
without complement . Neutrophils are seen to form small (<0.5 Jim), heptalaminar and large
(5-8 Am), pentalaminar fusions with the normal pentalaminar parasite surface membrane . By
freeze-fracture techniques, attachment areas 5-8 Am in diameter are seen to form between
neutrophils and schistosomula. These areas have three zones-an edge and two centrally
located areas, one of which is rich and one of which is poor in intramembrane particles (IMPS) .
The edge zone is continuous around the attachment areas and is usually composed of a skip-
fracture that passes out of the schistosomular outer membrane into the inner membrane . In
some cases, the edge zone is made up of a string of IMPS . The IMP-rich central areas have an
IMP concentration similar to that of unattached neutrophil membranes, are raised off of the
surface of the schistosomulum, and have two normal schistosomular membranes underneath,
indicating that they are indeed unattached . The IMP-poor central areas are composed of a
fused or hybrid membrane that is continuous with the neutrophil plasma membrane but that
bears the same spatial relationship to the schistosomular inner membrane that the normal
outer membrane does . Similar changes are seen in samples prepared without glycerination.
Eosinophils generally do not fuse with the schistosomular outer membrane but, instead,
discharge their granular contents onto the surface of the schistosomula and appear to adhere
to the parasite through this discharged material . It is suggested that schistosomula have a
capability to fuse with mammalian cells and that this fusion proceeds from a fusion of the
outer leaflets to a fusion of the bilayers, as appears also to be the case in other systems.

Schistosoma mansoni presents a paradox in that adult parasites
are able to survive in the bloodstream for long periods of time
(years in some cases), whereas schistosomula, the larvae that
develop from cercariae that have penetrated the skin, are
destroyed by an antibody-dependent granulocyte reaction (31) .
Two questions arise from this paradox. First, how do adult
parasites avoid the immune response? One answer that has
been given is that the parasites acquire host antigens, namely
ABH blood group glycolipids (12), Forssman antigen (7), and
components of the major histocompatibility complex (30),
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which possibly prevent the host's immune system from recog-
nizing the parasite as foreign. However, the mechanism by
which these host molecules are acquired by the parasite is
unclear. Second, how do granulocytes interact with the surface
of the schistosomulum and, in particular, what are the differ-
ences between eosinophils, which appear to kill the schistosom-
ula, and neutrophils, which, in our experiments, do not (35)?
Previous thin-section studies have focused on the eosinophil
and found that it discharges its granules onto the parasite
surface (11, 22). In the present study, we examined with thin-
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section and freeze-fracture techniques the adherence ofhuman
neutrophils and eosinophils to schistosomula that had been
preincubated with schistosomular sera and complement. More
specifically, we looked for membrane interactions between
these cells and the parasite .

MATERIALS AND METHODS

S. mansoni Life Cycle and Preparation
of Schistosomula
A Puerto Rican strain of S. mansoni was maintained by routine passage

through outbred mice and Biomphalaria glabrata snails. Schistosomula were

prepared by allowing infective cercariae to penetrate through a shaved abdominal

rat skin clamped between an upper and a lower chamber (6, 32) . The lower
chamber was filled with Earle's balanced salt solution containing 0 .5% lactalbu-

min hydrolysate (Flow Laboratories, Inc., Rockville, Md.), penicillin (100pg/ml)
and 10% fetal calf serum (Flow Laboratories) that had been inactivated at 56°C
for 1 h (E LAC/FCS). The upperchamber contained cercariae shed from infected
snails over the preceding 3 h . The entire assembly was incubated for 3 h, with the

lower chamber immersed in a water bath at 37°C . During this period, the

cercariae penetrated the skin and transformed into schistosomula, which fell to

the bottom of the lower chamber . At the end of the incubation period, the

assembly was dismantled, and the pellet of schistosomula in the lower chamber

was recovered and washed twice in E LAC/FCS by centrifugation at 250 g for

30 s at ambient temperature. These schistosomula, which were routinely >90%

viable as judged by their ability to exclude toluidine blue (35), and which were
contaminated with <I0% residual cercariae, were stored overnight at 4 °C in E

LAC/FCS for use on the following day .

Preparation of Human Leukocytes
Human leukocytes were prepared from samples of heparinized peripheral blood

from normal donors by methods described in detail elsewhere (35) . Briefly, 5 vol

of peripheral blood containing 10 U/ml heparin (Panheparin, Abbott Laborato-
ries, North Chicago, 111.) were allowed to sediment with 1 vol of 4 .5% dextran

(Dextran 250, Sigma Chemical Co., St. Louis, Mo.) in phosphate-buffered saline,

pH 7 .4, for 30 min at 37 °C . The leukocyte-rich supernate was withdrawn, and

the leukocytes were washed twice by centrifugation at 250gfor 10 min at ambient

temperature in Eagle's Minimal Essential Medium (MEM, Grand Island Biolog-

ical Co ., Grand Island, N . Y .) containing 100 U/ml penicillin and 100 kg/ml

streptomycin, buffered with 25 mM N-2-hydroxyethlpiperazine-N'-2-ethanesul-
fonic acid (HEPES) . These cells, resuspended in MEM supplemented in 10%
heat-inactivated fetal calf serum (MEM/FCS), were used as mixed leukocytes .
The mixture contained 3-10% eosinophils, 50-80% neutrophils, and 15-50%
mononuclear cells .

