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ABSTRACT

In this article, we prove optimal convergence rates results for
regularizationmethods for solving linear ill-posed operator equa-
tions in Hilbert spaces. The results generalizes existing conver-
gence rates results on optimality to general source conditions,
such as logarithmic source conditions. Moreover, we also provide
optimality results under variational source conditions and show
the connection to approximative source conditions.
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1. Introduction

Let L : X → Y be a bounded linear operator between two Hilbert spaces X

and Y . We are interested in �nding the minimum-norm solution x† ∈ X of the

equation

Lx = y

for some y ∈ R(L), that is the element x† ∈ {x ∈ X | Lx = y} with the property

‖x†‖ = inf{‖x‖ | Lx = y}. It is well-known that this minimal-norm solution

exists and is unique, see for example [3, Theorem 2.5].

Since y is typically not exactly known and only an approximation ỹ ∈ Y

with ‖y − ỹ‖ ≤ δ is given, we are looking for a family (xα(ỹ))α≥0 of approx-

imative solutions so that for every sequence (ỹk)k∈N converging to y, we �nd a

sequence (αk)k∈N of regularization parameters such that (xαk(ỹk))k∈N tends to

the minimum-norm solution x†.

A standard way to construct this family is by using Tikhonov regularization:

xTikα (ỹ) = argminx∈X(‖Lx − ỹ‖2 + α‖x‖2),
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where the minimiser can be explicitly calculated from the optimality condition

and reads as follows:

xTikα (ỹ) = (α + L∗L)−1L∗ỹ. (1)

More generally, we want to analyze regularized solutions of the form

xα(ỹ) = rα(L
∗L)L∗ỹ (2)

with some appropriately chosen function rα , see for example [9].

The aim of this article is to characterize for a given regularization method,

generated by a family (rα)α>0, the optimal convergence rate with which xα(ỹ)

tends to the minimum-norm solution x†. This convergence rate depends on the

solution x†, and we will give an explicit relation between the spectral projections

of x† with respect to the operator L∗L and the convergence rate; �rst in Section 2
for the convergence of xα(y)with the exact data y, and then in Section 3 for xα(ỹ)

with noisy data ỹ. This generalizes existing convergence rates results of [10] to

general source conditions, such as logarithmic source conditions.

A�erwards, we show in Section 4 that these convergence rates can also be

obtained from variational inequalities and establish the optimality of these gen-

eral variational source conditions, extending the results of [1]. It is interesting

to note that variational source conditions are equivalent to convergence rates of

the regularized solutions, while the classical results in [5] are not.

Finally, we consider in Section 5 approximate source conditions that relate

the convergence rates of the regularized solutions to the decay rate of a distance

function, measuring how far away the minimum-norm solution is from the

classical range condition, see [4, 9]. We can show that these approximate source

conditions are indeed equivalent to the convergence rates.

2. Convergence rates for exact data

In the following, we analyze the convergence rate of the sequence (xα(y))α>0
with the exact data y ∈ R(L) to the minimum-norm solution x† of Lx = y.

We investigate regularization methods of the form (2), which are generated

by functions satisfying the following properties.

De�nition 2.1. We call a family (rα)α>0 of continuous functions rα : [0,∞) →
[0,∞) the generator of a regularization method if

(i) there exists a constant ρ ∈ (0, 1) such that

rα(λ) ≤ min

{

1

λ
,
ρ√
αλ

}

for every λ > 0, α > 0,

(ii) the error function r̃α : [0,∞) → [0,∞), de�ned by

r̃α(λ) = (1 − λrα(λ))
2, λ ≥ 0, (3)

is decreasing.
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(iii) For �xed λ ≥ 0 the map α 7→ r̃α(λ) is continuous and increasing, and

(iv) there exists a constant ρ̃ ∈ (0, 1) such that

r̃α(α) < ρ̃ for all α > 0.

Remark. These conditions do not yet enforce that xα(y) → x†. To ensure this,

we could additionally impose that r̃α(λ) → 0 for every λ > 0 as α → 0.

Let us now �x the notation for the rest of the article.

Notation 2.2. Let L : X → Y be a bounded linear operator between two real

Hilbert spaces X and Y , y ∈ R(L), and x† ∈ X be the minimum-norm solution

of Lx = y.

We choose a generator (rα)α>0 of a regularizationmethod, introduce the fam-

ily (r̃α)α>0 of its error functions, and the corresponding family of regularized

solutions shall be given by (2).

We denote by A 7→ EA and A 7→ FA the spectral measures of the operators

L∗L and LL∗, respectively, on all Borel sets A ⊆ [0,∞).

Next, we de�ne the right-continuous and increasing function

e : [0,∞) → R,
(4)

λ 7→ ‖E[0,λ]x
†‖2.

Moreover, if f : (0,∞) → R is a right-continuous, increasing, and bounded

function, we write
∫ b

a
g(λ) df (λ) =

∫

(a,b]
g(λ) dµf (λ)

for the Lebesgue–Stieltjes integral of f , where µf denotes the unique non-

negative Borel measure de�ned byµf ((λ1, λ2]) = f (λ2)− f (λ1) and g ∈ L1(µ).

Remark. In this setting, we can write the error

xα(y)− x† = rα(L
∗L)L∗y − x† = (rα(L

∗L)L∗L − I)x† (5)

according to spectral theory in the form

‖xα(y)− x†‖2 =
∫ ‖L‖2

0
r̃α(λ) de(λ). (6)

We want to point out here that it directly follows from the de�nition that the

minimum-norm solution x† is in the orthogonal complement N (L)⊥ of the

nullspace of L, and we therefore do not have to consider the point λ = 0 in

the integrals in equation (6).