Further purification was achieved by centrifugation ofmixed leukocytes over
discontinuous gradients of metrizamide (Nyegaard, Oslo). Metrizamide was
dissolved in Tyrode's solution containing 0.1% gelatin and 30 mg/Liter DNAse
(Worthington Biochemical Corp ., Freehold, N . J . ; 250 U/mg). Each gradient
consisted of 2-ml steps of 18, 20, 22, 23, 24, and 25% metrizamide in a conical
polystyrene tube. Aliquots of not more than 7 x 107 mixed leukocytes were
applied to each gradient, which was then centrifuged at 1,200 g for 45 min at
20 °C. The cells at each interface were withdrawn and washed twice in MEM/
FCS. Fractions were counted with a Coulter counter (Coulter Electronics Inc .,
Hialeah, Fla .), and cytocentrifuge preparations were made and stained with
Wright's stain for immediate examination. Neutrophils were characteristically
enriched in the 22-23% interface, and eosinophils in the 23-24% interface.
Fractions were pooled, in different experiments, to yield preparations that con-
tained 85-98% eosinophils or 94-95% neutrophils . The cells were resuspended in
MEM/FCS at 10 or 20 x 10E cells per ml.

Human and Guinea Pig Sera
Sera from patients with active, untreated Schistosoma mansoni infection were

used as sources of antischistosomular antibody. The sera were heat-inactivated at
56°C for I h, and dilutions that cause high levels of eosinophil-mediated
adherence and damage to schistosomula (35) were chosen . Such sera were not
directly toxic to the organisms . Eight separate sera were used in the experiments

reported here, with qualitatively indistinguishable results .
Sera from uninfected human subjects or from guinea pigs were used as a

source of complement . Aliquots of fresh serum were stored at -70*C for not
more than 2 mo . Each aliquot was thawed only once and was diluted to a 1 :30 or
1 :40 final concentration in MEM/FCS . Both human and guinea pig complement

enhanced the antibody-dependent adherence of leukocytes, but guinea pig com-

plement had a more marked effect and was used in most experiments.

Adherence Reactions between Cells
and Schistosomula
The basic reaction under investigation was the antibody- and complement-

dependent adherence of various leukocytes to schistosomula. The number of

experiments is shown in Table 1 .
In the basic experiment, schistosomula prepared the previous day were washed

twice in MEM/FCS and resuspended at 10,000 organisms per ml . Aliquots of 0 . l

ml, containing 1,000 organisms, were then dispensed into 7 x 38-mm round-
bottomed polystyrene tubes (Luckham Ltd., Burgess Hill, England) . Aliquots of

0 .1 ml of an appropriate dilution of antischistosomular serum, or of MEM/FCS

as control, were then added, and the preparations were allowed to stand at

ambient temperature for 30 min .
Aliquots of 1 .0 ml of the appropriate leukocyte preparations at a concentration

of 20 x 10E cells per ml (2,000 cells per schistosomulum) were added, and the

preparations were incubated in humidified plastic boxes at 37°C for 30 min to

allow fixation of complement . Finally, the leukocytes were added, and the
preparations were incubated as described above.

Fixation Methods for Transmission Microscopy
and Freeze-fracture

For both thin-section and freeze-fracture studies, cells and schistosomula were

fixed in suspension in an equal volume of Karnovsky's aldehyde fixative (17) for

15-30 min . Fixation was carried out at 4 ° C for thin-section and at 25 ° C for

freeze-fracture studies . For thin-section studies, the fixed suspension was centri-

fuged in a Beckman Microfuge B (Beckman Instruments, Inc ., Spinc . Div ., Palo

Alto, Calift The pellets were removed from the tubes, postfixed in acetate

veronal-buffered I% DSO, for 90 min at 4 ° C, and stained in block in 0.5% uranyl

acetate for 2 h at 25°C (9) . Dehydration and Epon embedding were routine . For

freeze-fracture studies, the fixed suspension was centrifuged for 10 min in the

microfuge . Each pellet consisted of 2,000 schistosomula and 2 x 10E cells . The

pellet was rinsed in 0.1 M cacodylate, pH 7 .4, incubated overnight at 4 ° C in 25%

glycerol in the same buffer, frozen in freon slush, and stored in liquid nitrogen .

In some experiments, unglycerinated samples were frozen within 1 h of fixation

after being rinsed in 0.1 M cacodylate, pH 7 .4 . Samples were fractured in a
Balzers BA 360 M freeze-fracture device (Balzers Corp., Nashua, N . H .) at a

stage temperature of -115°C . Carbon-platinum replicas were made of the

fractured surface, and the underlying tissue was dissolved away with household

bleach and 10% KOH for 3 h . The replicas were washed with water and picked

up on naked copper grids .