We �rst want to establish a relation between the convergence rate of the

regularized solution xα(y) for exact data y to the minimum-norm solution x†

and the behaviour of the spectral function (4).
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Proposition 2.3. We use Notation 2.2 and assume that there exist an increasing

function ϕ : (0,∞) → (0,∞) and constants µ ∈ (0, 1) and A > 0 such that we

have for every α > 0 the inequality

ϕ(λ)r̃µα (λ) ≤ Aϕ(α) for all λ > 0. (7)

Then, the following two statements are equivalent:

(i) There exists a constant C > 0 with

‖xα(y)− x†‖2 ≤ Cϕ(α) for all α > 0. (8)

(ii) There exists a constant C̃ > 0 with

e(λ) ≤ C̃ϕ(λ) for all λ > 0. (9)

Proof. According to De�nition 2.1 (ii) the error function r̃α is decreasing, and

thus it follows together with (6) that for all α > 0

r̃α(α)e(α) = r̃α(α)

∫ α

0
de(λ) ≤

∫ α

0
r̃α(λ) de(λ) ≤ ‖xα(y)− x†‖2. (10)

Let �rst (8) hold. Then, it follows from (10) that for all α > 0

r̃α(α)e(α) ≤ Cϕ(α). (11)

Now, we use De�nition 2.1 (i), which gives that

r̃α(α) = (1 − αrα(α))
2 ≥ (1 − ρ)2 > 0.

Using this estimate in (11) yields (9) with C̃ = C
(1−ρ)2 > 0.

Conversely, let (9) hold. Since ‖xα(y) − x†‖2 ≤ ‖x†‖2 (which follows from

(6) with r̃α ≤ 1), it is enough to check the condition (8) for all α ∈ (0, ‖L‖2].
We use (6) and integrate the right hand side by parts, see for example

[2, Theorem 6.2.2] regarding the integration by parts for Lebesgue–Stieltjes

integrals, and obtain that

‖xα(y)− x†‖2 = r̃α(‖L‖2)e(‖L‖2)+
∫ ‖L‖2

0
e(λ) d(−r̃α)(λ). (12)

We split up the integral on the right hand side into two terms:

∫ ‖L‖2

0
e(λ) d(−r̃α)(λ) =

∫ α

0
e(λ) d(−r̃α)(λ)+

∫ ‖L‖2

α

e(λ) d(−r̃α)(λ). (13)

The �rst term is estimated by using that the function e is increasing and by

utilising the assumption (9):

∫ α

0
e(λ) d(−r̃α)(λ) ≤ e(α)

∫ α

0
d(−r̃α)(λ) = e(α)(1 − r̃α(α)) ≤ C̃ϕ(α).
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The second integral term in (13) is estimated by using the inequalities (9)

and (7):
∫ ‖L‖2

α

e(λ) d(−r̃α)(λ) ≤ C̃

∫ ‖L‖2

α

ϕ(λ) d(−r̃α)(λ)

= C̃

∫ ‖L‖2

α

ϕ(λ)r̃µα (λ)
1

r̃
µ
α (λ)

d(−r̃α)(λ)

≤ AC̃ϕ(α)

∫ ‖L‖2

α

1

r̃
µ
α (λ)

d(−r̃α)(λ)

= AC̃

1 − µ
ϕ(α)(r̃1−µα (α)− r̃1−µα (‖L‖2))

≤ AC̃ρ̃1−µ

1 − µ
ϕ(α),

where we used De�nition 2.1 (iv) in the last step. Inserting the two estimates

in (13) and in (12), we �nd with e(‖L‖2) = ‖x†‖2 that

‖xα(y)− x†‖2 ≤ r̃α(‖L‖2)‖x†‖2 + C̃ϕ(α)+ AC̃ρ̃1−µ

1 − µ
ϕ(α). (14)

From (7), we deduce further that

r̃α(‖L‖2) ≤ A
1
µ

ϕ
1
µ (‖L‖2)

ϕ
1
µ (α) ≤ A

1
µϕ

1
µ

−1
(α)

ϕ
1
µ (‖L‖2)

ϕ(α) ≤ cϕ(α)

with c = A
1
µ

ϕ(‖L‖2) ,

since ϕ is increasing and µ < 1.

Thus, we get from (14) that

‖xα(y)− x†‖2 ≤ Cϕ(α)

with

C = c‖x†‖2 + C̃ + AC̃ρ̃1−µ

1 − µ
.

Remark. The condition (7) with the choice µ = 1
2 was already used in [4], and

such a function ϕ was called a quali�cation of the regularization method.

Example 2.4. In the case of Tikhonov regularization, given by (1), we have

rα(λ) = 1
α+λ and therefore we get for the error function r̃α , de�ned by (3),

the expression r̃α(λ) = α2

(α+λ)2 . So, clearly, r̃α(α) = 1
4 and all the conditions of

De�nition 2.1 are ful�lled.
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(i) To recover the classical equivalence results, see [10, Theorem 2.1], we set

ϕ(α) = α2ν for some ν ∈ (0, 1) and �nd that the condition (7) withA = 1

is for every µ ≥ ν ful�lled, since we have

ϕ(λ)r̃µα (λ) = α2µλ2ν

(α + λ)2µ
≤ α2µ−2ν

(α + λ)2µ−2ν

λ2ν

(α + λ)2ν
α2ν ≤ α2ν = ϕ(α)

for arbitrary α > 0 and λ > 0.

Thus, Proposition 2.3 yields for every ν ∈ (0, 1) the equivalence of

‖xα(y)− x†‖2 = O(α2ν) and e(λ) = O(λ2ν).

(ii) Similarly, we also get the equivalence in the case of logarithmic conver-

gence rates. Let 0 < ν < µ < 1 and de�ne for α ∈ (0, e
− ν
µ ] the

function ϕ(α) =
∣

∣logα
∣

∣

−ν
(for bigger values of α, we may simply set

ϕ(α) = ϕ(e
− ν
µ )). Then, we have

(ϕr̃µα )
′(λ) = α2µ

(α + λ)2µ+1
∣

∣log λ
∣

∣

ν+1

(

ν
α + λ

λ
− 2µ

∣

∣log λ
∣

∣

)

≤ −
2(µ

∣

∣log λ
∣

∣− ν)α2µ

(α + λ)2µ+1
∣

∣log λ
∣

∣

ν+1
≤ 0

for all λ ∈ [α, e−
ν
µ ). Thus, ϕr̃

µ
α is decreasing on [α, e−

ν
µ ), which implies

(7) with A = 1.

So, Proposition 2.3 tells us that ‖xα(y) − x†‖2 = O(
∣

∣logα
∣

∣

−ν
) if and

only if e(λ) = O(
∣

∣log λ
∣

∣

−ν
).

3. Convergence rates for noisy data

We now want to estimate the distance of the regularized solution xα(ỹ) to the

minimum-norm solution x† if we do not have the exact data y, but only some

approximation ỹ of it.

In this case, we consider the regularization parameter α as a function of the

noisy data ỹ such that the distance between xα(ỹ) and x† is minimal. Thus, we

are interested in the convergence rate of the expression infα>0 ‖xα(ỹ) − x†‖ to

zero as the distance between ỹ and y tends to zero. We therefore want to �nd an

upper bound for the expression supỹ∈B̄δ(y) infα>0 ‖xα(ỹ)− x†‖, where B̄δ(y) =
{ỹ ∈ Y | ‖ỹ − y‖ ≤ δ} denotes the closed ball with radius δ > 0 around the

data y.

Let us �rst consider the trivial case where ‖xα(y) − x†‖ = 0 for all α in a

vicinity of 0.

Lemma 3.1. We use Notation 2.2 and assume that there exists an ε > 0 such that

‖xα(y)− x†‖ = 0 for all α ∈ (0, ε].
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Then, we have

sup
ỹ∈B̄δ(y)

inf
α>0

‖xα(ỹ)− x†‖2 ≤ ρ2

ε
δ2, (15)

where ρ > 0 is chosen as in De�nition 2.1 (i).

Proof. Let ỹ ∈ B̄δ(y) be �xed. Then, using that Lrα(L
∗L) = rα(LL

∗)L, it follows
from De�nition 2.1 (i) that

‖xα(ỹ)− xα(y)‖2 =
〈

ỹ − y, r2α(LL
∗)LL∗(ỹ − y)

〉

≤ δ2max
λ>0

λr2α(λ) ≤ ρ2
δ2

α
.

(16)

The right hand side is uniform for all ỹ ∈ B̄δ(y). Thus, picking α = ε, we get

sup
ỹ∈B̄δ(y)

inf
α>0

‖xα(ỹ)− x†‖2 ≤ inf
α>0

(

‖xα(y)− x†‖ + ρ
δ√
α

)2

≤ ρ2

ε
δ2,

which is (15).

In the general case, we estimate the optimal regularization parameter α to be

in the vicinity of the value αδ , which is chosen as the solution of the implicit

equation (17) and is therefore only depending on the distance δ between the

correct data y and the noisy data ỹ.

Lemma 3.2. We use again Notation 2.2 and consider the case where ‖xα(y) −
x†‖ > 0 for all α > 0.

If we choose for every δ > 0 the parameter αδ > 0 such that

αδ‖xαδ(y)− x†‖2 = δ2, (17)

then there exists a constant C1 > 0 such that

sup
ỹ∈B̄δ(y)

inf
α>0

‖xα(ỹ)− x†‖2 ≤ C1
δ2

αδ
for all δ > 0. (18)

Moreover, there exists a constant C0 > 0 such that

sup
ỹ∈B̄δ(y)

inf
α>0

‖xα(ỹ)− x†‖2 ≥ C0
δ2

αδ
(19)

for all δ > 0 which ful�l that αδ ∈ σ(LL∗), where σ(LL∗) ⊂ [0,∞) denotes the

spectrum of the operator LL∗.

Proof. First, we remark that the function

A : (0,∞) → (0,∞), A(α) = α‖xα(y)− x†‖2 =
∫ ‖L‖2

0
αr̃α(λ) de(λ)
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is, according to De�nition 2.1 (iii) together with the assumption that ‖xα(y) −
x†‖ > 0 for all α > 0, continuous and strictly increasing and satis�es

limα→0 A(α) = 0 and limα→∞ A(α) = ∞. Therefore, we �nd for every δ > 0

a unique value αδ = A−1(δ2).

Let ỹ ∈ B̄δ(y). Then, as in the proof of Lemma 3.1, see (16), we �nd that

‖xα(ỹ)− xα(y)‖2 ≤ ρ2
δ2

α
.

From this estimate, we obtain with the triangular inequality and with the

de�nition (17) of αδ that

sup
ỹ∈B̄δ(y)

inf
α>0

‖xα(ỹ)− x†‖2 ≤ inf
α>0

(

‖xα(y)− x†‖ + ρ
δ√
α

)2

≤ (1 + ρ)2
δ2

αδ
,

which is the upper bound (18) with the constant C1 = (1 + ρ)2.

For the lower bound (19), we write similarly

‖xα(ỹ)− x†‖2 = ‖xα(y)− x†‖2 + ‖xα(ỹ)− xα(y)‖2

+2
〈

xα(ỹ)− xα(y), xα(y)− x†
〉

= ‖xα(y)− x†‖2 +
〈

ỹ − y, r2α(LL
∗)LL∗(ỹ − y)

〉

+ 2
〈

rα(LL
∗)(ỹ − y), rα(LL

∗)LL∗y − y
〉

. (20)

Now, from the continuity of r̃αδ and De�nition 2.1 (iv), we �nd that for every

δ > 0 there exists a parameter aδ ∈ (0,αδ) such that r̃αδ(aδ) < ρ̃.

Then, the assumption αδ ∈ σ(LL∗) implies that the spectral measure F of the

operator LL∗ ful�ls F[aδ ,2αδ] 6= 0.