Microscopy
Thick sections (0 .3 fun) were cut with glass knives and stained with azure 11-

methylene blue . Thin sections, with silver interference colors, were cut with a

Table I

Number of Experiments

Freeze-
Thin-section fracture

Schistosomula + NP + Ab

	

3

	

-
Schistosomula + NP + C

	

1

	

-
Schistosomula + NP + Ab + C

	

1 (3)* (4)$

	

8 (3)§
Schistosomula + Eo + Ab

	

2

	

5
Schistosomula + Neut . + Ab + C

	

-

	

4f

NP, nonpurified buffy coat cells ; Ab, antischistosomal antibody preincuba-
tion ; C, complement preincubation ; Eo, purified eosinophils; Neut ., purified
neutrophils .
Each number represents a different day on which the experiment was
performed . Two blocks were prepared for each thin-section experiment . An
average of six pellets were prepared for each freeze-fracture experiment . An
average of two to four replicas were obtained from them, but as many as six
to nine replicas were examined in some experiments .

* Number in parentheses represents sucrose stress experiments, each of which
was done at concentrations of 0.25, 0.37, and 0.5 M sucrose (2) .

$ These experiments also served as the controls for the mechanical stress
experiments (2) .

§ Number in parentheses represents experiments in which glycerol was omit-
ted . These experiments were run with glycerinated controls which are not
included in the number on the left .
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FIGURE 1

	

Low-power view of the tegument ( t) of a schistosomulum . Note that the surface is covered by a continuous electron-
dense line. s, spines . p, pits . Bar, 1 .0 pm . x 19,500.
FIGURE 2

	

High-power view of tegumental membrane . The membrane is pentalaminar and composed of two closely apposed
trilaminar membranes. The inner membrane is designated 1 and the outer 2. Bar, 0.1 pm . x 400,000.
FIGURE 3

	

Freeze-fracture of tegumental membrane, P-face view, showing large areas of the IMP-rich inner membrane (P,) and
the IMP-poor outer membrane (P2) . The spines (s) are cross-fractured. Bar, 1 pm . x 41,500.
FIGURE 4

	

Freeze-fracture of tegumental membrane, E-face view, showing primarily the IMP-poor outer membrane (Ez), with small
areas of the inner membrane (E,) . The spines (s) and pits ( p) are cross-fractured. Bar, 1 pm . x 31,500 .
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diamond knife, picked up on formvar-carbon-coated copper grids, and stained

on grid for 5 min in uranyl acetate and for I min in lead citrate (28) . Grids with
both thin sections and freeze-fracture replicas were examined in a JEOL 1000
electron microscope equipped with a tilting stage at an accelerating voltage of 80

kv .

Scanning Electron Microscopy
Preparations were washed in buffer, fixed in Kamovsky's fixative (17) for I h

at 4 ° C, postfixed in OsO, for 1 hr at 4 ° C, dehydrated in graded ethanols and

acetone, critical point dried in liquid C02 , sputter coated with gold-palladium,

and examined in a 1EOL 1000 ASID.

RESULTS

Normal Schistosomulum Tegumental Membrane
The surface of schistosomula of S. mansoni has been de-

scribed by others (14, 23) and will be briefly summarized here .
The organism is -100 f.m long and 25 ttm in diameter . Its
surface is covered by large (1 .0-t.m-long) spines, and there are
a few specialized areas, including the opening ofthe acetabular
glands, located on the anterior tip, the ventral sucker, located
in the midportion, and the tail socket, located at the posterior
tip . The entire surface is covered by an anucleate syncytium,
the tegument (Fig . 1), which is -2 ttm thick and is connected
to cell bodies deep inside the organism. The tegumental cyto-
plasm contains a few mitochondria, membranous bodies, and
crystalline material that makes up the spines (Fig . I) . Between
the spines are small surface invaginations, the pits, that are
---25 nm in diameter and -100 nm deep (Fig. 1) . The tegumen-
tal membrane covers the entire surface of the schistosomulum .
In thin section, the membrane is seen as a pentalaminar
structure composed of two outer 2.5-nm electron-dense layers,
a central 5 .0-nm electron-dense layer, and two 2.5-3.5-nm light
layers, which separate the central and outer layers (Fig . 2) .
Freeze-fracture techniques result in two fracture planes and
four faces, indicating that the tegumental membrane is com-
posed oftwo closely apposed unit membranes, each containing

a lipid bilayer (15, 21, 34). The fracture plane passes prefer-
entially through the outer, or 2, membrane and variably skips
into the inner, or l, membrane (Figs. 3 and 4) . Usually, the
inner membrane is seen in 50-nm patches (Fig . 4), but occa-
sionally it occupies up to half of the fractured surface area (Fig .
3) . The inner membrane P face (P t) has a very high concentra-
tion of intramembrane particles (IMPS) (Fig . 3), and the inner
membrane E face (E2) has fewer IMPs than Pt (Fig . 4) . The
outer membrane, both P (P2) and E (E2) faces, contains either
no or very few IMPs (Figs. 3 and 4) . In addition to revealing
the two membrane faces, the fracture plane usually cross-
fractures the spines and tends to cross the neck of the pits so
that ice is seen in the center of the pits (Fig. 4) .