Suppose now that

zδ = F[aδ ,2αδ](rαδ(LL
∗)LL∗y − y) 6= 0. (21)

Then, choosing ỹ = y + δ zδ
‖zδ‖ , equation (20) becomes

‖xα(ỹ)−x†‖2 = ‖xα(y)−x†‖2+ δ2

‖zδ‖2
〈

zδ , r
2
α(LL

∗)LL∗zδ
〉

+ 2δ

‖zδ‖
〈

rα(LL
∗)zδ , zδ

〉

.

Thus, we may drop the last term as it is non-negative, which gives us the lower

bound

sup
ỹ∈B̄δ(y)

inf
α>0

‖xα(ỹ)− x†‖2 ≥ inf
α>0

(

‖xα(y)− x†‖2 + δ2 min
λ∈[aδ ,2αδ]

λr2α(λ)

)

.

Since we get from De�nition 2.1 (ii) the inequality

λr2α(λ) =
(

1 −
√

r̃α(λ)
)2

λ
≥
(

1 −
√

r̃α(aδ)
)2

2αδ
for all λ ∈ [aδ , 2αδ],
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we can estimate further

sup
ỹ∈B̄δ(y)

inf
α>0

‖xα(ỹ)− x†‖2 ≥ inf
α>0

(

‖xα(y)− x†‖2 + δ2

(

1 −
√

r̃α(aδ)
)2

2αδ

)

.

Now, since α 7→ r̃α(λ) is for every λ > 0 increasing, see De�nition 2.1 (iii),

the �rst term is increasing in α, see (6), and the second term is decreasing in α.

Thus, we can estimate the expression for α < αδ from below by the second term

at α = αδ , and for α ≥ αδ by the �rst term at α = αδ :

sup
ỹ∈B̄δ(y)

inf
α>0

‖xα(ỹ)− x†‖2 ≥ min

{

‖xαδ(y)− x†‖2, δ2
(

1 −
√

r̃αδ(aδ)
)2

2αδ

}

≥ (1 −
√

ρ̃)2

2

δ2

αδ
,

which is (19) with C0 = 1
2(1 −

√

ρ̃)2.

If zδ , as de�ned by (21), happens to vanish, the same argument works with an

arbitrary non-zero element zδ ∈ R(F[aδ ,2αδ]) since the last term in (20) is zero

for ỹ = y + δ zδ
‖zδ‖ .

FromLemma3.1 and Lemma3.2, we nowget an equivalence relation between

the noisy and the noise-free convergence rates.

Proposition 3.3. We use Notation 2.2. Let further ϕ : [0,∞) → [0,∞) be a

strictly increasing function satisfying ϕ(0) = 0 and

ϕ(γ α) ≤ g(γ )ϕ(α) for all α > 0, γ > 0 (22)

for some increasing function g : (0,∞) → (0,∞).

Moreover, we assume that there exists a constant C > 0 with

r̃α(λ)

r̃β(λ)
≤ C

ϕ(α)

ϕ(β)
for all 0 < α ≤ β ≤ λ (23)

and there is a constant C̃ such that

r̃α(λ)

r̃β(λ)
≥ C̃

ϕ(α)

ϕ(β)
for all 0 < λ ≤ α ≤ β . (24)

We de�ne

ϕ̃(α) =
√

αϕ(α) and ψ(δ) = δ2

ϕ̃−1(δ)
. (25)

Then, the following two statements are equivalent:

(i) There exists a constant c > 0 such that

sup
ỹ∈B̄δ(y)

inf
α>0

‖xα(ỹ)− x†‖2 ≤ cψ(δ) for all δ > 0. (26)
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(ii) There exists a constant c̃ > 0 such that

‖xα(y)− x†‖2 ≤ c̃ϕ(α) for all α > 0. (27)

Proof. We �rst remark that (22) implies that ϕ̃(γ α) ≤
√

γ g(γ )ϕ̃(α), and so by

setting g̃(γ ) =
√

γ g(γ ), δ = ϕ̃(α) and γ̃ = g̃(γ ), we get

g̃−1(γ̃ )ϕ̃−1(δ) ≤ ϕ̃−1(γ̃ δ).

Thus, we have

ψ(γ̃ δ) = γ̃ 2δ2

ϕ̃−1(γ̃ δ)
≤ γ̃ 2δ2

g̃−1(γ̃ )ϕ̃−1(δ)
= h(γ̃ )ψ(δ) (28)

where h(γ̃ ) = γ̃ 2

g̃−1(γ̃ )
.

In the case where ‖xα(y) − x†‖ = 0 for all α ∈ (0, ε] for some ε > 0, the

inequality (27) is trivially ful�lled for some c̃ > 0. Moreover, we know from

Lemma 3.1 that then the inequality (15) holds, which implies the inequality

(26) for some constant c > 0, since we have according to the de�nition of the

function ψ that ψ(δ) ≥ aδ2 for all δ ∈ (0, δ0) for some constants a > 0 and

δ0 > 0.

Thus, we may assume that ‖xα(y)− x†‖ > 0 for all α > 0.

Let (27) hold. For arbitrary δ > 0, we use the regularization parameter αδ
de�ned in (17). Then, the inequality (27) implies that

δ2

αδ
≤ c̃ϕ(αδ).

Consequently,

ϕ̃−1

(

δ√
c̃

)

≤ αδ ,

and therefore, using the inequality (18) obtained in Lemma 3.2, we �nd with

(28) that

sup
ỹ∈B̄δ(y)

inf
α>0

‖xα(ỹ)− x†‖2 ≤ C1
δ2

αδ
≤ C1c̃ψ

(

δ√
c̃

)

≤ C1c̃h(
1√
c̃
)ψ(δ),

which is the estimate (26) with c = C1c̃h(
1√
c̃
).

Conversely, if (26) holds, we choose an arbitrary δ > 0 such thatαδ de�ned by

(17) is in the spectrum σ(LL∗). Then, we can use the inequality (19) of Lemma

3.2 to obtain from the condition (26) that

C0
δ2

αδ
≤ cψ(δ).