Neutrophil Adherence to Schistosomula
Neutrophils that have been induced to adhere to schistosom-

ula with schistosomular serum alone or together with comple-
ment appear qualitatively similar, although more cells adhere
when complement is present. By examination with light or
scanning electron microscopy, cells can be seen adhering to
schistosomula singly or in groups (Fig. 5) . There is a large
variation in the number of cells adhering to schistosomula. In
a typical experiment, ^-10-15% of the schistosomula have no
cells adhering to them, and 50% have more than 20 (2). By
thin-section microscopy, the cells are seen to orient themselves
with respect to the surface of the schistosomulum in such a way
that the nucleus is farthest from the schistosomulum, the
granules are between the nucleus and the schistosomulum, and
a layer of disrupted filaments (20) is beneath the plasma
membrane closest to the schistosomulum (Fig. 6) . In groups of
neutrophils or of neutrophils and eosinophils adhering to schis-
tosomula, the plasma membranes of the cells become tightly
apposed (Fig . 6) but their outer leaflets do not appear to fuse.
Few neutrophils (<5%) are seen discharging their granules.
Higher power examination shows that two types of interaction
occur between the plasma membrane ofthe neutrophil and the

FiGURF 5

	

Scanning micrograph of buffy coat cells (C) adhering to a schistosomulum (S) that was preincubated in antibody and

complement . Some cells are adhering singly and others in a group to various parts of the schistosomular surface, including the

ventral sucker or acetabulum (a) . ts, tail socket . Bar, 1 pm . x 1,750 .
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FIGURE 6

	

Low-power micrograph of buffy coat cells adhering to the surface of a schistosomulum (S) preincubated with antibody .
Both eosinophils (E) and neutrophils (N) are adhering in a large group in which membranes of the cells are tightly apposed
(arrowheads) . The cells are oriented against the surface of the schistosomulum so that the granules ( g) are between the nucleus
(n) and the schistosomular surface. The cells are attached to the tegument ( t) in only a few places (arrows) . Electron-dense material
is present between the eosinophil and the schistosomulum but not between the neutrophil and the schistosomulum . Inset shows
disrupted filaments in the cytoplasm of the neutrophil adjacent to the schistosomulum (S), similar to those seen in OsO,-fixed
actin gels (20) . Bar, 1 pm . x 10,400 .

tegumental membrane of the schistosomulum . First, most cells
are attached so that the two membranes contact each other
only at a few points (Fig . 6) . In properly oriented sections and
in sections oriented by tilting with a eucentric goniometer,

these contact points appear as heptalaminar structures consist-

ing of a fusion' of the outer leaflets of the neutrophil and

' The word fusion has at least three usages. First, it has been used to
describe the fusion of the outer leaflets of trilaminar membranes that
form the pentalaminar structures that occur in occluding junctions (8)
or in the early stages ofvesicle fusion (26) or secretion (25, 27). In this
paper, analogous fusions are called "heptalaminar fusions" because
the fusions occur between pentalaminar and trilaminar membranes.
Second, fusion has been used to describe the formation of a hybrid
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tegumental membranes (Figs. 7 and 8). These fused leaflets are
2.5-3 .5 nm thick and extend for 10 to 100 nm (Figs. 7 and 8) .
The second type of interaction is seen in cells that are flattened

and tightly attached to schistosomula over a distance of 5-8

membrane from two trilaminar membranes resulting in a trilaminar
structure (diaphragm) that is seen during secretion (25, 27) and vesic-
ular transport (26) . In this paper, such fusions are simply called
"fusions" or "pentalaminar fusions." Third, fusion denotes the process
by which two cells become one, i.e ., viral- or polyethylene glycol-
induced cell fusion . Fusion is never used in this sense in this paper
because continuity or admixing of the neutrophil and schistosomular
cytoplasm has not been seen .



FIGURES 7 AND 8

	

High-power views of heptalaminar fusions (arrows) between neutrophils (N) and schistosomula (S) preincu-
bated in antibody . Bars, 0.1 ftm . (Fig . 7) X 400,000 . (Fig . 8) X 330,000 .
FIGURES 9 AND 10 Neutrophil (N) adhering tightly to the surface of a schistosomulum (S) preincubated in antibody and
complement . Note that the cell is flattened and tightly adherent to the tegument (t) . Fig. 10 is a high-power view of the area in
rectangle in Fig . 9. Note that the membrane between the cell and the schistosomulum is pentalaminar (short arrows) . Some
membrane appears to be lifted off the surface (long arrow) . (Fig . 9) Bar, 1 pm . X 26,500 . (Fig. 10) Bar, 0.1 lm . X 171,600.

,um (Figs. 9 and 10) . Pentalaminar fusions between the cell and
schistosomular membranes extend the length of this attach-
ment, i.e., 5-8 lAm, except where the cell membrane crosses the
pits and in those areas where the neutrophil membrane is
unattached (Figs. 9 and 10) .
By examination with freeze-fracture techniques, alterations

are seen in the structure of the normal schistosomular mem-
branes that correspond to areas where the cells are attached to
the schistosomula. These alterations are not seen in schistosom-
ula incubated with antibody and complement but without cells,
in schistosomula that are fixed before the cells are added, or in
schistosomula incubated with cells but without antibody or
complement . In a typical replica, attachment areas are present
on 30% of the schistosomula profiles . The attachment areas are
large (5-8 lim in diameter) and can be divided into three
zones-an edge and two centrally located areas, one of which
is rich in IMPS and one of which is poor (see below and Fig.

11) . In replicas in which the fracture plane cross-fractures the
cell and passes onto the surface of the schistosomulum, the
edge of the cell is continuous with the edge of the area of
attachment on the schistosomulum, and the cell cytoplasm is
adjoined to the centrally located areas (Figs. 12 and 13).
The edges of the attachment areas are continuous and rela-

tively curvilinear, with occasional fmgerlike projections jutting
out onto the normal schistosomular membrane (Figs. 12-15) .
At higher power, the edge of the attachment area has three
distinct appearances . First, in replicas in which the fracture
plane passes from the normal schistosomular membrane into
the area of attachment (Fig. 1 l B), the plane almost invariably
(98%) skips from the 2 membrane into the 1 membrane for a
distance of 20-30 nm at the edge of the area of attachment
(Figs. 13-18) . This skip-fracture reveals a zone of the 1 mem-
brane face, either a trench in the P face (Figs. 13 and 17) or a
ridge in the E face (Figs. 14-16), around the area ofattachment .
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FIGURE 11

	

Schematic diagram of the fracture planes through the
area of fusion between a neutrophil and a schistosomulum . The
schistosomula inner membrane is designated 1, the outer membrane
2, and the neutrophil plasma membrane 3. (A) A normal schistoso-
mular membrane, the fracture plane (dotted line), usually passes
through the outer membrane and occasionally skips into the inner
membrane . (8) At the edge of an attachment area, the fracture
plane skips out of the outer membrane into the inner membrane
over a broad area . (C) In a particle-poor area, the fracture plane
passes through the fused membrane and occasionally skips into the
inner membrane . (D) In a particle-rich area, the plane passes onto
the raised particle-rich membrane, but jumps down into the two
normal parasite membranes underneath . (E) The fracture plane
passes out of the particle-poor fused membrane up onto the parti-
cle-rich unattached cell membrane .

The edges of the two membranes that abut the edge zone
appear equidistant from the inner membrane (Figs. 13-16) .
The second appearance is present in only a few cases (2-5%),
and is seen as a string of large IMPs rather than the zone just
described (Figs. 15 and 16) . The third appearance occurs when
the fracture plane passes through the cell membrane onto the
area of attachment (Fig . I 1 E). The fracture plane does not
leave the membrane, but there is a precipitous drop in the
concentration of IMPs where the cell membrane attaches to the
schistosomulum (Fig . 13) .
The central portion of the attachment area, which is com-

posed of IMP-rich and IMP-poor regions, is the same whether
the fracture plane passes onto it from the cell or from the
schistosomular membrane . The relative distribution of these
two regions varies within different attachment areas in the
same preparation . The central membrane can be entirely IMP
poor (Fig. 13), mainly IMP poor (Fig . 15), or a reticulum
composed equally of rich and poor regions (Figs . 12, 14, and
17) . The IMP-rich regions appear raised in the P-face view
(Figs . 12, 17, and 18) and depressed in the E-face view (Figs.
14 and 15) . The concentration of IMPs in the IMP-rich areas
is comparable to the concentration in neutrophil membranes
not attached to schistosomula (Fig. 17) . When the fracture
plane skips out of the IMP-rich areas (Fig . 11 D), normal
schistosomular P, and Pz faces (Figs. 17 and 18) or E, and Ez
faces (Fig . 14) are seen .
The IMP-poor membrane is flat and conforms to the shape

of the surface of the schistosomulum (Figs. 12-18) . The IMP-
poor membrane extends over the pits so that ice is no longer
seen in their centers (Figs. 15 and 16). The concentration of
IMPs is less than that seen on unattached neutrophil mem-
branes and greater than that seen on the normal outer mem-
branes (Figs . 12 and 17) . When the fracture plane skips out of
the IMP-poor membrane, only E, (Figs . 14 and 15) or P, (Fig .
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13) faces are seen . These 1 membrane faces appear in the same
spatial relationship to the IMP-poor membrane that they do to
the normal 2 membrane .
To test the effect of glycerination on the freeze-fracture

appearance described above, preparations were fixed and fro-
zen without cryoprotection . In areas of schistosomula where
cells are not attached, the fracture faces of the schistosomular
outer membrane are smooth and similar in appearance to the
faces seen in cryoprotected preparations (Figs. 19 and 20).
Neutrophil plasma membranes, on the other hand, are mark-
edly different because the fracture face is no longer smooth
(Fig. 19) . At the edge of areas of attachment, the zone of
fracture into the inner membrane is still seen, as are IMP-rich
and IMP-poor areas (Figs. 19 and 20). However, in the IMP-
poor areas, the fracture is not smooth but, instead, is interme-
diate between that of the schistosomulum and that of the cell
(Fig . 19) . In addition, the fracture plane passes into the inner
membrane faces under the IMP-poor areas more frequently
than in the glycerinated tissue . In the IMP-rich areas, the
number of IMPS is lower than in the glycerinated samples, and
the borders of these areas are less well defined (Fig. 20).