Thus, by the de�nition of ψ , we have

ϕ̃−1(δ) ≤ c

C0
αδ .
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So, �nally, we get with (22) that

‖xαδ(y)− x†‖2 = δ2

αδ
≤ c

C0
ϕ

(

c

C0
αδ

)

≤ c

C0
g( c

C0
)ϕ(αδ),

and since this holds for every δ such thatαδ ∈ σ(LL∗), we havewith ĉ = c
C0
g( c

C0
)

that

‖xα(y)− x†‖2 ≤ ĉϕ(α) for all α ∈ σ(LL∗). (29)

Finally, we consider some α /∈ σ(LL∗), α < ‖L‖2, and set

α− = sup{α̃ ∈ σ(LL∗) ∪ {0} | α̃ < α} and

α+ = inf{α̃ ∈ σ(LL∗) | α̃ > α}.
Then, recalling thatσ(L∗L)\{0} = σ(LL∗)\{0}, see for example [6, Problem61],

we �nd forα− > 0 (forα− = 0, the �rst term in the following calculation simply

vanishes) that

‖xα(y)− x†‖2 =
∫ α−

0
r̃α(λ) de(λ)+

∫ ‖L‖2

α+
r̃α(λ) de(λ)

≤ ‖xα−(y)− x†‖2 sup
λ∈[0,α−]

r̃α(λ)

r̃α−(λ)

+ ‖xα+(y)− x†‖2 sup
λ∈[α+,‖L‖2]

r̃α(λ)

r̃α+(λ)
.

Using the conditions (23) and (24), we have with (29) that

‖xα(y)− x†‖2 ≤ ĉ

C̃
ϕ(α−)

ϕ(α)

ϕ(α−)
+ Cĉϕ(α+)

ϕ(α)

ϕ(α+)
= (C + 1

C̃
)ĉϕ(α),

which is (27) with c̃ = (C + 1

C̃
)ĉ.

Remark. If we consider Tikhonov regularization, then we can ignore the con-

ditions (23) and (24) in Proposition 3.3 if we have a quadratic upper bound on

the function g in (22).

Indeed, let ϕ : [0,∞) → [0,∞) be an arbitrary increasing function ful�lling

(22) for some increasing function g : (0,∞) → (0,∞) which is bounded by

g(γ ) ≤ C

4
(1 + γ 2) for all γ > 0 (30)

for some constant C > 0. Then, conditions (23) and (24) are ful�lled for the

error function r̃α of Tikhonov regularization, given by r̃α(λ) = α2

(α+λ)2 .
To see this, we remark that for 0 < α ≤ β , the ratio

r̃α(λ)

r̃β(λ)
=
(

α

β

β + λ

α + λ

)2
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is decreasing in λ. Therefore, for λ ≥ β we get that

r̃α(λ)

r̃β(λ)
≤ 4

(1 + β
α
)2

≤ 4

1 + (
β
α
)2

≤ C

g(β
α
)

≤ C
ϕ(α)

ϕ(β)
,

which is (23).

We similarly �nd for λ ≤ α that

r̃α(λ)

r̃β(λ)
≥ 1

4

(

1 + α

β

)2

≥ 1

4
≥ 1

4

ϕ(α)

ϕ(β)
,

which is (24) with C̃ = 1
4 .

We want to apply this theorem now to the two special cases discussed

previously in Example 2.4.

Example 3.4. (i) In the case of Example 2.4 (i), where we considered

Tikhonov regularization with a convergence rate given by ϕ(α) = α2ν

for some ν ∈ (0, 1), the condition (22) in Proposition 3.3 is clearly ful�lled
with g(γ ) = γ 2ν . In particular, g satis�es that g(γ ) ≤ 1 + γ 2, which is

(30) with C = 4, and thus the conditions (23) and (24) in Proposition 3.3

follow as in the remark above.

So, we can apply Proposition 3.3 and it only remains to calculate

ϕ̃−1(δ) = δ
2

2ν+1 and ψ(δ) = δ2−
2

2ν+1 = δ
4ν

2ν+1 .

Thus, we recover the classical result, see [10, Theorem 2.6], that the con-

vergence rate ‖xα(y)− x†‖2 = O(α2ν) for the correct data y is equivalent

to the convergence rate supỹ∈B̄δ(y) infα>0 ‖xα(ỹ) − x†‖2 = O(δ
4ν

2ν+1 ) for

noisy data.

(ii) Next, we look at Tikhonov regularization with the logarithmic conver-

gence rate

ϕ(α) =
{

∣

∣logα
∣

∣

−ν
if 0 < α < e−(1+ν),

(1 + ν)−ν if α ≥ e−(1+ν),

see Example 2.4 (ii). First, we remark that ϕ is concave. This is because ϕ

is increasing, constant for α > e−(1+ν), and for 0 < α < e−(1+ν) we have

ϕ′′(α) = ν

α2

∣

∣logα
∣

∣

−(ν+2) (
1 + ν −

∣

∣logα
∣

∣

)

< 0,

and because ϕ(0) = 0, we have

ϕ(γ α) ≤ γ ϕ(α) for all γ ≥ 1, α > 0.

Thus, using that ϕ is increasing, the requirement (22) in Proposition 3.3 is

ful�lled with

g(γ ) =
{

1 if γ < 1,

γ if γ ≥ 1.
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In particular, this function g satis�es the inequality (30) with C = 4 and

therefore, also the conditions (23) and (24) in Proposition 3.3 are ful�lled

according to the previous remark.