Eosinophils
Eosinophils orient against the surface of the schistosomulum

in a fashion similar to neutrophils (Fig. 6) . However, unlike
neutrophils, many eosinophils discharge their granules against
the schistosomular surface (Fig. 21). This occurs by multiple
fusions of granular membranes with the plasma membrane in
one or two areas so that the membranes of the discharged
granules form large invaginations within the cytoplasm (Fig .
21). The discharged granule contents adhere to the schisto-
somular surface (Fig. 21). High power examination of most
eosinophils adhering to schistosomula shows that the cells are
adhering to this layer of discharged granular material on the
schistosomula (Fig. 21, inset). Occasionally, heptalaminar fu-
sions similar to those seen in neutrophil adherence are present,
but the pentalaminar fusions are very rarely observed . By
freeze-fracture techniques, the eosinophil plasma membrane
can be seen closely apposed to the surface of the schistosomu-
lum, but the attachment areas described above for the neutro-
phil are not seen (Fig . 22).

DISCUSSION

We have examined the adherence of neutrophils and eosino-
phils to the surface membranes of schistosomula. The neutro-
phil plasma membrane fuses with the outer tegumental mem-
brane of schistosomula preincubated with antischistosomular
serum and complement . The evidence for this fusion comes
from both freeze-fracture and thin-section images. In thin
section, pentalaminar fusions are seen between the trilaminar
neutrophil plasma membrane and the normally pentalaminar
schistosomular membrane . This finding indicates that there has
been a fusion resulting in the elimination of one bilayer.
Freeze-fracture images show that the neutrophil is attached to
the schistosomulum in areas where there are only two mem-
brane faces instead of the normal three, i.e., the cell, and the
schistosomular inner and outer membrane . These two faces in
the attachment area are composed of the schistosomular inner
membrane and a fused membrane that shares the characteris-
tics ofboth the neutrophil plasma membrane and the parasite's
outer membrane . The fused membrane is continuous with the
neutrophil plasma membrane, and it holds the same spatial



FIGURE 12

	

Low-power, freeze-fracture micrograph of a neutrophil adhering to a schistosomulum preincubated with antibody
and complement . Normal P, and P2 faces of the schistosomular membrane are seen at the upper left . On the right side of the
picture, the schistosomular membrane is modified so that there are raised areas with IMPs (pr) and flat areas with very few IMPS
( pp). The particle-rich areas occupy a larger portion of the right side of the modified membrane, where they form a reticulum . At
the bottom of the picture there is a cross-fracture through the cytoplasm of a cell with its nucleus (n) and granules ( g), which is
adjoined to the modified surface membrane of the schistosomulum . The edge of the cell (large arrowhead) is continuous with the
edge of the modified surface membrane (small arrowheads) . l, ice . Bar, 1 gm . x 16,500 .

relationship to the schistosomular inner membrane as does the
normal outer membrane. The hybrid nature of this membrane
is further indicated by the fracture face ofthe fused membrane,
which is intermediate between the very smooth face of the
schistosomular outer membrane and the rough face of the cell
membrane in specimens that were not glycerinated .
We can only speculate on the sequential development of

these fusion areas in that we have examined samples at a time
in which cells are in various stages of the fusion process and
are, therefore, unsynchronized . It appears that the neutrophils
and schistosomula are brought very close together by the
interaction of the Fc and C3 receptors on the cell membrane
with the IgG and C3 bound to the surface ofthe parasite. The
second event is the formation of the heptalaminar structures
that appear as fusions of the outer leaflets of the cell and
schistosomular membranes. It is suggested that they precede

pentalaminar fusion of the membranes because they are much
smaller than the final fusions, <0.5 fm vs . 5-8 p.m . The
heptalaminar structures also appear to be weaker than the
pentalaminar fusions because the heptalaminar fusions are not
seen in samples hypertonically stressed with sucrose, but pen-
talaminar fusions are (2) . In addition, it has been observed that
fusion of the outer leaflets precedes fusion of the membranes
in other systems, e.g ., vesicle fusion in capillary endothelia (26),
secretion during encystment of Phytophthora palmivora (27),
mast cell secretion (19), and acrosomal vesicle fusion ofLimulus
sperm (33) . The schistosomular membrane then presumbly
induces complete fusion with the neutrophil membrane . This
is suggested because the outer membrane is virtually devoid of
IMPS, as are other membrane loci at the point where fusion
will occur (5, 10, 16, 19, 24, 27, 33 ; see reference 33 for summary
and discussion) . That the schistosomulum is providing the

CAULFIELD ET AL .

	

Adherence of Cells to Schistosomula

	

53



FIGURE 13

	

Neutrophil adhering to a schistosomulum preincubated in antibody and complement . Unattached neutrophil mem-
brane, E-face view (EN) is seen at the bottom of the picture . At the upper left, a normal schistosomular P2 face that is practically
devoid of IMPS is seen . In the middle right-hand part of the picture, an IMP-poor area ( pp) that is separated from the normal Pz
face by a zone of P, is seen . Note the area of P, within the IMP-poor membrane. Note also that the IMP-poor membrane is
continuous with the unattached neutrophil membrane, and that there is an abrupt transition in the concentration of the IMPS
where the membrane leaves the schistosomular surface (arrowheads) . Note the groove or depression 4 mm to the left of the
arrowhead on the right . 1, ice . s, spines . Bar, 1 jm . X 34,000 .

fusigen(s) is also supported by the fact that schistosomula can
form pentalaminar structures with erythrocytes (unpublished
observation), whereas neutrophils, to our knowledge, have not
been reported to fuse with other cells or organisms. Finally,
phospholipids (phosphatidyl inositol and phosphatidyl serine)
have been extracted from schistosomula and have been used to
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induce "agglutination" in erythrocytes (3) . Although the loca-
tion of these lipids in the schistosomulum is unknown, it is
reasonable to postulate that some are in the IMP-poor outer
membrane, which appears to be composed largely of lipids or
is at least similar in appearance to other protein-poor lipid
bilayers (1) .



FIGURE 14

	

low-power, freeze-fracture micrograph showing an area of attachment of a neutrophil to a schistosomulum preincu-
bated in antibody and complement . On the left, a normal E-face view of the schistosomular membrane is seen with E2 and a few
E, faces and numerous cross-fractured pits ( p) . On the right is a modified membrane that can be divided into flat, particle-poor
( pp) and sunken, particle-rich ( pr) areas. E, faces can be seen on the particle-poor areas (long arrows) . An E2 face can be seen
overlying the particle-rich areas (short arrow) . Note that the normal and modified membranes are separated by a curvilinear
border formed by a ridge of the E, membrane, and that the pits under the modified membrane are covered by the particle-poor
membrane. Bar, 1 jLm . x 21,000.

The net result of the fusion process is the formation of the
pentalaminar fusions seen in thin section and the attachment
areas seen in freeze-fracture. The attachment area is demar-
cated from the normal schistosomular outer membrane by a
zone in which the fracture plane has skipped from the outer
into the inner membrane or by a string of IMPS. The string of
IMPs, which can be seen more clearly if the cells are removed,
as well as the segregation of the fused membrane from both
the schistosomular and the neutrophil unfused membranes
suggest that the edge zone is similar to an occluding junction
(see reference 2 for discussion) . However, the fact that the step-
fractures into the inner membrane are larger than the IMPs
suggests that there is acomponent of the edge zone in addition
to the IMPs, possibly turbulence in the lipid bilayers (27) . A
second possible function for the edge zone IMPs may be that
they are a specific set of proteins that aid in the induction of

fusion, similar to IMPS in other systems (29, 33, 36). The
division of the central portion of the attachment areas into
fused and unfused zones is very similar to the fused membrane
seen during encystment of Phytophthora palmivora (27) . It is
not clear whether the porportion offused to unfused membrane
is caused by multiple fusion sites (27), or whether it represents
different stages in the evolution of fusion, perhaps necessitated
by the constraints of packing two membranes into one. The
fused or IMP-poor membrane generally contains more IMPs
than are seen on fused membranes in other systems (27, 29)
and is intermediate between the high IMP concentration of the
neutrophil membrane and the low IMP concentration of the
schistosomular outer membrane . We favor the interpretation
that these IMPs are originally derived from the neutrophil, but
we have no proof.
There is a great deal ofconcern as to whether the morphology
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FIGURE 15

	

Neutrophil adhering to a schistosomulum preincubated in antibody and complement . Normal schistosomular E, and
Ez faces along with cross-fractured pits ( p) are seen at the bottom of the picture. An attachment area is seen at the top. An IMP-
poor ( pp) membrane has a few E, fragments on it, and the membrane covers the pits ( p) . The attachment area forms a finger
projecting into the normal membrane . The edge of the attachment area is composed of both step-fractures into the E, face and
strings of IMPs (arrowheads) . Bar, 1 gm . X 40,500 .

of fusion represents an artifact of preparation (4, 15, 18, 19) .
We accept this possibility . The major culprit thus far implicated
in the induction of artifacts has been glycerination (4, l8) . We
have controlled for this by using long-term glycerination, which
prevents glycerol-induced artifacts in myelin (18) and by frac-
turing unglycerinated preparations . The agreement between
our freeze-fracture images obtained with and without glyceri-
nation and our thin-section images suggests that our observa-
tions are not artifacts. The only elements common to all our
preparations are formaldehyde, glutaraldehyde, and cacodyl-
ate. Perhaps these substances do something to change the
morphology (l3) . However, although artifacts may explain
some of the findings in fused membranes, the differences in
the findings in various systems may be a reflection of basic
differences in the biology of those systems. The most likely
parameters to produce such differences are the geometry of the
fusion event, the kinetics of the fusion event, the area over
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which fusion occurs, and the stability of the fused membrane .
The last is an important point because in this system the fused
membrane appears to be relatively stable (2), whereas, during
secretion, membrane diaphragms have an extremely short life-
span (<I s) (4) .
The contrast between the adherence of eosinophils to schis-