To get the corresponding functionψ , as de�ned in (25), we have to solve

the implicit equation δ = ϕ̃( δ2

ψ(δ)
), where ϕ̃ is de�ned in (25) and with the

speci�c choice of ϕ(α) =
∣

∣logα
∣

∣

−ν
for α < e−(1+ν) satis�es ϕ̃2(α) =

α
∣

∣logα
∣

∣

−ν
. This equation then reads as follows:

ψ(δ) =
∣

∣

∣

∣

log
δ2

ψ(δ)

∣

∣

∣

∣

−ν
. (31)

By solving this equation for δ, we get

δ =
√

ψ(δ) exp

(

− 1

2ψ
1
ν (δ)

)

,

which, in particular, shows that the function ψ is increasing and further-

more, because of limδ↓0ψ(δ) = 0, ψ(δ) < 1 for su�ciently small δ > 0.

Therefore, we �nd for small δ > 0 that

δ ≤ exp

(

− 1

2ψ
1
ν (δ)

)

, that is ψ(δ) ≥ |2 log δ|−ν . (32)

Moreover, if we write ψ as

ψ(δ) =
∣

∣log δ
∣

∣

−ν
f (δ)

for some function f , the implicit equation (31) becomes

f (δ) =
∣

∣

∣

∣

log δ

log(f (δ))− 2 log δ − log(| log δ|ν)

∣

∣

∣

∣

ν

.

Since limδ↓0
log(|log δ|ν)

log δ = 0, we �nd parameters ε ∈ (0, 1) and δ0 ∈ (0, 1)
such that we have for all δ < δ0 the inequality 0 ≤ log(

∣

∣log δ
∣

∣

ν
) ≤ ε

∣

∣log δ
∣

∣.

Assuming that f (δ) ≥ 1 gives

f (δ) ≤
(

∣

∣log δ
∣

∣

log(f (δ))+ (2 − ε)
∣

∣log δ
∣

∣

)ν

≤ 1

(2 − ε)ν
< 1,

which is a contradiction to the assumption. Thus, f (δ) < 1.

Since we know already from (32) that f (δ) ≥ 2−ν , it therefore

follows from Proposition 3.3 that the convergence rate ‖xα(y) − x†‖2
= O(

∣

∣logα
∣

∣

−ν
) is equivalent to supỹ∈B̄δ(y) infα>0 ‖xα(ỹ) − x†‖2 =

O(
∣

∣log δ
∣

∣

−ν
).
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4. Relation to variational inequalities

Instead of characterizing the convergence rate of the regularized solution via the

behavior of the spectral decomposition of the minimum-norm solution x†, we

may also check variational inequalities for the element x†, see [7, 8, 11, 12]. In

[1], it was shown that for Tikhonov regularization and convergence rates of the

orderO(α2ν), ν ∈ (0, 1), such variational inequalities are equivalent to speci�c

convergence rates.

In this section, we generalize this result to cover general regularization

methods and convergence rates.

Proposition 4.1. We consider again the setting of Notation 2.2. Moreover, let ϕ :

[0,∞) → [0,∞) be an increasing, continuous function and ν ∈ (0, 1).
Then, the following two statements are equivalent:

(i) There exists a constant C > 0 with

e(λ) ≤ Cϕ2ν(λ) for all λ > 0. (33)

(ii) There exists a constant C̃ > 0 such that
〈

x†, x
〉

≤ C̃‖ϕ(L∗L)x‖ν‖x‖1−ν for all x ∈ X. (34)

Proof. Assume �rst that (34) holds. Then, we have for all λ > 0

‖E[0,λ]x
†‖2 =

〈

x†,E[0,λ]x
†
〉

≤ C̃‖ϕ(L∗L)E[0,λ]x
†‖ν‖E[0,λ]x

†‖1−ν

≤ C̃ϕν(λ)‖E[0,λ]x
†‖,

which implies (33) with C = C̃2.

On the other hand, if (33) is ful�lled thenwe can estimate for arbitrary3 > 0

and every x ∈ X
∣

∣

〈

E[0,3]x
†, x
〉∣

∣ ≤ ‖E[0,3]x
†‖‖x‖ ≤

√
C ϕν(3)‖x‖. (35)

Furthermore,we getwith the bounded, invertible operatorT = ϕ(L∗L)|R(E[3,∞))

that
∣

∣

〈

E[3,∞)x
†, x
〉∣

∣ =
∣

∣

〈

T−1E[3,∞)x
†,TE[3,∞)x

〉∣

∣

≤ ‖TE[3,∞)x‖

√

lim
ε↓0

∫ ‖L‖2

3−ε

1

ϕ2(λ)
de(λ). (36)

Integrating by parts, we can rewrite the integral in the form

∫ ‖L‖2

3−ε

1

ϕ2(λ)
de(λ) = e(‖L‖2)

ϕ2(‖L‖2) − e(3− ε)

ϕ2(3− ε)
+ 2

∫ ‖L‖2

3−ε

e(λ)

ϕ3(λ)
dϕ(λ).
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Using now (33) and dropping all negative terms, we arrive at

lim
ε↓0

∫ ‖L‖2

3−ε

1

ϕ2(λ)
de(λ) ≤ C

ϕ2−2ν(‖L‖2) + C

1 − ν

1

ϕ2−2ν(3)
≤ c2

ϕ2−2ν(3)

with the constant c > 0 given by c2 = C(1 + 1
1−ν ). Plugging this into (36), we

�nd that
∣

∣

〈

E[3,∞)x
†, x
〉∣

∣ ≤ c

ϕ1−ν(3)
‖ϕ(L∗L)x‖. (37)

We now pick

3 = inf{λ > 0 |
∣

∣

〈

E[0,λ]x
†, x
〉∣

∣ ≥ 1
2

∣

∣

〈

x†, x
〉∣

∣}
and assume that3 > 0; otherwise

〈

x†, x
〉

= 0 and (34) is trivially ful�lled. Then,

the right continuity of λ 7→
〈

E[0,λ]x†, x
〉

implies that

∣

∣

〈

E[0,3]x
†, x
〉∣

∣ ≥ 1

2

∣

∣

〈

x†, x
〉∣

∣ .

Moreover, we have that
∣

∣

〈

E[λ,∞)x
†, x
〉∣

∣ ≥
∣

∣

〈

x†, x
〉∣

∣−
∣

∣

〈

E[0,λ]x
†, x
〉∣

∣ >
1

2

∣

∣

〈

x†, x
〉∣

∣

for every λ ∈ (0,3). Therefore, the le� continuity of λ 7→
〈

E[λ,∞)x
†, x
〉

implies

that
∣

∣

〈

E[3,∞)x
†, x
〉∣

∣ ≥ 1

2

∣

∣

〈

x†, x
〉∣

∣ .

Thus, we get with the estimates (35) and (37) that
〈

x†, x
〉

≤ 2
∣

∣

〈

E[0,3]x
†, x
〉∣

∣

1−ν ∣
∣

〈

E[3,∞)x
†, x
〉∣

∣

ν

≤ 2C
1−ν
2 cν‖ϕ(L∗L)x‖ν‖x‖1−ν .

We remark that the �rst part of this proof also works in the limit case ν = 1,

which shows that (34) implies (33) for ν = 1 as well.

Corollary 4.2. We use again Notation 2.2. Let further ϕ : [0,∞) → [0,∞) be

an increasing, continuous function and ν ∈ (0, 1].
Then, the standard source condition

x† ∈ R(ϕν(L∗L)) (38)

implies the variational inequality
〈

x†, x
〉

≤ C‖ϕ(L∗L)x‖ν‖x‖1−ν for all x ∈ X (39)

for some constant C > 0.
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Conversely, the variational inequality (39) implies that

x† ∈ R(ψ(L∗L))

for every continuous function ψ : [0,∞) → [0,∞) with ψ ≥ cϕµ for some

constant c > 0 and some µ ∈ (0, ν).

Proof. If x† ful�ls (38), then there exists an element ω ∈ X with

〈

x†, x
〉

=
〈

ω,ϕν(L∗L)x
〉

≤ ‖ω‖‖ϕν(L∗L)x‖. (40)

Using the interpolation inequality, see for example [3, Chapter 2.3], we �nd

〈

x†, x
〉

≤ ‖ω‖‖ϕ(L∗L)x‖ν‖x‖1−ν ,

which is (39) with C = ‖ω‖.
If, on the other hand, (39) holds, then, according to Proposition 4.1 there

exists a constant C̃ > 0 such that e(λ) ≤ C̃ϕ2ν(λ). Now, similarly to the proof

of Proposition 4.1 we get with T = ψ(L∗L)|R(E(3,∞)) that

〈

E(3,∞)x
†, x
〉

≤
〈

T−1E(3,∞)x
†,TE(3,∞)x

〉

≤ ‖TE(3,∞)x‖

√

∫ ‖L‖2

3

1

ψ2(λ)
de(λ),

and, using the lower bound on ψ , that

∫ ‖L‖2

3

1

ψ2(λ)
de(λ) ≤ 1

c2

∫ ‖L‖2

3

1

ϕ2µ(λ)
de(λ) ≤ c̃2ϕ2(ν−µ)(‖L‖2),

for some constant c̃ > 0. So,
〈

x†, x
〉

= lim
3→0

〈

E(3,∞)x
†, x
〉

≤ c̃ϕν−µ(‖L‖2)‖ψ(L∗L)x‖,

which implies that x† ∈ R(ψ(L∗L)), see for example [11, Lemma 8.21].

Remark. In general, the inequality (39) does not imply the standard source

condition (38). Let us for example consider the casewherewe have an increasing,

continuous function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0, ϕ(λ) > 0 for all

λ > 0, and

cϕ2ν(λ) ≤ e(λ) ≤ Cϕ2ν(λ) for all λ > 0

for some constants 0 < c ≤ C.

Now, the standard source condition (38) would imply that we can �nd a ξ ∈
N (L)⊥ with x† = ϕν(L∗L)ξ . Thus, we would get with T = ϕν(L∗L)|R(E(3,∞))

that

‖ξ‖2 = lim
3→0

‖E(3,∞)ξ‖2 = lim
3→0

‖T−1E(3,∞)x
†‖2 = lim

3→0

∫ ‖L‖2

3

1

ϕ2ν(λ)
de(λ).
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However, in the limit3 → 0, we have that
∫ ‖L‖2

3

1

ϕ2ν(λ)
de(λ) = e(‖L‖2)

ϕ2ν(‖L‖2) − e(3)

ϕ2ν(3)
+ 2ν

∫ ‖L‖2

3

e(λ)

ϕ2ν+1(λ)
dϕ(λ)

≥ c − C + 2νc log

(

ϕ(‖L‖2)
ϕ(3)

)

→ ∞,

which is a contradiction to the existence of such a point ξ .

5. Connection to approximate source conditions

Another approach to weakening the standard source condition (38) in order to

obtain a condition which is equivalent to the convergence rate was introduced

in [9], see also [4]. The idea was that for the argument (40), which shows that the

standard source condition (38) implies the variational inequality (39), it would

have been enough to be able to approximate theminimum-norm solution x† by a

bounded sequence inR(ϕν(L∗L)). And, the smaller the bound on the sequence,

the smaller the constant C in the variational inequality (39) will be. Therefore,

the distance between x† andR(ϕν(L∗L)) ∩ B̄R(0) as a function of the radius R

of the closed ball B̄R(0) = {x ∈ X | ‖x‖ ≤ R} should be directly related to the

convergence rate.

De�nition 5.1. In the setting of Notation 2.2, we de�ne the distance function dϕ
of a continuous function ϕ : [0,∞) → [0,∞) by

dϕ(R) = inf
ξ∈B̄R(0)

‖x† − ϕ(L∗L)ξ‖. (41)

Indeed, this distance function gives us directly an upper bound on the error

between the regularized solution xα(y) and theminimum-norm solution x†, see

[9, Theorem 5.5] or [4, Proposition 2]. For convenience, we repeat the argument

here.