tosomula and that of neutrophils to schistosomula is striking .
Eosinophils form heptalaminar fusions occasionally and pen-
talaminar fusions rarely . However, eosinophils do discharge
their granule contents onto the surfaces of the schistosomula
(11, 22) and appear to adhere to the parasite through this layer
of discharged material . This is shown in experiments in which
the eosinophils are torn from the parasite's surface but their
plasma membranes are left attached to the electron-dense
material (see Fig. 7 of reference 2) .
The fusions between the neutrophil and schistosomular

membranes may help the parasite avoid the immune response



FIGURE 16 Neutrophil adhering to a schistosomulum preincubated with antibody and complement . Normal schistosomular E,
and Ez faces and cross-fractured pits ( p) are seen at the top. An attachment area composed of IMP-poor membrane ( pp) is seen
covering the pits at the bottom . The two areas are separated by a border composed of strings of IMPS (arrowheads) and the E,
membrane face . Bar, 1 g,m. x 57,000 .
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FIGURE 17

	

High-power view of neutrophil adhering to a schistosomulum preincubated with antibody and complement . Normal
schistosomular P, and PZ faces are seen at the bottom of the picture. An area of attachment with raised IMP-rich ( pr) and IMP-
poor ( pp) areas is seen at the top and is separated from the normal membrane by a zone of P, . The IMP-poor membrane and the
PZ face are the same distance from the P, membrane . In the IMP-rich area where the fracture steps out of the membrane, normal
Pz and P, membrane faces are seen . Note that the concentration of IMPS in the rich area is approximately equal to that of the P
face of the neutrophil (PN) on the right . The PN face is on the side of the cell not attached to the schistosomulum and is separated
from the fused membrane by the cytoplasm (arrowheads) . s, spine. Bar, 1 ILm. X 41,000 .
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FIGURE 18 A central portion of an area of attachment of a neutrophil to a schistosomulum preincubated in antibody and
complement . Note the IMP-rich ( pr) and IMP-poor (pp) areas. The IMP-rich area has normal P, and PZ faces underneath . Bar, 1
tm . x 42,000 .
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FIGURE 19

	

Neutrophil adhering to a schistosomulum preincubated in antibody and complement from a preparation from which
glycerol was omitted . On the left, there are normal schistosomular P, and P2 faces that are similar to those seen in glycerinated
samples. On the right, a cell is attached to the schistosomulum . The neutrophil P face (PN) is cobblestoned and is separated from
the schistosomular membrane by cytoplasm (cy) . The attachment area is located in the middle of the picture and is separated from
the normal membrane by a trench of the P, membrane . The attachment area is mainly IMP-poor ( pp) with a few areas of IMP-rich
( pr). The IMP-rich areas have normal P, and P2 faces underneath, and the IMP-poor area has small skip-fractures into the P,
membrane (arrowheads) . The roughness of the IMP-poor membrane is intermediate between that of the cell PN face and the
schistosomular P2 face . l, ice. Bar, 1 jLm. X 30,500 .
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FIGURE 20 Neutrophil adhering to a schistosomulum preincubated with antibody and complement from a preparation from
which glycerol was omitted . The normal schistosomular E2 face on the left is separated from an attachment area by a ridge of E,
face . The attachment area contains both IMP-rich ( pr) and IMP-poor ( pp) faces. Where the fracture plane has skipped out of the
IMP-rich membrane, normal E, and E2 faces are seen . Where it has left the IMP-poor membrane, fragments of E, are seen
(arrowheads) . Bar, 1 gm . x 74,400 .
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FIGURE 21

	

Eosinophil (E) discharging granule (g) contents onto the surface of a schistosomulum (5) preincubated with antibody .
Note the large invagination (v) into the eosinophil cytoplasm . These invaginations are formed by multiple granules discharging at
the same site . Electron-dense material adheres to the surface of the schistosomulum and has penetrated into the pits . The inset
shows an eosinophil adhering to the electron-dense material on the parasite surface . Bar, 1 gm . x 24,000 . (inset) Bar, 0 .1 um . x
110,500 .
FIGURE 22

	

Freeze-fracture micrograph of an eosinophil adhering to a schistosomulum preincubated in antibody . Note that the
eosinophil E face (EE ) is closely apposed to the schistosomular membrane (arrowheads) . The eosinophil membrane does not form
an attachment area . Bar, 1 jm . x 68,600 .
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in two ways . First, the fusion may prevent exocytosis of the
neutrophil granule contents by preventing fusion of the peri-
granular membrane with the plasma membrane . Consequently,
the parasite surface would not be exposed to the toxic lysosomal
constituents. Second, the fusion process maybe the mechanism
by which the parasite acquires host antigens (12, 30, 31). These
antigens may block recognition of the parasite as a foreign
entity by the immune system (see reference 2 for discussion).
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