Lemma 5.2. We use Notation 2.2 and assume that ϕ : [0,∞) → [0,∞) is an

increasing, continuous functionwithϕ(0) = 0 so that there exists a constant A> 0

such that the inequality
√

r̃α(λ)ϕ(λ) ≤ Aϕ(α) for all λ > 0 (42)

holds for every α > 0.

Then, we have for every ξ ∈ X that

‖xα(y)− x†‖ ≤ ‖x† − ϕ(L∗L)ξ‖ + Aϕ(α)‖ξ‖ for all α > 0. (43)

Proof. For every vector ξ ∈ X, we �nd from (5) with the de�nition (3) of the

error function r̃α that

‖xα(y)−x†‖ = ‖r̃
1
2
α (L

∗L)x†‖ ≤ ‖r̃
1
2
α (L

∗L)(x†−ϕ(L∗L)ξ)‖+‖r̃
1
2
α (L

∗L)ϕ(L∗L)ξ‖.
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Now, since r̃α(λ) ≤ 1, we have that ‖r̃α(L∗L)‖ ≤ 1. Moreover, with eξ (λ) =
‖E(0,λ]ξ‖2, we get from the inequality (42) that

‖r̃
1
2
α (L

∗L)ϕ(L∗L)ξ‖2 =
∫ ‖L‖2

0
r̃α(λ)ϕ

2(λ) deξ (λ) ≤ A2ϕ2(α)‖ξ‖2.

So, putting the two inequalities together, we obtain (43).

Thus, taking the in�mumover all ξ ∈ B̄R(0) in (43), the error ‖xα(y)−x†‖ can
be bound by a combination of dϕ(R) and ϕ(α)R. By balancing these terms, we

obtain from a given distance function dϕ the corresponding convergence rate.

Conversely, we can also show that an upper bound on the spectral projections

of the minimum-norm solution gives us an upper bound on the distance func-

tion, which then yields another equivalent characterisation for the convergence

rate of the regularization method.

Proposition 5.3. We use Notation 2.2 and assume that ϕ : [0,∞) → [0,∞) is

an increasing, continuous function with ϕ(0) = 0 so that there exists a constant

A > 0 with
√

r̃α(λ)ϕ(λ) ≤ Aϕ(α) for all λ > 0, α > 0. (44)

Moreover, let dϕ be the distance function of ϕ, and let ν ∈ (0, 1) be arbitrary.
Then, the following statements are equivalent:

(i) There exists a constant C > 0 so that

e(λ) ≤ Cϕ2ν(λ) for all λ > 0. (45)

(ii) There exists a constant C̃ > 0 so that

dϕ(R) ≤ C̃R− ν
1−ν for all R > 0. (46)

Proof. Assume �rst that (46) holds. Then, from Lemma 5.2, we get by taking the

in�mum of (43) over all ξ ∈ B̄R(0) for an arbitrary R > 0 that

‖xα(y)− x†‖ ≤ dϕ(R)+ Aϕ(α)R ≤ C̃R− ν
1−ν + Aϕ(α)R.

Since the �rst term is decreasing and the second term is increasing in R, we pick

for R the value R(α) given by

R− ν
1−ν (α) = ϕ(α)R(α), that is R(α) = ϕ−(1−ν)(α).

Thus, we end up with

‖xα(y)− x†‖ ≤ (C̃ + A)ϕν(α).

Applying Proposition 2.3 with the function ϕ, therein replaced by ϕ2ν (we

remark that the condition (7) is then ful�lled with µ = ν, since (44) implies

ϕ2ν(λ)r̃να(λ) ≤ A2νϕ2ν(α))we �nd that there exists a constantC > 0 so that (45)

holds.
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Conversely, if we have the relation (45), then we de�ne for arbitrary α > 0

with the operator T = ϕ(L∗L)|R(E(α,∞)) the element

ξα = T−1E(α,∞)x
†.

Now, the distance of ϕ(L∗L)ξα to the minimum-norm solution x† can be

estimated according to (45) by

‖x† − ϕ(L∗L)ξα‖2 = ‖E[0,α]x
†‖2 ≤ Cϕ2ν(α). (47)

Moreover, we can get an upper bound on the norm of ξα by

‖ξα‖2 =
∫ ‖L‖2

α

1

ϕ2(λ)
de(λ) = e(‖L‖2)

ϕ2(‖L‖2) − e(α)

ϕ2(α)
+ 2

∫ ‖L‖2

α

e(λ)

ϕ3(λ)
dϕ(λ).

Using assumption (45), evaluating the integral, and dropping the resulting two

negative terms, we �nd that

‖ξα‖2 ≤ C

ϕ2−2ν(‖L‖2) + C

1 − ν

1

ϕ2−2ν(α)
≤ c2

ϕ2−2ν(α)
(48)

with c2 = C(1 + 1
1−ν ).

So, combining (47) and (48), we have by de�nition (41) of the distance

function dϕ with R = cϕ−(1−ν)(α) that

dϕ(cϕ
−(1−ν)(α)) ≤

√
Cϕν(α),

and thus it follows by switching to the variable R that

dϕ(R) ≤ C̃R− ν
1−ν ,

where C̃ =
√
C c

ν
1−ν .

6. Conclusion

In this article, we have proven optimal convergence rates results for regulariza-

tion methods for solving linear ill-posed operator equations in Hilbert spaces.

The result generalizes existing convergence rates results on optimality of [10]

to general source conditions, such as logarithmic source conditions. The results

state that convergence rates results of regularised solution require a certain decay

of the solution in terms of the spectral decomposition.Moreover, we also provide

optimality results under variational source conditions, extending the results of

[1]. It is interesting to note that variational source conditions are equivalent to

convergence rates of the regularized solutions, while the classical results are not.

Moreover, we also show that rates of the distance function developed in [4, 9]

are equivalent to convergence rates of the regularized solutions.
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